
1. Introduction
Since the launch of TOPEX/Poseidon, oceanographers have used the geostrophic assumption to infer sea surface 
velocity from Sea Surface Height (SSH). However, while an estimated 90% of the ocean's kinetic energy exists in 
the form of currents in quasigeostrophic balance (hereafter qualified as “balanced”; see Ferrari & Wunsch, 2009), 
one still must account for “unbalanced” flows such as internal tides, hereafter “ITs”, for a refined inference of 
balanced currents (Fu & Ferrari, 2008). Furthermore, ITs play a crucial role in ocean mixing (Lien & Gregg, 2001; 
Whalen et al., 2020), and are helpful in detecting ocean temperature changes (Zhao, 2016). Therefore, whether 
ITs are considered “noise” (e.g., for inferring balanced flows) or “signal” (e.g., for inferring tidally induced 
mixing), their proper extraction from altimetry data is essential.

For decades, IT extraction has been conducted via harmonic analysis (Munk & Hasselmann, 1964), a method 
that relies on a close phase relationship (or coherence) between ITs and astronomical forcings. Departures from 
this condition are sometimes referred to as “incoherence” (Ponte & Klein, 2015; Zaron & Rocha, 2018). Current 
altimetry has a typical spatial resolution of O(100) km (Ballarotta et al., 2019), which is sufficient to retrieve 
mode-1 and some of the mode-2 IT wavelengths of semidiurnal tides, along with the dominant turbulent balanced 

Abstract A proper extraction of internal tidal signals is central to the interpretation of Sea Surface 
Height (SSH) data. The increased spatial resolution of future wide-swath satellite missions poses a challenge 
for traditional harmonic analysis, due to prominent and unsteady wave-mean interactions at finer scales. 
However, the wide swaths will also produce SSH snapshots that are spatially two-dimensional, which allows 
us to  treat  tidal extraction as an image translation problem. We design and train a conditional Generative 
Adversarial Network, which, given a snapshot of raw SSH from an idealized numerical eddying simulation, 
generates a snapshot of the embedded tidal component. We test it on data whose dynamical regimes are 
different from the data provided during training. Despite the diversity and complexity of data, it accurately 
extracts tidal components in most individual snapshots considered and reproduces physically meaningful 
statistical properties. Predictably, Toronto Internal Tide Emulator's performance decreases with the intensity of 
the turbulent flow.

Plain Language Summary Wide-swath satellite observations of Sea Surface Height (SSH) data 
at high spatial resolutions will be available in abundance thanks to advances of instrumental technologies. 
Embedded in the observed SSH are internal tides, a dynamical component that plays a crucial role in ocean 
circulation. As they are entangled with background currents and eddies, such tidal signals are challenging to 
extract. Methods that worked with previous-generation altimeters will break down at the resolutions that the 
new generation promises. On the other hand, the wide satellite swaths provide new opportunities as they allow 
us to regard the observations as spatially two-dimensional. Here we treat the tidal extraction solely as an image 
translation problem. We train a deep neural net so that given a snapshot of a raw SSH signal, it produces a 
“fake” snapshot of the tidal SSH signal that is meant to reproduce the original. The data we use in this article 
is generated by idealized numerical simulations. Once adapted to realistic data, the network has the potential to 
become a new tidal extraction tool for satellite observations. More broadly, successes in our experiments can 
inspire other applications of generative networks to disentangle dynamical components in data where classical 
analysis may fail.
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motions (hereafter “TBMs”; see Ray & Zaron, 2011). At these scales, the coupling between ITs and TBMs is 
usually weak and therefore substantial portions of the ITs are coherent (Egbert & Ray, 2000). Hence, harmonic 
analysis is in principle sufficient to retrieve the corresponding IT signal.

The next generation of satellite altimetry, in particular the Surface Water Ocean Topography (SWOT) mission, 
aims to improve the spatial resolution to a few tens of km in wavelength (Morrow et al., 2019). A fundamental 
challenge arises at these smaller scales, namely, the potential inapplicability of traditional harmonic analysis. 
Indeed, ITs become incoherent (Dunphy et  al.,  2017; Dunphy & Lamb,  2014; Ponte & Klein,  2015) due to 
stronger couplings with the TBMs linked to the increased vorticity magnitude (Bühler, 2014). In the presence of 
strong incoherence, other separation techniques such as complex demodulation (Colosi & Munk, 2006; Munk 
et al., 1965) or Lagangarian filtering (Shakespeare & Hogg, 2017), while efficient when well-sampled time series 
are available, will not be readily applicable to SWOT, whose sampling period is 21 days during the science phase 
(Morrow et al., 2019).

Future altimeters will gather data along wide swaths (two 50 km-wide swaths, 20 km apart for SWOT) as opposed 
to current linear tracks and as a result they will produce spatially two-dimensional (2D) images. This has moti-
vated the community to regard the extraction of IT signals as an operation on high-resolution 2D snapshots. 
Current methods rely on exploiting distinct spectral signatures of TBMs and internal waves (Torres et al., 2019), 
empirical modal mapping methods (Egbert & Erofeeva,  2021), dynamical relations to surface density fields 
(Ponte et al., 2017), or on data assimilation techniques (Le Guillou et al., 2021; Metref et al., 2020). A common 
element between these works and the present one is the circumvention of time series information, as motivated 
by the poor temporal resolution of SWOT.

In this work, we propose to regard the IT extraction solely as an image-to-image translation problem, conceiving 
and tackling the following challenge: can we design an algorithm that extracts the SSH signature induced by IT 
from a raw, instantaneous SSH map? To address it, we develop what we call the “Toronto Internal Tide Emulator” 
(TITE), a deep convolutional neural network that extracts IT signals from individual SSH snapshots. No physi-
cal knowledge, statistical properties, or temporal evolution are imparted to the network prior to the training. In 
general, we find TITE to perform well in most SSH snapshots generated from a set of idealized simulations. We 
present details about the data set we use and the development of TITE in Section 2, our experiments in Section 3, 
and offer conclusions and discussions in Section 4.

2. Methods
2.1. Idealized Data Supporting TITE's Development

Data to support TITE's development are snapshots from a set of idealized numerical simulations, where mode-1 
ITs are forced at a fixed tidal period T (12 hr) to propagate through TBMs created by a baroclinically unstable jet 
(Ponte et al., 2020; Ponte & Klein, 2015). The SSH signatures of TBMs in these simulations are generally larger 
than those induced by ITs, and exhibit a significant overlap in spatial scales at O(100) km with ITs. Spatial filter-
ing is thus difficult, an issue that is also faced by satellite altimetry in oceanic regions such as the Gulf Stream or 
Drake Passage, where powerful TBMs exist (Richman et al., 2012; Rocha et al., 2016).

We run the model under five different initial meridional density contrasts. With increasing contrast, the baroclinic 
jet becomes more unstable and creates a more vigorous baroclinic eddy field. The spectra induced by these eddies 
follow a geostrophic turbulence law (Charney, 1971; Ponte & Klein, 2015), and are thus identified as TBMs. In 
ascending order of stationary surface kinetic energy levels of TBM (hereafter referred to as “turbulence levels”), 
we label the five simulations as T1 to T5. The mean normalized vorticities (absolute values of surface vertical 
vorticities normalized by the local Coriolis frequency) over the jet width increase from 0.06 to 0.14 from T1 to 
T5. See Text S1 in Supporting Information S1 for more details on the numerical setup. IT snapshots are computed 
online via harmonic fits over time series that are 2T long and sampled every 300 s, or T/144. For simplicity, 
we only study 𝐴𝐴 𝐴𝐴

(sim)
cos  , the cosine component of ITs from the simulations, defined in the same way as in Dunphy 

et al. (2017):

𝜂𝜂
(sim)
cos (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) =

1
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where x, y are the zonal and meridional coordinates, respectively, and η 
denotes raw SSH. For each snapshot, we cut out three square panels covering 
three fixed latitudinal bands, labeled as “down-jet”, “mid-jet” and “up-jet”, 
as illustrated in Figure 1. Here, the term “up-jet” denotes locations closer to 
the tidal forcing regions. One hundred snapshots are captured every 4T for 
each simulation in T1–T5, resulting in 1,500 pairs of 𝐴𝐴

{

𝜂𝜂𝜂 𝜂𝜂
(sim)
cos

}

 panels (5 
runs, 3 latitudinal bands, and 100 snapshots) altogether.

2.2. Deep-Learning Algorithm Designed to Extract Tidal Signals

During the design of the TITE runs, we implicitly make four assumptions: 
(1) there is abundant spatial information, (2) all snapshots are statistically 
independent from each other, (3) a raw SSH functionally determines its IT 
component, but properties of the functional dependence are unknown, and 
(4) there exists abundant data where ITs are already extracted from the raw 
SSH. We discuss these assumptions at the end of this article.

TITE is based on a conditional Generative Adversarial Network (hereafter 
referred to as “cGAN”). As the name implies, a cGAN consists of two parts, 
namely, a conditional generator (hereafter “generator”) that learns how to 
manufacture a “fake” image that's conditioned on an “input image”, and a 
discriminator that tries to determine if an image is “genuine” (i.e., paired to 
the input image in the training data), or fake (i.e., created by the generator). 
Either part is on its own a convolutional neural network, and during training, 

the two parts compete against each other to co-evolve (Goodfellow et al., 2014; Mirza & Osindero, 2014). We 
denote the cosine IT panels generated from TITE as 𝐴𝐴 𝐴𝐴

(gen)

cos  ; following our notations, the input image would be 
η, the genuine image would be 𝐴𝐴 𝐴𝐴

(sim)
cos  , and the fake image would be 𝐴𝐴 𝐴𝐴

(gen)

cos  . As reflected in this general workflow, 
during training, other than the paired panels, no further information is given to TITE.

The particular cGAN TITE is derived from is called “pix2pix” (Isola et al., 2017), applications of which range 
from artistic creations (ml4a, 2017) to scientific problems such as remote sensing image classifications (Lebe-
dev et al., 2018). Our codes are adapted from a TensorFlow Tutorial (Tensorflow, 2019). We refer to Text S7 
in Supporting Information S1 for details on the changes we made to the original code. Here, we mention a few 
relevant traits.

The generator and the discriminator have around 10 4 and 2,000 convolutional layers respectively, each layer 
containing a 2-by-2 kernel to be learned during training. The considerable number of model parameters makes 
TITE a black box, as in the case of many deep learning algorithms.

Prior to each epoch, training images are randomly reshuffled in time, cropped, flipped, and rotated. Here, an 
epoch means the number of computations it takes for the cGAN to iterate over all data in the training set once. 
The random cropping, rotation and flipping are intended to introduce challenges that roughly mimic realistic 
situations where we don't have a priori knowledge of the observer's orientation/location about IT generation sites, 
direction of propagation, and exact boundary conditions. By randomly reshuffling in time, we enforce that every 
panel pair at every snapshot in the simulation be sequentially independent from the others. This means that any 
temporal information in the simulations is unknown to the pix2pix kernel, in line with our assumption (2) made 
previously in this section.

As the fully convolutional U-Net structure inherited from pix2pix in the generator can be applied to images of 
arbitrary sizes in principle, when producing Movies S1–S5, we directly apply the trained TITE onto rectangular 
input images, even though TITE is trained on square images illustrated in Figure 1. This versatility on the shapes 
of input images would be useful for along-swath satellite products.

We systematically run our code with TensorFlow 2.3.0 under Python 3.7. One hundred training epochs with 960 
pairs of 𝐴𝐴

{

𝜂𝜂𝜂 𝜂𝜂
(sim)
cos

}

 in the training set take about 1.5 hr with a NVIDIA GP100 graphics processing unit. For all the 
TITE runs in the article, we choose to present the results after 600 training epochs. Details on how we decide on 
the cut-off epoch are provided in Text S4 in Supporting Information S1.

Figure 1. The “down-jet,” “mid-jet” and “up-jet” bands illustrated over 
a snapshot of η (left) and 𝐴𝐴 𝐴𝐴

(sim)
cos  (right), sampled from T3 at day 2120. The 

“mid-jet” band is centered around the baroclinic jet. ITs are forced to the south 
of “up-jet” bands, and as the ITs propagates northward and loses coherence 
due to interactions with the turbulent balanced motion (TBM), the 𝐴𝐴 𝐴𝐴

(sim)
cos  

patterns are less reminiscent of plane waves in the “down-jet” band than in the 
“up-jet” band.
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2.3. Division of Data to Training, Testing and Validation Sets

As a first check on TITE's performance, we randomly select 20% of all 1,500 pairs of 𝐴𝐴
{

𝜂𝜂𝜂 𝜂𝜂
(sim)
cos

}

 panels from 
T1–T5 to form a so-called validation set, and use the rest as the training set. During training, TITE has access to 
all pairs of 𝐴𝐴

{

𝜂𝜂𝜂 𝜂𝜂
(sim)
cos

}

 in the training set, but none from the validation set. After 600 epochs, the training phase is 
over, and we apply the trained TITE into snapshots in the validation set. The mean correlation between 𝐴𝐴 𝐴𝐴

(sim)
cos  and 

𝐴𝐴 𝐴𝐴
(gen)

cos  in the validation set turns out to be 0.85, which suggests that the generated 𝐴𝐴 𝐴𝐴
(gen)

cos  reasonably resemble the 
ground truths 𝐴𝐴 𝐴𝐴

(sim)
cos  . However, under this division, the training set contains turbulence levels that are statistically 

similar to the validation set on which the trained TITE is applied, and the good correlation factors could be caused 
by overfitting. Here,“overfitting” refers to a commonly accepted definition in machine-learning contexts (Dietter-
ich, 1995): a model is said to overfit when it tries to fit the training data so closely that it does not generalize well 
to new data. To address this possibility, we challenge TITE to extract 𝐴𝐴 𝐴𝐴

(sim)
cos  signals linked to a different turbulence 

level as those employed for its training.

Specifically, in what we refer to as the “ET1 run”, we reserve a test set, which contains all 300 pairs of panels 
from the simulation T1 and none from T2, T3, T4 or T5. Among the remaining panels from T2-5, we randomly 
select 80% pairs for the training set, and reserve the other 20% for the validation set. The validation and test sets 
are both inaccessible to TITE during training, but crucially, in terms of average turbulence levels, the training set 
is similar to the validation set, yet different from the test set. This procedure is designed to limit, or at least detect, 
the occurrence of overfitting. Similarly, we carry out ET2-5 runs, following the same logic, where the test sets 
are panels from the simulations T2-5 respectively.

3. Performance of TITE
As a graphical illustration, in Movie S1, we re-order all the shuffled test instances of ET1 in time. The recon-
structed temporal information appears remarkable, considering that the snapshots were randomly shuffled at the 
time of their generation and hence that the temporal evolution of these images was unknown to TITE. However, 
as turbulence level in test sets increases from ET2 to ET5, the evolution of 𝐴𝐴 𝐴𝐴

(gen)

cos  bears less and less resemblance 
with 𝐴𝐴 𝐴𝐴

(sim)
cos  (Movies S2–S5). To find the underlying causes, in this section, we evaluate the performance of TITE 

with several statistical metrics and discuss the causes of relatively decreased performance when they arise. All 
metrics are computed using standard methods and detailed in Text S6 in Supporting Information S1.

We first investigate how close 𝐴𝐴 𝐴𝐴
(gen)

cos  is to the ground truth 𝐴𝐴 𝐴𝐴
(sim)
cos  by measuring the correlation between the two, 

as in Torres et al. (2018). The mean correlation factors averaged over all test instances in the ET1–ET5 runs are 
0.91, 0.89, 0.83, 0.80, and 0.70, respectively. The highly correlated predictions of TITE in the test set in ET1–ET4 
are especially interesting, as turbulence levels of the test set are different from that of the training set. There is 
however a relatively sharper drop (from 0.80 to 0.70) in the mean correlation from ET4 to ET5 in the test sets. 
Such a sharp drop can also be observed in the histograms shown in the SI Figure S7 in Supporting Information S1.

A few relevant snapshots from test sets are illustrated in Figure 2. The first row presents the snapshot with the 
highest correlation among all test sets in ET1–ET5. It belongs to ET1 and has a correlation factor of 0.95. The 
second and third row present the snapshot with the lowest correlation among all test sets in ET5 and ET4, respec-
tively. Judging by the correlations, the worst case in ET4 has a correlation factor of 0.68, which is a significant 
improvement over the correlation factor of 0.49 in the worst case in ET5. This agrees with visual comparisons 
between the second and third rows in Figure 2. This observation, together with the sharp drop of mean correlation 
factors in ET5 noted above, suggest a possible categoric difference between ET5 and ET1–ET4.

To gain more insight about the relative failures in ET5, we conduct a spectral analysis that focuses on comparing 
ET4 and ET5. The wavenumber spectra for the down-jet and up-jet bands are computed separately for 𝐴𝐴 𝐴𝐴

(sim)
cos  and 

𝐴𝐴 𝐴𝐴
(gen)

cos  in the test set of ET4 and ET5, and presented in Figure 3. The spectra for mid-jet bands are omitted for read-
ability here and attached in Text S2 in Supporting Information S1.

Prominent bumps appear near the wavenumbers corresponding to mode-1 tidal wavelengths in all the spectra 
of 𝐴𝐴 𝐴𝐴

(sim)
cos  (Solid lines in Figure 3). These bumps are somewhat broad, and their locations are noticeably different 

between the down-jet and up-jet bands. This is expected, as the density profiles and the Coriolis parameter both 
vary with latitude, which modulates the mode-1 tidal wavelength (See Text S1 and Figure S1 in Supporting Infor-
mation S1). Such variations can also be found in satellite observations (Ray & Zaron, 2011).
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A qualitative difference can be found in the spectral behaviors between ET4 and ET5. In ET4, the locations of 
spectral bumps in the 𝐴𝐴 𝐴𝐴

(gen)

cos  spectra vary between the down-jet and up-jet bands, in a manner such that they closely 
overlap with bumps of the 𝐴𝐴 𝐴𝐴

(sim)
cos  spectra at both bands. This implies that in the ET4 run, the trained TITE identifies 

the dominant wavelength even as it varies. In other words, TITE can identify patterns at varying spatial scales. 
However, in the ET5 run, the 𝐴𝐴 𝐴𝐴

(gen)

cos  spectra fail to trace the location of the bumps in the down-jet bands (dashed and 
solid red lines in lower panel of Figure 3). The performance in up-jet bands appears as good as ET4, which may be 
attributed to the fact that the mode-1 tidal wavelengths to the south of the jets are the same in all five simulations.

What causes the decrease of performance in ET5? We can formulate two possible hypotheses: (a) the inher-
ent difficulty of predicting increasingly complex patterns at higher turbulence levels, and (b) overfitting (see 

Section 2.3 for its definition). Overall, we believe factor (a) affects TITE's 
performance more than factor (b), as we now argue.

In support of hypothesis (a), as explained in Text S1 in Supporting Informa-
tion S1, stronger scatterings of ITs from TBMs induce more longitudinal vari-
ations as well as small-scale features in the IT components due to increased 
incoherence. In addition, the tidal wavelengths vary more latitudinally due 
to increased density gradients, which increases the diversity of dominant 
spatial scales of IT signals across the domain and time. Both factors add 
complexities to the η and 𝐴𝐴 𝐴𝐴

(sim)
cos  patterns, and therefore pose more challenges 

to our algorithm. In Text S5 in Supporting Information  S1, we show that 
a generically defined metric of pattern complexities introduced by Bagrov 
et al.  (2020) generally increases under stronger TBMs as we expected. As 
the turbulence levels increase from T1 to T5, the testing instances become 
increasingly challenging from ET1 to ET5, which explains the decreased 
performance in ET5 in correlations and spectral behaviors.

The difficulty associated with vigorous turbulence levels is also reflected 
in the relatively worse performance of TITE in the mid-jet bands centered 
around the turbulence. In the histograms shown in Figure S7 in Support-
ing Information S1, or last three columns in Table S2 in Supporting Infor-
mation  S1, the correlations for the down-jet, mid-jet and up-jet bands are 
presented separately for the test sets in ET1–ET5. Within each of ET1–ET5, 
the up-jet bands have a higher mean correlation than the mid-jet bands. As 

Figure 2. A few examples of individual tests. Top row: snapshot with the highest correlation among all sets (belongs to 
ET1). Middle and bottom rows: same for the lowest correlations among ET1–ET4, and ET1–ET5, respectively (belong to 
ET4 and ET5, respectively). For legibility, we omit spatial axis labels, noting that the first, second, and third rows correspond 
to down-jet, down-jet, and mid-jet bands, respectively; see Figure 1 for their definitions.

Figure 3. Spectra for the down-jet and up-jet bands in ET4 and ET5 test set. 
In the legends “Up”, “Dn” denote the down-jet and up-jet bands respectively. 
“Raw”, “sim”, and “gen” denote spectra computed from panels of 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴

(sim)
cos  , and 

𝐴𝐴 𝐴𝐴
(gen)

cos  , respectively. “K” denotes the horizontal wavenumber magnitude. The 
vertical dashed lines mark the largest and smallest mode-1 tidal wavenumbers 
over the simulation domain at initial time, following Figure S1 in Supporting 
Information S1. Raw spectra higher than 2 × 10 8 m 2 at large scales are 
omitted. Higher wavenumbers are omitted.



Geophysical Research Letters

WANG ET AL.

10.1029/2022GL099400

6 of 9

the turbulence level increases, this difference gets more pronounced. The degraded performance at mid-jet bands 
is also reflected from the “square coherences” in Text S2 in Supporting Information S1.

Turning our attention over to hypothesis (b), in our experiments, overfitting may provide a partial explanation 
for the performance degradation from ET4 to ET5. In support of this hypothesis, Table S1 in Supporting Infor-
mation S1 shows that the kinetic energy and normalized vorticity for the TBM and IT all increase from T1 to 
T5. Moreover, in terms of these dynamical metrics, the training set of ET5 is less diverse compared to, say, the 
training set of ET4 that spans a wider range of these metrics. Therefore, in ET5, TITE may be fittingly closely for 
turbulence levels in T1–T4, and fails at T5 due to its mismatch with T1–T4, whereas in ET4, both T3 and T5 are 
included during training, and a combination of T3 and T5 may impart some knowledge about T4 during testing.

However, several behaviors of TITE are inconsistent with the overfitting hypothesis. First, if overfitting was the 
only factor, then during the test phase, TITE should perform worse in ET1 than in ET2, as the range of dynamical 
metrics in ET1 is narrower than in ET2. This does not turn out to be the case. In fact, the ET1 run produces the 
best mean correlation in the test set among ET1–ET5; in Text S2 in Supporting Information S1, we show that 
the ET1 test set also demonstrates excellent spectral behaviors. Second, compared to test sets, validation sets are 
closer to training sets, and an overfitting model should perform better in the validation sets than in the test sets. 
However, the mean correlations produced by TITE in the test sets are higher than the validation sets by about 0.05 
in ET1 and ET2 (second and third columns in Table S2 in Supporting Information S1).

On the other hand, hypothesis (a) provides better explanations for these disagreements. In the ET1 test set, the 
turbulence levels are lower, and TITE performs well despite the possible impacts from overfitting. In the ET1 
and ET2 runs, the test data are at a lower turbulence level than the validation data, which leads TITE to generate 
better predictions too. Therefore, we believe that TITE's performance is more influenced by hypothesis (a) than 
hypothesis (b) (note that they may happen simultaneously).

We note that despite the relative lack of prediction accuracy under higher turbulence levels, in our data, TITE 
would still outperform simple spatial filtering methods that would break down due to the strong TBMs super-
imposing the ITs around tidal wavelengths (Text S2 in Supporting Information S1), or harmonic analysis that 
would not work due to the strong incoherence and the temporal interval of 4T. To improve TITE's performance at 
higher turbulence levels, a possible solution is to feed TITE with “overly turbulent” simulations during training, 
as motivated by the better performances we have found in ET4, as compared to ET5.

4. Conclusions and Discussions
We designed a novel technique based on a deep neural network algorithm to extract internal tides that are entan-
gled with geostrophic turbulence. We trained and validated TITE using randomly shuffled simulation snapshots 
that were categorically different from the dynamic regime of the testing data. The testing data sets are designed in 
a way that classical methods such as harmonic fits or spectral filtering could not extract tidal signals accurately, 
and yet in most test cases, TITE can still (a) extract IT signals that agree well with ground truths in a determin-
istic sense, and (b) capture the dominant tidal energy in the wavenumber spectra, even when it varies temporally 
and latitudinally. When TITE does not perform as well, the main cause seems to be the high complexities of the 
patterns linked to stronger turbulent motions. Overall, we believe that this work provides a fresh angle on how to 
disentangle dynamical components from two-dimensional data via a deep learning approach. Some discussions 
are offered below.

Although we make no claim about TITE or cGANs in general as being the best possible algorithms to specifically 
achieve our goal, we found it superior to other deep learning methods we investigated, which include several types 
of decision trees regressors, long short-term memory networks, and U-Net structures without a discriminator. We 
did not attempt to optimize model parameters such as numbers of layers or learning rates, among others. More 
recent variations of pix2pix such as pix2pixHD (Park et al., 2019) could also improve our current implementa-
tion. Moreover, as mentioned in Section 3, the generated images contain spurious signals outside the dominant 
tidal bump, which remains to be resolved. We leave these as thoughts for future work.

In this work, TITE only extracts the cosine IT signals. The generalization to the sinusoidal IT signals, which 
are defined by replacing 𝐴𝐴 cos (2𝜋𝜋𝜋𝜋′∕𝑇𝑇 ) in Equation  1 with 𝐴𝐴 sin (2𝜋𝜋𝜋𝜋′∕𝑇𝑇 ) , should be straightforward. With both 
cosine and sinusoidal IT signals, phase information at any given time can be retrieved. One may also study the 
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performance of TITE for extractions of signals at higher tidal frequencies that correspond to smaller spatial 
scales. Pix2pix has been observed to be capable of capturing fine features in images (Isola et al., 2017), and 
smaller scales don't necessarily make the problem more challenging to TITE.

So far, TITE has only been applied to the idealized simulations T1–T5 with a single baroclinic jet and single tidal 
frequency, simplistic boundary conditions, flat topography, an absence of atmospheric forcings. As an ongoing 
work, we are investigating the effects of including snapshots from a global ocean general circulation model.

We used correlation factors as a main quantitative metric in our evaluations of TITE's performance, similar to 
Torres et al. (2018) and Ponte et al. (2017). However, no direct physical meanings are attached to correlation 
factors, and rigorous hypothesis tests are challenging due to our lack of knowledge on the probability distributions 
of the IT signals. Wavenumber spectra, another main metric we use, does have a clearer physical interpretation, 
but a direct link between it and practical applications such as mapping or forecasting is challenging to establish. 
Our community has yet to design a more illustrative, rigorous and widely-adopted skill metric to assess the accu-
racy of 2D tidal extraction.

With SWOT in mind, we may reassess the four assumptions stated in the first paragraph of Section 2.2. All 
images used in this work have a 4 km horizontal resolution that resolves the tides adequately, addressing assump-
tion (1). In preparation for satellite data that will suffer from measurement error and more limited resolutions, we 
may coarse-grain and augment the training data with the type of error expected in SWOT (Gaultier et al., 2016) 
to investigate their impacts. Assumption (2), motivated by the incoherence of ITs and the relatively long sampling 
intervals of SWOT, is satisfied by the design of the TITE architecture, and by the random shuffling of snapshots 
during training. However, complete statistical independence between ITs and TBMs can be overly strict for 
several reasons, ranging from a higher temporal sampling at high latitude, to the possibility of “filling in the 
time gaps” with other sources of data such as those from assimilated models or in-situ instruments (d'Ovidio 
et al., 2019). From the overall satisfactory performance of TITE, the assumption (3) appears to be satisfied in our 
simulation outputs, perhaps due to simulation design choices such as a perfectly harmonic incoming IT signal, 
or simple boundary conditions. Under more realistic configurations, a functional dependence might not be guar-
anteed. On the other hand, the assumption (3) can also be overly strict, considering recent progress in the theory 
of IT/TBM interactions (Savva et al., 2021; Savva & Vanneste, 2018; Torres et al., 2018; Wagner et al., 2017). 
Assumption (4) relies on the premise that there will be pre-processed training data (presumably from highly 
skilled model outputs) that mimic the dynamics to be sampled by SWOT. Productions of such data are receiving 
significant attention within the modeling communities (Arbic et al., 2010; Rocha et al., 2016; Savage et al., 2017; 
Zaron & Rocha, 2018). Overall, to make TITE eventually applicable to SWOT and other satellite missions in the 
future, more work is required, especially in coordination with different communities and perhaps combination 
with complementary methods.

Data Availability Statement
Simulation results corresponding to snapshots in T1-T5 used in this study to train and test TITE are published on 
Scholars Portal Dataverse (Ponte et al., 2020). Codes defining the architecture of TITE are available on Github 
via (Wang, 2022).
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