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Abstract :   
 
Irregular urchins exclusively live in marine soft bottom habitats, dwelling either upon or inside sediments 
and selectively picking up sediment grains and organic particles, or swallowing bulk sediment to feed on 
the associated organic matter. The exact food source and dietary requirements of most irregular 
echinoids, however, remain incompletely understood. The schizasterid species Abatus cordatus (Verrill, 
1876) is a sub-Antarctic spatangoid that is endemic to the Kerguelen. The feeding behaviour of A. 
cordatus was investigated using simultaneously metabarcoding and stable isotope approaches. 
Comparison of ingested and surrounding sediments by metabarcoding revealed a limited selective 
ingestion of prokaryotes and eukaryotes by the urchin. Compared to surrounding sediments, the gut 
content had (i) higher carbon and nitrogen concentrations potentially due to selective ingestion of organic 
matter and/or the sea urchin mucus secretion and (ii) delta N-15 enrichment due to the selective 
assimilation of lighter isotope in the gut. Feeding experiments were performed using C-13 and (15) N-
enriched sediments in aquariums. The progression of stable isotope enrichment in proximal and distal 
parts of the digestive track of A. cordatus revealed that all particles are not similarly transported likely due 
to siphon functioning. Ingestion of water with associated dissolved and particulate organic matter should 
play an important role in urchin nutrition. A. cordatus had a gut resident time fluctuating between 76 and 
101 h and an ingestion rate of 36 mg dry sediment h(-1) suggesting that dense populations of the species 
may play a key ecological role through bioturbation in soft bottom shallow-water habitats of the Kerguelen 
Islands. 
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 Introduction 42 

 Aquatic sediments cover over 70% of the Earth’s surface and remains poorly 43 

understood (Dorgan et al. 2006). They constitute niche habitats for deposit feeding organisms 44 

that ingest sedimented material of low nutritional value (Lopez & Levinton 1987, Jumars 45 

1993). In comparison with fermenters, deposit feeders present short residence times of 46 

material in their guts as they principally rely on digestion and absorption of labile components 47 

diluted in large volumes of sediment (Plante et al. 1990).  Due to dilution and to the 48 

uncompleted digestion of refractory material, deposit feeders need to process their food at 49 

prodigious rates reaching daily sediment ingestion of several times their own weight (Jumars 50 

1993). 51 

 Among sea urchins, irregular echinoids dwell upon or inside soft sediments and 52 

commonly exhibit highly modified modes of food intake (Mooi 1990). Most of them lack 53 

teeth and jaw (the Aristotle’s lantern), they either pick up sediment grains and organic 54 

particles using specialized tube feet, or swallow huge bulk sediment volumes to feed on the 55 

associated organic matter (De Ridder et al. 1984). Due to their wide distribution range, large 56 

populations, burrowing activities and feeding behaviours (Ghiold 1989), heart sea urchins 57 

(Spatangoida) have long attracted the attention of paleontologists (Bromley & Asgaard 1975, 58 

Gilbert & Goldring 2008), sedimentologists (Radwánski & Wysocka 2001), physiologists (De 59 

Ridder & Jangoux 1993) and marine ecologists (Hammond 1981, De Ridder & Saucède 60 

2020). As they strongly modify physical and biochemical properties of marine sediments, and 61 

have disproportionally large effects on ecosystem functioning, spatangoids can be considered 62 

as keystone species of marine soft bottom ecosystems (Austen & Widdicombe 1998, Lohrer 63 

et al. 2004, Steneck 2013). The spatangoid burrowing activities in the sediment increase 64 

solutes exchange at the sediment-water interface (Bird et al. 1999), mix surface and deeper 65 
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sediment layers increasing the depth of oxygen penetration inside the sediment (Vopel et al. 66 

2007), influence the benthic carbon cycle (Osinga et al. 1997, Boon & Duineveld 2012) and 67 

maintain infaunal and microbial diversity (Widdicombe et al. 2000). The volume of sediment 68 

reworked by spatangoids reaches more than 60 times the volume of sediment ingested 69 

(Hollertz & Duchëne 2001, Thompson & Riddle 2005). Despite this limited fraction, the 70 

ingested sediment plays a structuring role due to biochemical modifications of sediment 71 

within the gut (Thompson & Riddle 2005). The exact source of nutrition and dietary 72 

requirements of spatangoids remain however incompletely understood (Jangoux & Lawrence 73 

1982), as direct examination of marine invertebrates gut content remains problematic and 74 

many consumed organisms are unrecognizable. In the last decade, new metabarcoding-based 75 

techniques has been implemented (Blankenship & Yayanos 2005) but still not used for 76 

spatangoids burrowers.  77 

 In the Southern Ocean, echinoids are common components of marine benthic 78 

communities (Fabri-Ruiz et al. 2017) and populations of spatangoids can constitute major 79 

bioturbers of surface sediments (Thompson & Riddle 2005). Abatus cordatus is a sub-80 

Antarctic schizasterid spatangoid endemic to the subantarctic Kerguelen Islands and northern 81 

Kerguelen oceanic plateau. In shallow waters (0 to 3 m), it is represented by numerous, dense, 82 

and isolated populations but scattered individuals have been recorded down to 560 m depth 83 

(Poulin & Féral 1995). Like many other invertebrates in the Southern Ocean, A. cordatus is a 84 

brooding species with no larval dispersal stage in its development (Schatt & Féral 1991), 85 

which is a limit to its dispersal capabilities and restrains its potential distribution range 86 

(Poulin & Féral 1997, Ledoux et al. 2012). The Kerguelen archipelago is located at the 87 

confluence of Antarctic and sub-tropical water masses, near the polar front that currently 88 

shifts southwards (Weimerskirch et al. 2003). In the context of global climate changes, the 89 



 

5 

 

coasts of Kerguelen are predicted to present more acidic, fresher and warmer waters in the 90 

future (Allan et al. 2013, Gutt et al. 2015). In order to monitor these modifications and their 91 

impact on marine life, an integrative long-term observing system, the program PROTEKER, 92 

was initiated in 2011 (Féral et al. 2016). Ocean acidification presents disproportionate 93 

negative effects for echinoderms (Kurihara & Shiarayama 2004, Kurihara 2008, Collard et al. 94 

2014) and preliminary results of program PROTEKER suggest that predicted changes in 95 

seafloor salinity and temperature amplitudes might shift beyond the limits of A. cordatus 96 

tolerance (Saucède et al. 2019). Due to the absence of larval stage, this endemic and narrow-97 

niche species will not be able to disperse southwards and find climatic refuge areas, which 98 

raises the issue of the species potential extinction in a near future (Ledoux et al. 2012, 99 

Guillaumot et al. 2018, Saucède et al. 2019). In turn, the loss of this key species may 100 

significantly alter ecosystem functioning in nearshore habitats of the Kerguelen Islands and to 101 

better understand this threat, it is essential to obtain a picture as complete as possible of the 102 

species ecology. The aim of this study is to improve our understanding of the trophic ecology 103 

of A. cordatus, simultaneously using metabarcoding and stable isotope approaches to evaluate 104 

its selective feeding and feeding processes. 105 

106 
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Material and method 107 

1) Sampling 108 

The investigated stations are located in the Morbihan Bay, in the east of the Kerguelen 109 

Islands located in the southern part of the Indian Ocean, at the northern edge of the Polar 110 

Front (Fig. 1). Two sampling stations were selected 500 m apart near Port-aux-Français. They 111 

harbor sandy sediments with similar granulometry (median grain size of 100 µm) and are 112 

localized at two distinct depths: 5 m depth for Biomar (49°21’12 S - 70°13’04 E) and 10 m 113 

depth for Port Pétrolier (49°21’17 S – 70°12’44 E). Sampling was done in November 2017 by 114 

scuba diving. A total of 60 specimens of A. cordatus were collected (mean test length of 38.0 115 

± 3.7 mm) at Biomar (n = 45) and at Port Pétrolier (n = 15). For each station, 3 specimens 116 

were analyzed for metabarcoding, 6 for natural isotopic composition whereas the remaining 117 

ones were used for feeding experiments in aquaria. Surficial 5 cm of sediment (“surrounding 118 

sediment samples”) were collected in each station for granulometric analysis, metabarcoding, 119 

natural isotopic composition and feeding experiments. 120 

2) Metabarcoding 121 

In each station, the surrounding sediment (3 samples) and the sediment filling the 122 

esophagus of A. cordatus (3 samples) were collected and stored in RNA-later prior to DNA 123 

extraction. DNA was extracted with the DNeasy PowerSoil Kit (Qiagen) kit following 124 

manufacturer instructions. V4 region of ADNr18S was targeted for metabarcoding analyses. 125 

The libraries were prepared with the Nextera XT kit (Illumina), and sequencing was 126 

performed with the MiSeq system (Illumina). Paired-end reads were trimmed and filtered 127 

with an AlienTrimmer (Criscuolo & Brisse 2013) at a Phred quality score threshold of 28 on a 128 

minimum length of 70 nucleotides generating 164-276 bp reads. All FASTQ data files have 129 

been deposited in NCBI-SRA public archives under the BioProject accession number 130 
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PRJNA625686. 131 

Denoising was performed using DADA2 software package (Callahan et al. 2016) 132 

implemented in QIIME 2 (Bolyen et al. 2019) via q2-dada2 plugin. DADA2 allows fine-scale 133 

variation identification through the characterization of amplicon sequence variants (ASV). 134 

Singletons and rare ASV (bellow 0.001%) were removed thanks to q2-feature-table plugin 135 

leading to 97 features for a total of 3046891 reads, a mean frequency of 253907 reads per 136 

samples. Taxonomy was assigned to ASV using the q2‐feature‐classifier (Bokulich et al. 137 

2018), a classify‐sklearn naïve Bayes taxonomy classifier using machine learning (Pedregosa 138 

et al. 2011) against the Silva 132 99_18S database (Quast et al. 2013). Normalization of ASV 139 

table was done by DESeq2 (Love et al. 2014) implemented in the SHAMAN pipeline 140 

(Quereda et al. 2016). Alpha diversities were calculated using the Shannon indexes. Beta-141 

diversity was calculated from the DESeq2 normalized data by a Bray-Curtis dissimilarity 142 

measure. Differences in community structure observed in the surrounding sediments and in 143 

the esophagus sediments were visualized using principal coordinates analysis (PCoA). Effects 144 

of these variables on beta diversity were tested with permutational multivariate ANOVA 145 

methods (PERMANOVA) with 999 permutations of the Bray-Curtis distance matrix. The 146 

generalized linear model (GLM) was then applied to detect differences in abundance of 147 

genera between variables tested with Benjamini‐Hochberg false discovery rate (FDR) 148 

correction. In parallel to 18S analyses, we also performed 16S metabarcoding to explore 149 

differences in prokaryotic content between samples. However, as no particular bacterial 150 

genera were found in the esophagus of A. cordatus, only the 18S results are considered in this 151 

study. Workflow used for this metabarcoding is presented as supplemental (Online Resource 152 

1). 153 

3) Natural isotopic composition 154 
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Isotopic compositions of the surrounding sediment was measured with samples from 155 

each station. Surrounding sediment was agitated and decantated in tap water in order to 156 

extract meiofauna. For each sample, 700 specimens of nematode were haphazardly 157 

handpicked under dissecting microscope, rinsed to remove adhering particle and transferred to 158 

tin cup. A. cordatus were dissected to collect i) tissue from the digestive tract and compact 159 

content of the ii) esophagus and iii) rectum. 160 

All samples were frozen dried and analyzed at the Isotope Facility at the University of 161 

California, Davis, using an elemental-analyzer isotope ratio mass spectrometer. The nitrogen 162 

and carbon isotope ratios are expressed in the delta notation δ15N and δ13C, as follows: δX = 163 

[(RReference/ RSample) − 1] × 1000, where X = δ15N or δ13C and R is the ratio 15N: 14N or 13C: 12C 164 

in the sample and in the reference material. Results are expressed relative to atmospheric 165 

nitrogen for N and to Vienna Pee Dee Belemnite (VPDB) for C, and are expressed in units of 166 

‰ ± standard deviation (SD). 167 

4) Feeding experiments 168 

The experiments were performed in aquaria. Surrounding sediment were enriched in 13C 169 

and 15N and placed in contact with A. cordatus. Evolution of the isotopic compositions of the 170 

digestive tube contents (esophagus and rectum) were compared during successive incubation 171 

times to provide an insight into food processes along the digestive tube. 172 

To prepare enriched sediment, local seawater was mixed with 13C glucose (99% 13C-173 

enriched glucose; Euriso-top) and 15N ammonium (99% 15N-enriched NH4Cl; Euriso-top) 174 

with respective concentrations of 237 mg l-1 and 94 mg l-1. Sediments from each station were 175 

poured in distinct aquaria to form a 4 cm layer over the bottom. Sediments were then covered 176 

with 13C-15N enriched seawater (4 cm layer) and daily homogenized during 200 h incubations. 177 

The aquaria were air bubbled aquariums and maintained at temperature of 4-6 °C under a 178 
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local light-dark cycle. At the end of the incubation, sediments were rinsed with two times 179 

their volume of seawater, overlaying water was removed after total sedimentation and this 180 

rinsing protocol was repeated four times. Before to be used in the experiments, A. cordatus 181 

individuals were kept fed in bubbled aquaria containing sediment to avoid starvation. At the 182 

beginning of the feeding experiments, 13C-15N enriched sediments were sampled to determine 183 

their initial isotopic compositions and the occurring meiofauna as previously described. Each 184 

aquarium (0.1 m2) contains 3.5 L of 13C-15N enriched sediment, 14.5 L of seawater and 6 A. 185 

cordatus individuals. During the experiments, the aquaria were maintained in conditions 186 

previously described. Six incubation times  were tested for Biomar sediments (2, 5, 10, 20, 40 187 

and 80 hours) whereas only an 80 hours-long experiment was tested for Port Pétrolier 188 

sediments. At the end of incubation, the sea urchins were collected, frozen (-80°C), thawed 189 

and dissected to isolate the contents of their esophagus and rectum. Isotope samples were 190 

treated as previously described. 191 

The contribution of enriched sediment to the digestive tube content of A. cordatus was 192 

evaluated considering i) the enrichment of the digestive contents since the beginning of 193 

feeding experiments and ii) the isotopic composition of enriched sediment. This evaluation 194 

was done for 13C and 15N and average values were calculated for each sea urchin from each 195 

sampling station and for ingested and digested sediments. 196 

The weight of sediment contained in the entire digestive tube of A. cordatus was 197 

measured through the dissection of 20 individuals. 198 

5) Data analyses 199 

The nonparametric Kruskal-Wallis test was used to test differences in isotopic 200 

composition, C and N contents and contribution of enriched sediment in diets. All statistical 201 

analyses were performed using R. Values are presented as means ± standard deviations (SD), 202 
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except when specified otherwise. 203 

204 
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Results 205 

1) 18S Metabarcoding 206 

 Alpha diversity (within samples) was calculated using the Alpha and Shannon indexes 207 

and revealed higher diversity in the surrounding sediments compared to the sediments filling 208 

the esophagus of A. cordatus (Online Resource 2). Sequencing did not permit to reach 209 

stabilization of rarefaction curves for the surrounding sediments samples, meaning that more 210 

ASV should be characterized with deeper sequencing (Online Resource 3). Figure 2 shows a 211 

PCoA graph based on beta diversities (between samples) calculated using the Bray-Curtis 212 

dissimilarity distance from the taxonomic profiles, showing discrimination between 213 

surrounding sediments and esophagus contents (permanova p-value < 0.029). A total of 97 214 

ASV were assigned when compared to SILVA database and only 14 ASV were characterized 215 

at genus taxonomic level. The genus Protomonostroma (green algae) and Kalyptorhynchia 216 

(Platyhelminthes) were significantly associated with the surrounding sediments (log2 fold 217 

change >4, adjusted p-value < 0.05) and only Acoela genus was significantly associated with 218 

the esophagus contents (log2 fold change >4, adjusted p-value < 0.05) (Fig. 3). 219 

2) Natural isotopic composition 220 

Natural isotopic composition of the sea urchin tissues (digestive tube wall) and of 221 

potential food sources is presented in figure 4. In both sampling stations, nematodes presented 222 

higher δ15N than A. cordatus. Theoretical isotopic composition of food sources of A. cordatus 223 

were calculated according to trophic enrichment factor of δ13C (1.1 ‰, (McCutchan et al. 224 

2003)) and δ15N (3.4 ‰, (Minagawa & Wada 1984)). In both sampling stations, this 225 

theoretical food source presented an isotopic composition closer to the composition of the 226 

surrounding sediment than the composition of nematodes (Fig. 4). 227 

Surrounding sediment presented a C/N ratio of 5.65 ± 0.54 that is not significantly 228 
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different from C/N ratios observed in the digestive sediments (esophagus and rectum 229 

contents) (Kruskal-Wallis, p > 0.05). C/N ratio, carbon and nitrogen contents (%) are similar 230 

all along the digestive tube whatever the digestive stage of its content (Kruskal-Wallis, p > 231 

0.05). In both study stations, esophagus and rectum sediments have a significantly higher 232 

carbon (1.6-fold) and nitrogen (1.7-fold) contents than surrounding sediment (Kruskal-Wallis, 233 

p < 0.05) (Fig. 5). 234 

In both study stations, δ13C of surrounding and of digestive sediments (esophagus and 235 

rectum contents) were not significantly different (Kruskal-Wallis, p > 0.05). However, δ15N 236 

sediments of the esophagus reached values of 22.4 ± 3.3 ‰ (Fig. 6). In both study stations, 237 

δ15N values were significantly higher in the digestive tube (esophagus and rectum contents) 238 

than in the surrounding sediment (Kruskal-Wallis, p < 0.05). 239 

3) Feeding experiments 240 

After incubation with 13C-glucose and 15N-ammonium, the surrounding sediment of 241 

Biomar station presented a d13C increasing from -19.4 ± 0.1 to 564.9 ± 3.9 ‰ and a d15N 242 

rising from 7.6 ± 0.3 to 3543.8 ± 54.2 ‰. The surrounding sediment of Port Pétrolier showed 243 

a d13C increasing from -18.5 ± 0.2 to 626.6 ± 142.5 ‰ and a d15N rising from 9.1 ± 0.1 to 244 

2960.4 ± 263.6 ‰. 245 

After 80 hours of incubation in the presence of enriched sediment, the digestive 246 

content of A. cordatus had 13C and 15N isotopic compositions closer to the enriched 247 

surrounding sediment than to the enriched nematodes (Fig. 7). 248 

For each sea urchin, the contribution of the enriched surrounding sediment to the 249 

digestive content was independently evaluated using 13C and 15N and average difference 250 

between each evaluation was 7.3 ± 8.0 %. For Biomar station, the contribution of enriched 251 

sediment to the esophagus content regularly increased forming the totality (100 ± 7%) of the 252 
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esophagus content after 80 hours experiment (Fig. 8). At Port Pétrolier, this contribution was 253 

81 ± 17% after 80 hours and not significantly different from values obtained for Biomar 254 

(Kruskal-Wallis, p > 0.05). The contribution of enriched sediment to the rectum content 255 

started to increase after 5 hours (1.0 ± 0.3%) and regularly increased during the experiment 256 

without reaching a plateau. After 80 hours, this contribution was 82.4 ± 23.8 % for Biomar 257 

and was not significantly different from the contribution of 71.5 ± 16.4 % observed for Port 258 

Pétrolier (Kruskal-Wallis, p > 0.05). For Biomar, data on the contribution of enriched 259 

sediment to the rectum content were used to fit a linear regression (r2 = 0.89) revealing an 260 

incubation time of 89 hours, necessary to reach a contribution of 100 %. The dissection of the 261 

digestive tube of A. cordatus allowed measuring a dry weight sediment content of 3.23 ± 1.0 262 

g. Considering that 89 hours are required to fill in its the digestive tube, A. cordatus would 263 

present an ingestion rate of 36 mg dry sediment h-1. 264 

265 
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Discussion 266 

Selective feeding 267 

Metabarcoding of the esophagus content of A. cordatus was used to evaluate its diet 268 

composition and to list its ingested food items.  This approach gives a snapshot of the sea 269 

urchin’s diet as it only considers the last food intake. Analyzing the natural isotopic 270 

composition of an animal tissues offers the advantage of integrating diet over a longer period 271 

(Fry 2006) but it does not offer such a precision in the list of ingested food items. This 272 

limitation is partially due to difficulties in the isolation of small food particles as for instance, 273 

700 nematode individuals per sample were needed to determine their isotopic composition in 274 

the present study. The simultaneous use of both methods increases the reliability of results 275 

and both leads to similar conclusions suggesting a limited selective feeding of A. cordatus. 276 

When non selective, deposit feeders may ingest large amounts of sedimented material 277 

consisting of sharped-edged mineral grains and of particulate organic matter (Jumars 1993). 278 

Transportation of unpalatable sediment in the digestive tube is energy intensive and this cost 279 

could be reduced through selective ingestion. Compared to other echinoids, irregular sea 280 

urchins present a drastically different mode of food intake as they lack an Aristotle’s lantern 281 

with the mouth directly opening into the esophagus (Holland 2013). Spatangoid species (e.g. 282 

Echinocardium cordatum and Brissopsis lyrifera) dwell in burrows connected to the sediment 283 

surface by a funnel. Particulate organic matter trapped in this funnel can be selectively 284 

transferred to the ventrally-located mouth using specialized aboral tube feet (De Ridder et al. 285 

1984, De Ridder & Jangoux 1985, Hollertz & Duchëne 2001, Hollertz 2002, Boon & 286 

Duineveld 2012). However, sea urchins of the genus Abatus do not present such a 287 

sophisticated funnel feeding behaviour and consequently has no direct access to the organic 288 

particles occurring at the surface of the sediments. Spatangoids can also exudate mucus that 289 
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trap fine and organic-rich particles carried by ventilatory currents. This mucus is then 290 

transported to the mouth by aboral floor spines along the ambulacral groove (De Ridder et al. 291 

1987). This selective feeding mode using mucus was suggested for B. lyrifera (Hollertz 2002) 292 

but not for the genus Abatus. 293 

In the present study, the metabarcoding targeting the ADNr16S gene suggests a 294 

similar microbiota composition between the sea urchin esophagus content and the 295 

surrounding sediment. Despite the ecological importance and the diversity of the genus 296 

Abatus (11 species are described in the Southern Ocean, Fabri-Ruiz et al. 2017), the gut 297 

microbiota has only been recently described in the Antarctic species Abatus agassizii 298 

(Schwob et al. 2020). Comparing the bacterial communities of the gut content and the 299 

surrounding sediment, the authors observed that the same bacterial classes were present in 300 

both micro-environments, although their compositions at finer taxonomic scale (OTUs) were 301 

significantly different. Such a discrepancy with results from Schwob et al. (2020) could 302 

principally be due to differences in sampling protocols as the present study has focused on the 303 

esophagus bacterial community whereas the whole gut content of A. agassizzi was analyzed 304 

by Schwob et al. (2020). Physicochemical conditions are variable according to the digestive 305 

tube regions (Thorsen 1998) and each regions could consequently present different gut 306 

microbiota. The physicochemical conditions inside the esophagus are likely more similar to 307 

surrounding sediment ones in comparison with the rest of the digestive tract thus explaining 308 

that we did not observe any difference in the bacterial communities. The differentiation of a 309 

specific microbiota would occur in the more posterior part of the digestive tract. This study 310 

suggests that the feeding mechanism in A. cordatus would not allow the selective ingestion of 311 

bacteria according to strain.   312 

Meiofauna is a discrete group of small (passing through a 0.5 mm-mesh sieve), highly 313 
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diverse, abundant and productive organisms dwelling in sediment (Giere 2009, Schratzberger 314 

& Ingels 2018). Meiofauna is a high-quality food source containing unsaturated fatty acids 315 

that most metazoans are unable to produce (Leduc et al. 2009, De Troch et al. 2012) and 316 

consequently, play an important role in the diet of epibenthic consumers from crustaceans 317 

(Bell & Coull 1978, Nilsson et al. 1993) to vertebrates such as fish (Fitzhugh & Fleeger 1985, 318 

Henry & Jenkins 1995). Heart sea urchins can affect meiofauna through predation and/or 319 

alteration of chemical and physical characteristics of environment sediments (Austen & 320 

Widdicombe 1998). Fatty acid composition in the foregut of E. cordatum suggests selective 321 

ingestion of meiofauna (Boon & Duineveld 2012). In the present study, metabarcoding 322 

targeting the ADNr18S gene reveals that only one organism from meiofauna was more 323 

abundant in the esophagus than in surrounding sediments indicating a limited selective 324 

ingestion of meiofauna by A. cordatus. Stable isotope composition in natural conditions or 325 

after enrichment both suggest that the nematode community, the most abundant meiofauna 326 

member, does not constitute a significant part of Abatus’ diet. Such a limited trophic role of 327 

meiofauna could be due to the large size of A. cordatus as selective ingestion of meiofauna 328 

decreases with the size of consumers (Pascal et al. 2019). 329 

Acoela is the only organism that is significantly more abundant in the esophagus of A. 330 

cordatus than in surrounding sediment. Acoels are bilaterally symmetric worms in the 331 

millimeter-size range (Achatz et al. 2013). Of the nearly 400 described species, the majority 332 

are free-living organisms but seven species are parasites or endosymbionts associated to the 333 

digestive tube of echinoderms (Jennings 1971), which could explain their higher abundance in 334 

the esophagus of A. cordatus. The macro algae Protomonastroma undulatum and the 335 

platyhelminth Kalyptorhynchia are less abundant in the sea urchin esophagus than in the 336 

environment, suggesting that the sea urchin could avoid ingesting these two food items. The 337 
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platyhelminth can also escape predation by the sea urchin but to our knowledge, such a 338 

behaviour has never been described. 339 

Carbon and nitrogen contents in the esophagus sediments were respectively 1.6 and 340 

1.7 times higher than in the surrounding sediments. Higher values were measured in the gut 341 

content of the spatangoid B. lyrifera with ratios of 2 for C and 2.5 for N (Hollertz 2002). In 342 

the gut content of E. cordatum, the organic matter is even fourfold higher than in the 343 

surrounding sediment (De Ridder et al. 1984). Such high values can be explained by a 344 

selective ingestion of carbon- and nitrogen- rich particles in the two last species that use 345 

specialized tube feet to pick up and select these particles from the sediment surface and 346 

convey them to the mouth through the vertical funnel of their burrows. Comparatively, the 347 

feeding mechanism in A. cordatus must be less selective. The measured differences could also 348 

be due to the role of mucus increasing C and N content in the ingested sediment. The mucus 349 

can be produced i) externally by clavulae of the fascioles, transported to the mouth and 350 

ingested (De Ridder et al. 1987, Hollertz 2002) or ii) internally in the posterior part of the 351 

esophagus that produce mucus to allow sediment compaction (Holland & Ghiselin 1970, De 352 

Ridder 1987). 353 

 In both sampling locations, δ15N in the esophagus contents reached significantly 354 

higher values (17 ‰) than in the surrounding sediment. δ15N of an organism tissue reflects its 355 

trophic position in the trophic network (Fry 2006). In Kerguelen, δ15N values exceeding 17 ‰ 356 

are rarely reached even in organisms of higher trophic levels such as marine mammals 357 

(Cherel et al. 2008) and marine birds (Camprasse et al. 2017a, Camprasse et al. 2017b). The 358 

present study reveals i) a nematode community with δ15N below 13 ‰ and ii) a limited 359 

selective feeding behaviour of A. cordatus. As a result, high δ15N values measured in the 360 

esophagus content are unlikely due to a selective ingestion of 15N enriched food items. 361 
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Metabarcoding indicated that eukaryotic symbionts of the genus Acoela are present in the 362 

esophagus of A. cordatus. However, considering the small quantity of Acoela, it can be 363 

reasonably assumed that this symbiont is not at the origin of the high δ15N signature of the A. 364 

cordatus esophagus content. As suggested earlier, a significant fraction of organic matter of 365 

the esophagus could be constituted by the mucus produced externally and internally by A. 366 

cordatus. However the mucus should present an isotopic composition similar to the sea urchin 367 

tissues, lower than 11 ‰, and should consequently not contribute to high δ15N of ingested 368 

sediment. The 15N enrichment in esophagus content is more probably linked with a 369 

preferential assimilation of the lighter isotope due to its weaker bonds during the digestion 370 

process (Fry et al. 1984). Consequently, the unabsorbed food in the gut becomes more 371 

enriched in the heavier isotope (Olive et al. 2003). As catabolic reactions also favour lighter 372 

isotope through production of excretory products (Minagawa & Wada 1984), the consumer 373 

tissue finally become enriched in heavier isotope (Olive et al. 2003). Thanks to this 374 

relationship between isotopic compositions of sources and consumers, stable isotopes are 375 

routinely used to evaluate diet composition of consumers (Boecklen et al. 2011). Due to 376 

limitations in sampling efforts and/or limitations in a priori knowledge of potential food 377 

items, exhaustive sampling of food sources of a consumer is difficult and several studies 378 

examined signatures of diet based on materials removed from the gastrointestinal tract (e.g. 379 

Fry 1988, Peterson et al. 1993, Yatsuya & Nakahara 2004). The use of this proxy implies a 380 

limited effect of ingestion and digestion on the isotopic composition of diet. A limited number 381 

of studies evaluated this effect and they focused on carnivorous (Grey et al. 2002, Guelinckx 382 

et al. 2008) and herbivorous (Johnson et al. 2012) fish. According to these studies, the effect 383 

of ingestion on 13C and 15N of food can be either limited (Grey et al. 2002) or significant 384 

(Guelinckx et al. 2008, Johnson et al. 2012). However, the range of 15N enrichment in the 385 
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esophagus of A. cordatus is higher than the values obtained in these studies. This could be 386 

due to specificities of digestion processes associated with deposit feeding. Care should be 387 

taken in determining isotopic signatures of diet based on isotopic composition of gut content 388 

(Guelinckx et al. 2008, Johnson et al. 2012) and this method would not be adapted to evaluate 389 

selective feeding for deposit feeders. As in the present study the isotopic shift i) appeared 390 

higher for 15N than for 13C (Guelinckx et al. 2008) and ii) occurred in the first part of the 391 

digestive tract (Guelinckx et al. 2008, Johnson et al. 2012). 392 

One means of diet selection is selective assimilation in the gut (Self & Jumars 1978). 393 

Absorption efficiency can be estimated by comparing gut content between the proximal and 394 

the distal parts of the gut (De Ridder et al. 1984). In both sampling stations, the proximal 395 

(esophagus) and distal (rectum) parts of the digestive tube presented similar C and N contents, 396 

and higher values than in the surrounding sediment. Similar results were observed for B. 397 

lyrifera with higher C and N in defecated sediments than in the environment suggesting an 398 

increase due to the presence of mucus and bacteria (Hollertz 2002). The sea urchin faeces 399 

would consequently constitute a food source favourable for meio and macrofauna (Austen & 400 

Widdicombe 1998).  δ15N of gut content is similar between first and last part of the digestive 401 

tube of A. cordatus. Preferential assimilation of lighter isotope occurs during all the digestion 402 

process and should lead to a regular increase of δ15N along the digestive tract. Inversely, 403 

catabolic reactions lead to a decrease of δ15N in the terminal part of gut content as they favor 404 

the lighter isotope eliminated through waste products (Minagawa & Wada 1984, Olive et al. 405 

2003). Both reactions should be of similar intensity and would explain the reduced difference 406 

of δ15N between the esophagus and rectum sediments. 407 

This study revealed a limited selective behaviour of A. cordatus as previously reported 408 

for Antarctic spatangoids that present a diet relying on sediment-associated organic matter 409 
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with a low trophic plasticity (Michel et al. 2016). 410 

Feeding kinetic 411 

In order to measure sediment ingestion rates in A. cordatus, feeding experiments were 412 

run in aquariums whose artificial conditions can affect the behaviour of spatangoids 413 

(Thompson & Riddle 2005). Aquarium conditions (light, temperature and sediment 414 

composition) were kept as close as possible to environmental ones to limit those biases. 415 

According to species, spatangoids can present different activities between day and night 416 

(Hammond 1982a, Thompson & Riddle 2005). To reduce this nychthemeral variability, 417 

feeding experiments were run during several days (80 hours). Ingestion rates of spatangoids 418 

increased with rising temperature (Hollertz & Duchëne 2001) and measured ingestion rates 419 

would likely be lower during colder austral winter. For deposit feeders like spatangoids, a 420 

widespread method to select food is to increase ingestion rates at sediment depth or location 421 

with patch of high food quality (Hollertz 2002) and to move faster in areas of low food 422 

availability (Hammond 1983). In aquarium, the sediment was homogenized and the sea 423 

urchins did not have the opportunity to select patch of sediment. However, both sediments 424 

used during feeding experiments were i) collected in areas with abundant A. cordatus and ii) 425 

ingested by sea urchin in the field as revealed by metabarcoding. Moreover feeding rates were 426 

similar in both sediments suggesting that underestimation due to unrealistic unpalatable 427 

sediment should be limited. 428 

During feeding experiments, the progression of stable isotope enrichment in proximal 429 

and distal parts of A. cordatus digestive tube informs on digestion processes. It takes more 430 

than 20 hours to completely fill the esophagus with enriched sediment whereas the rectum 431 

content started to be enriched after 10 hours. Regular gut content transportation would have 432 

implied a complete filling of the esophagus before apparition in distal part. Observed shift 433 
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implies that food particles are not all transported at similar rapidity. Fast transportation could 434 

be associated with the functioning of the siphon allowing rapid water circulation. Spatangoids 435 

maintain ciliary currents around their test to create a water current entering in the esophagus 436 

and this water is then actively pumped from the esophagus to the intestine through the siphon 437 

in order to i) provide oxygenated water to the intestine for respiration purposes, ii) avoid 438 

dilution of enzyme in the stomach, iii) facilitate advancement of content of digestive tract and 439 

iv) carry dissolved organic matter that is assimilated in the intestine (De Ridder et al. 1984). 440 

In order to produce isotopically enriched sediment used for feeding experiments of the present 441 

study, sediment was incubated with 13C glucose and 15N ammonium and then rinsed using 4 442 

cycles of dilution and sedimentation. This rinsing step removed most of non-assimilated 443 

enriched isotope and enriched dissolved organic matter. During feeding experiment, high 444 

amount of enrichment observed in the terminal part of the digestive tract is consequently more 445 

likely due to particulate than dissolved organic matter. Through water circulation in its 446 

digestive tube, the spatangoid E. cordatum presents a suspension feeding mode in addition to 447 

deposit feeding increasing the range of exploitable food items (Rolet et al. 2012). A. cordatus 448 

would similarly use suspended organic matter as food source but the importance of this 449 

feeding mechanism remains to be investigated. 450 

The present study suggested a gut resident time of 89 h for A. cordatus. This duration 451 

is in the range of values (72 to 97 h) observed for the high Antarctic species Abatus ingens 452 

(Thompson & Riddle 2005). For the temperate species B. lyrifera, the gut resident time is 453 

linked with temperature with duration of 75 h at 7°C and 19 h at 13°C (Hollertz & Duchëne 454 

2001). Another temperate species E. cordatum presents a digestive transit of 23-24 h (De 455 

Ridder & Jangoux 1985), which is considerably higher than the 4-5 h observed for the 456 

tropical species Meoma ventricosa (Hammond 1982b). The observed ingestion rate of 0.04 g 457 
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of dry sediment h-1 per specimen of A. cordatus is in the range of values obtained for the 458 

Antarctic Schizasteridae species A. ingens (0.02 to 0.06 g h-1) (Thompson & Riddle 2005) and 459 

the temperate species B. lyrifera (0.02 to 0.08 g h-1) (Hollertz & Duchëne 2001). The 460 

temperate spatangoid E. cordatum presents higher ingestion rates (0.38 g h-1) but it lives in 461 

nutritionally poor sandy habitats suggesting a link between sediment organic matter content 462 

and ingestion rates to obtain the required nutrients (De Ridder & Jangoux 1985). The volume 463 

of sediment reworked by A. ingens moving through sediment is 75 times greater than the 464 

volume ingested implying a significant bioturbating role in the Antarctic environment 465 

(Thompson & Riddle 2005). The present study reveals that A. ingens and A. cordatus present 466 

similar ingestion rates (Thompson & Riddle 2005) and because local populations of A. 467 

cordatus can reach high densities (Poulin & Féral 1995), it can be reasonably assumed that A. 468 

cordatus can also play a key ecological role through bioturbation in nearshore benthic 469 

communities of the Kerguelen islands. 470 

Metabarcoding and stable isotope both suggest a limited selective feeding by A. 471 

cordatus. The strong δ15N enrichment of sediment in first and last part of the digestive tube 472 

could be due to the selective assimilation of lighter isotope in the gut. Additional studies 473 

would be necessary to determine the mechanism of this enrichment and its specificity to 474 

deposit feeding mode. Feeding experiment using stable isotope enriched sediment revealed 475 

different pathways of food particles in the gut of the sea urchin and allowed measurement of 476 

feeding rates. The feeding activity of A. cordatus suggests that dense populations of the 477 

species can play an important ecological role through bioturbation. The loss of this key 478 

species due to global changes may consequently affect the ecosystem functioning in nearshore 479 

habitats of the Kerguelen Islands. 480 

481 
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Figure 482 

 483 

Figure 1. Positions of A) the Kerguelen archipelago in the Indian Ocean, B) Port-aux-Français 484 

in Kerguelen and C) two sampling stations: Biomar (white) and Port Pétrolier (grey) in Port-485 

aux-Français 486 

487 
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 488 

Figure 2. PCoA plots according to sample types (A. cordatus vs sediment) based on Bray-489 

Curtis dissimilarity matrix. PERMANOVA test based on the sample type yielded a significant 490 

p-value of 0.029; 89.9% of variations were explained by the first two PC1 and PC2 axis. 491 
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 493 

Figure 3. A) Barplot of eukaryotic genera significantly associated (p-value < 0,05) to A. 494 

cordatus (purple) and to sediment samples (green). B) Boxplot of the log2 abundances of the 495 

14 genera studied in sediments and A. cordatus samples on the 2 sites Biomar and Port 496 

Pétrolier. 497 
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499 
 Figure 4. Isotopic composition (δ13C and δ15N; ± SD; n = 6) of surrounding sediment, 500 

nematode community and gut tissue of A. cordatus in A) Biomar (white) and B) Port Pétrolier 501 

(grey). Dotted line represents the theoretical isotopic composition of food source of A. 502 

cordatus, taking into account trophic enrichment of δ13C and δ15N of 1.1 (McCutchan et al. 503 

2003) and 3.4 ‰ (Minagawa & Wada 1984) respectively. 504 
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 506 

Figure 5. A) Carbon and B) nitrogen contents (± SD; n = 6) of sediment and ingested and 507 

digested sediment by A. cordatus in Biomar (white) and Port Pétrolier (grey). *: Significant 508 

differences between surrounding sediments and sediments from the digestive tube (Kruskal-509 

Wallis tests, p < 0.05)  510 

511 

Fig 5.
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512 
 Figure 6. Isotopic composition (δ15N and δ13C; ± SD; n = 6) of surrounding sediment and of 513 

sediment from the digestive tube of A. cordatus in A) Biomar (white) and B) Port Pétrolier 514 

(grey) 515 
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 517 

Figure 7. Isotopic composition (δ13C and δ15N; ± SD; n = 6) of stable isotope enriched source 518 

used in feeding experiment (Biomar nematode community and sediment) and of the sediment 519 

ingested by A. cordatus (esophagus content) after an 80 h incubation time. 520 
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 522 

Figure 8. Contribution of 13C, 15N enriched sediment to the total sediment (in %) in A) 523 

esophagus sediment and B) rectum sediment of A. cordatus according to the duration of 524 

incubation (h) with enriched sediment from Biomar (white) and Port Pétrolier (grey) (means ± 525 

sd, n = 6). The linear regression was evaluated with data of ingested sediment from Biomar 526 

(r2 = 0.98). 527 
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 529 

Online Resource 1. Workflow implemented for eukaryotic metataxonomic analyses; ASV 530 

were extracted using QIIME2 pipeline; statistical analyses were performed using 531 

SHAMAN pipeline. 532 
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 534 

Online Resource 2. Alpha diversity analysis based on alpha and Shannon indexes for 535 

sediments and A. cordatus samples; error bars represent 95% confidence intervals. 536 
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 539 

Online Resource 3. Rarefaction curves of ASV for each sample. 540 
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