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Abstract :   
 
Extreme reef environments have become useful natural laboratories to investigate physiological 
specificities of species chronically exposed to future-like climatic conditions. The lagoon of Bouraké in 
New Caledonia (21°56′56.16′′ S; 125°59′36.82′′ E) is one of the only reef environments studied where the 
three main climatic stressors predicted to most severely impact corals occur. In this lagoon, temperatures, 
seawater pHT and dissolved oxygen chronically fluctuate between extreme and close-to-normal values 
(17.5–33.85 °C, 7.23–7.92 pHT units and 1.87–7.24 mg O2 L−1, respectively). In March 2020, the 
endosymbiont functions (chl a, cell density and photosynthesis) and respiration rates were investigated 
in seven coral species from this lagoon and compared with those of corals from an adjacent reference 
site using hour-long incubations mimicking present-day and future conditions. Corals originating from 
Bouraké displayed significant differences in these variables compared to reference corals, but these 
differences were species-specific. Photosynthetic rates of Bouraké corals were all significantly lower than 
those of reference corals but were partially compensated by higher chlorophyll contents. Respiration rates 
of the Bouraké corals were either lower or comparable to those of reference corals. Conversely, 
photosynthesis and respiration rates of most studied species were similar regardless of the incubation 
conditions, which mimicked either present-day or future conditions. This study supports previous work 
indicating that no unique response can explain corals’ tolerance to sub-optimal conditions and that a 
variety of mechanisms will be at play for corals in a changing world. 
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Abstract
Extreme reef environments have become useful natural laboratories to investigate physiological specificities of species chroni-
cally exposed to future-like climatic conditions. The lagoon of Bouraké in New Caledonia (21°56′56.16′′ S; 125°59′36.82′′
E) is one of the only reef environments studied where the three main climatic stressors predicted to most severely impact
corals occur. In this lagoon, temperatures, seawater pHT and dissolved oxygen chronically fluctuate between extreme and
close-to-normal values (17.5–33.85 °C, 7.23–7.92 pHT units and 1.87–7.24 mg O2 L−1, respectively). In March 2020, the
endosymbiont functions (chl a, cell density and photosynthesis) and respiration rates were investigated in seven coral species
from this lagoon and compared with those of corals from an adjacent reference site using hour-long incubations mimick-
ing present-day and future conditions. Corals originating from Bouraké displayed significant differences in these variables
compared to reference corals, but these differences were species-specific. Photosynthetic rates of Bouraké corals were all
significantly lower than those of reference corals but were partially compensated by higher chlorophyll contents. Respira-
tion rates of the Bouraké corals were either lower or comparable to those of reference corals. Conversely, photosynthesis
and respiration rates of most studied species were similar regardless of the incubation conditions, which mimicked either
present-day or future conditions. This study supports previous work indicating that no unique response can explain corals’
tolerance to sub-optimal conditions and that a variety of mechanisms will be at play for corals in a changing world.
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Abbreviations
Chl	� Chlorophyll
Day R	� Day respiration
DO	� Dissolved oxygen
P	� Photosynthesis
Pchl	� Photosynthesis per chlorophyll a
Pg	� Gross photosynthesis
PS	� Photosynthesis per surface area

R/V	� Research vessel
T	� Temperature

Introduction

Coral-dominated ecosystems are predicted to decline by 99% 
under a temperature increase of 2 °C (Hoegh-Guldberg et al. 
2019), which remains an optimistic scenario for 2100 given 
our current pathway (IPCC 2019). As a result, it seems likely 
that most reef ecosystems will disappear or significantly 
degrade in the coming decades. However, outlying coral 
populations are being identified in extreme environments, 
which are characterized by one or more abiotic conditions 
outside of corals’ usual range of tolerance (Kleypas et al. 
1999). The identification of these resistant corals (Grottoli 
et al. 2017; Camp et al. 2018a) provides new insights into 
how coral populations could persist in a warm, acidified and 
deoxygenated ocean, which is the trio of climate-induced 
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stressors predicted to most impact corals in the future (IPCC 
2019).

Ocean acidification is driven by the dissolution of atmos-
pheric CO2 in the ocean, which is increasing due to elevated 
anthropogenic CO2 emissions. As a result, sea surface pHT 
has been declining by a range of 0.01–0.03 units per dec-
ade since the late 1980s (Hoegh-Guldberg et al. 2017), and 
is predicted to decrease another 0.28–0.29 units by 2100 
(RCP8.5 scenario; IPCC 2019). Ocean acidification leads 
to a decline in the saturation state of calcium carbonate, as 
well as a concomitant decrease in [CO3

2−] and increase in 
[HCO3

−], which is thought to decrease corals’ calcification 
rates (Hoegh-Guldberg et al. 2008). Ocean deoxygenation, 
i.e. the decrease in partial pressure of oxygen (pO2), is due 
to global warming and local eutrophication, which lead to 
lower O2 saturation and increased microbial O2 demands 
(Breitburg et al. 2018). The impacts of deoxygenation on 
coral reefs have received little attention, and hypoxia thresh-
olds of main scleractinian groups remain unknown (Hughes 
et al. 2020). However, the proximity of tropical dead zones 
to reef ecosystems suggests that it could constitute an impor-
tant threat (Altieri et al. 2017).

Some marginal and extreme environments expose corals 
to climate conditions comparable to or exceeding those pre-
dicted for the end of the century. Such environments provide 
natural laboratories where corals have developed in ecologi-
cally realistic and complex systems, which cannot be fully 
reproduced in tank experiments. Additionally, they allow 
one to investigate long-term mechanisms involved in cor-
als’ tolerance to climatic stressors, which do not have time 
to occur in most tank experiments that rarely exceed a year. 
Long-term acclimatory or adaptive mechanisms could play 
an important role in corals’ ability to cope with future cli-
matic conditions as climate change likely occurs at a speed 
allowing for acclimation and rapid adaptation processes to 
take place in coral populations (Kenkel et al. 2018; Logan 
et al. 2014; Palumbi et al. 2014; Torda et al. 2017). To char-
acterize these long-term processes, an increasing number of 
studies are using marginal and extreme reef sites as natural 
laboratories to study corals’ responses to future conditions 
(reviewed by Camp et al. 2018b). Currently, most studies 
have focused on sites displaying high and highly variable 
temperatures, such as back-reef pools (Oliver and Palumbi 
2011; Schoepf et al. 2015) or the Red Sea (Howells et al. 
2016; Grottoli et al. 2017), and sites displaying low pCO2, 
such as CO2 vents (Fabricius et al. 2011; Inoue et al. 2013; 
Rodolfo-Metalpa et al. 2011; Strahl et al. 2015). However, 
a significant limit to most sites is that they display a single 
stressor and consequently fail to inform on the combined 
effects of low pH, low dissolved oxygen (DO), and high 
temperature (T) that will simultaneously affect corals in the 
future. While no natural site described can serve as a real-
istic analogue to all upcoming climatic and environmental 

conditions, the recently identified site of Bouraké in New 
Caledonia is unique because it combines these three main 
stressors (Camp et al. 2017). The site of Bouraké is a semi-
enclosed lagoon surrounded by mangroves and characterized 
by low pH, low DO and high T, all fluctuating according to 
tidal and diel cycles. To date, it is among the only sites in the 
world where healthy and diverse coral populations have been 
identified despite values of pH and DO exceeding those fore-
casted for the open ocean by 2100 (Bopp et al. 2013; IPCC 
2019), and temperatures of 1–3 °C higher than surrounding 
local values (Camp et al. 2017).

One of the most sensitive aspects of corals’ physiology 
under climate change is their energy budget. Prolonged heat 
stress can cause corals to bleach, a process in which Symbio-
diniaceae are expelled from their host, depriving them of the 
transfer of photosynthates, their main energy source when 
healthy (Muscatine 1990; Grottoli et al. 2006). Addition-
ally, ocean acidification is expected to marginally increase 
the energy costs required to maintain calcification rates and 
growth (McCulloch et al. 2012). It has been suggested that 
corals developing in acidified environments could display 
increased respiration rates to compensate for their additional 
energy requirements, but this remains inconclusive. So far, 
studies have shown equivocal results, as the effects of high 
pCO2 on corals’ photosynthesis and respiration rates have 
appeared to be species-specific and dependant on experi-
mental designs (e.g., Crawley et al. 2010; Rodolfo-Metalpa 
et al. 2011; Edmunds 2012; Comeau et al. 2017; McLachlan 
et al. 2020) and feeding levels (Schoepf et al. 2013). Con-
cerning photosynthesis, a meta-analysis showed that the lat-
ter was not affected by short-term exposure to acidified con-
ditions during lab experiments (Kroeker et al. 2010, 2013), 
but the few studies using low pH environments showed that 
photosynthesis rates were increased in acclimatized coral 
populations (Inoue et al. 2013; Strahl et al. 2015; Biscéré 
et al. 2019). The combined effects of acidification and warm-
ing on corals’ photosynthesis and respiration rates have only 
been investigated during short-term experiments, which can-
not account for realistic and adaptive processes (Anthony 
et al. 2008; Schoepf et al. 2013; Hoadley et al. 2015; Brown 
et al. 2019). Consequently, an important knowledge gap 
remains in the understanding of how corals’ photosynthesis 
and respiration rates will be affected by climate change, and 
whether corals could rely on their metabolic plasticity under 
extreme environmental conditions.

This study investigated the photosynthesis, respiration 
rates and symbiotic parameters of corals originating from 
a natural environment combining elevated T, decreased 
pH and decreased DO. To do so, we carried out incuba-
tions of corals originating from Bouraké in present-day or 
end-of-the-century conditions and compared their photo-
synthesis and respiration rates with those of corals from an 
adjacent reference site incubated in similar conditions. This 
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experiment was conducted at the end of the austral summer 
season, i.e., when corals were exposed to the most extreme 
environmental conditions. We hypothesized that long-term 
adaptive processes would prevail on the short-term plasticity 
of the corals’ photosynthesis and respiration rates, meaning 
that (1) endosymbiotic functions, photosynthesis and respi-
ration rates of corals from Bouraké would differ from those 
of corals from the reference reef; (2) incubating corals from 
either site in contrasting conditions (present-day or future 
conditions) would not modify their photosynthesis and res-
piration rates.

Material and methods

Study site

Corals were sampled from shallow reefs (1–2 m depth) in the 
lagoon of Bouraké (site B2, 21°56′56.16′′ S; 125°59′36.82′′ 
E) and in an adjacent fringing reef (site R1, 21°58′13.12′′ 
S; 165°56′45.66′′ E), located on the west coast of New Cal-
edonia in the Southwest Pacific Ocean (Fig. 1) on the 12th 
and 13th of March 2020. The Bouraké lagoon (described in 
Camp et al. 2017) is connected to the ocean by a channel 

approximately 4–5 m wide which enters a mangrove for-
est and forms large back pools 5–7 m deep. It displays a 
diverse and abundant coral population (66 coral species, 
up to 96% coral cover; Maggioni et al. 2021) that develops 
despite acidified (pHT down to 7.23), warm (up to 33.85 °C) 
and deoxygenated (down to 2.28 mg O2 L−1) conditions. 
Water parameters in the Bouraké lagoon also undergo large 
fluctuations following tidal and diel cycles, during which 
they regularly exceed forecasted values for 2100 (Camp et al. 
2018b). The lowest values for pH, DO and the highest for T 
are reached at low tide, while high tides display values close 
to present-day conditions. In contrast, R1 displays present-
day and relatively stable conditions for pH, T and DO, and 
is outside of the area influenced by the mangrove ecosystem 
(Table 1). As such, it is used in this study as a reference site.

A fine-scale abiotic and biotic characterization of both 
sites has been conducted since 2016 (Camp et al. 2017; 
Maggioni et al. 2021). Here, we used data collected from 
Maggioni et al. (2021) to characterize the two study sites. 
Data were collected during a four-year-long monitoring 
campaign (from 03/2016 to 04/2020) and accounted for both 
diel and seasonal fluctuations, compiling several thousands 
of measurements (Table 1). Seawater temperature (°C), dis-
solved oxygen content (DO, mg L−1), and seawater pHT 

Fig. 1   A Location of New Caledonia within the Pacific South-West and B location of the two study sites: the Bouraké lagoon (B2) and the refer-
ence site (R1). Map tiles were collected from www.​georep.​nc ( © Georep contributors)
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(total scale), were periodically recorded using 600 OMS-M 
(YSI, USA), SeaFET pH loggers (Sea-Bird, USA), and Hobo 
water temperature Pro V2 (Onset, USA), all settled at a 
10-min logging interval. Salinity was measured only during 
the winter of 2019 (from the 15th to the 18th of July), and 
the summer of 2020 (from the 29th of November to the 4th 
of December, see Maggioni et al. (2021) for further details 
on the probe deployments).

Coral sampling

Six coral fragments (3–5 cm long) of Acropora tenuis (Dana, 
1846), Pocillopora damicornis (Linnaeus, 1758) and Monti-
pora digitata (Dana, 1846) were collected at B2 and R1 
on the 8th of March 2020. Coral fragments were collected 
from distinct mother colonies (n = 6 at both sites) at least 
10 m apart from each other, using a plier. In B2, corals were 
collected along a reef of ca 150 × 20 m, while in R1 they 
were collected in a larger area of about 250 × 20 m. Addi-
tionally, n = 5–7 coral fragments of Acropora samoensis 
(Brook, 1891), Acropora tenuis (Dana, 1846), Echinopora 
spp. (Lamark, 1816), Montipora stellata (Bernard, 1897), 
and Porites cylindrica (Dana, 1846) were collected using 
the same sampling methodology on the 12th and 13th of 
March 2020. Only one fragment was sampled from each 

mother colony. Fragments collected on the 8th of March 
were immediately frozen at − 20 °C and fragments collected 
on the 12th and 13th were frozen after being incubated for 
photosynthesis and respiration measurements on that same 
day.

Symbiont density, chlorophyll concentration 
and surface measurements

All fragments collected were unfrozen and measured for 
symbiont density and chlorophyll concentrations through-
out March and April 2020. This resulted in the analysis of 
n = 12 fragments of A. tenuis, n = 5–7 fragments of the 4 
other species used in the incubations, and n = 6 fragments 
of M. digitata and P. damicornis.

Coral tissue was extracted in 20 mL of filtered seawa-
ter (GF/F 47 mm filters) using an air pick, and the slurry 
obtained was homogenised with a potter tissue grinder. For 
symbiont density measurement, 2 mL of the slurry was 
sampled to count the number of Symbiodiniaceae using a 
Neubauer’s cell under a stereomicroscope. Four to six repli-
cates were measured for each sample. For chl content meas-
urement, 10 mL of the slurry was centrifuged at 5,000 g 
for 10 min, after which the supernatant was discarded. The 
remaining algal pellet was re-suspended in 10 mL of pure 
acetone, and pigments were extracted over 24 h at 4 °C in 
darkness. The extract was then centrifuged at 10,000 g for 
15 min, and the supernatant was sampled to measure its 
absorbance at 630, 663 and 750 nm using a spectrophotom-
eter (Evolution 201, Thermo Scientific). Chlorophyll a and 
c2 concentrations were calculated using the spectrophoto-
metric equations by Jeffrey and Humphrey (1975). Surface 
area of coral fragments was measured using the single wax 
method (Veal et al. 2010).

Experimental design of the incubations

The incubations were performed on board the research 
vessel (R/V) Alis, which was moored in front of the study 
sites. The incubations were designed to test the effects of 
short- and long-term exposure to present-day and future-
like conditions on corals’ photosynthesis, day respiration 
and symbiont content. Effects of long-term exposure were 
tested by comparing these variables between corals originat-
ing from two contrasting environmental conditions: i) the 
site of Bouraké (B2), where corals have been chronically 
exposed to fluctuating and extreme conditions; ii) the ref-
erence site (R1), where conditions are those of a typical 
fringing reef. Effects of short-term exposure were tested by 
comparing the photosynthesis and respiration rates of corals 
during hour-long incubations carried out under both present-
day and future-like conditions. The incubation reproducing 
future-like conditions displayed temperatures higher by 2 ± 

Table 1   Main environmental parameters measured at the reference 
(R1) and at the Bouraké site (B2)

Mean (± SD), minimum (min) and maximum (max) values of temper-
ature, pHT (in total scale), dissolved oxygen (DO), salinity, and calcu-
lated pCO2. Values for temperature, pH, pCO2 and DO were obtained 
through a four-year long monitoring (from 03/2016 to 04/2020) 
considering both diel and seasonal fluctuations, and compiling sev-
eral thousands of measurements (Maggioni et al. 2021). Salinity was 
averaged between two sets of continuous measurements: during the 
winter of 2019 (from 15/07/2019 to 18/07/2019), and the summer of 
2020 (from 29/11/2020 to 04/12/2020)

R1 B2

Temperature (°C) Mean ± SD 25.25 ± 1.89 26.13 ± 2.67
Min 19.98 17.49
Max 30.54 33.85

pHT (total scale) Mean ± SD 8.01 ± 0.04 7.67 ± 0.23
Min 7.91 7.23
Max 8.18 8.06

pCO2 (µatm) Mean ± SD 353.4 ± 7.24 1318.9 ± 819.8
Min 343.3 464.7
Max 361.5 2860.7

DO (mg L−1) Mean ± SD 6.45 ± 0.95 5.23 ± 0.89
Min 3.06 2.28
Max 10.65 7.10

Salinity Mean ± SD 35.44 ± 0.049 36.97 ± 1.18
Min 35.24 35.59
Max 36.65 39.37
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0.2 °C, pH lower by 0.3 ± 0.03 units and DO lower by 1.3 ± 
0.02 mg L−1 than the incubation in present-day conditions 
(Table 2). Incubations under present-day conditions were 
achieved by collecting seawater in the lagoon of Bouraké 
during high tide, while incubations under future-like condi-
tions were achieved by collecting seawater in the lagoon of 
Bouraké during falling tide when values of T, pH and DO 
reach their extremes. Consequently, both coral groups were 
incubated in seawater collected from the lagoon of Bouraké, 
which was an opportunity to carry out our experiment using 
ecologically realistic conditions rather than artificially repro-
duced ones. The experimental design thus encompassed four 
types of incubations, to account for the two groups of cor-
als both incubated under two seawater conditions. Corals 
from the Bouraké and the reference site were collected and 
incubated following the same methodology on two different 
days (respectively the 12th and 13th of March 2020) because 
of logistic constraints. Characteristics of seawater collected 
at Bouraké were found to be in very close ranges on both 
incubation days (Table 2), ensuring comparable incubation 
conditions for both coral groups.

Experimental set up of incubations

The coral fragments (n = 5–7) of Acropora samoensis 
(Brook, 1891), Acropora tenuis (Dana, 1846), Echinopora 
spp. (Lamark, 1816), Montipora stellata (Bernard, 1897), 
and Porites cylindrica (Dana, 1846) collected from the 
Bouraké site on the 12th of March 2020, and from the refer-
ence site on the 13th of March 2020 were used for the pho-
tosynthesis and respiration measurements. Fragments were 
collected during the morning, one hour before the high tide 
(11:19 am and 11:53 am local time on the 12th and 13th of 
March, respectively) to avoid any bias due to diurnal varia-
tions (Edmunds and Davies, 1988). Fragments were trans-
ported onboard the R/V in individual hermetic plastic bags 
containing seawater and immersed in a cooler. Fragments 
were then transferred in a 100 L tank in the indoor labora-
tory of the vessel where the temperature was maintained 
close to the one that was measured with a dive computer 
in situ during collection. The tank was equipped with a sub-
mersible pump and an air stone for water circulation, and 
filled with seawater freshly collected in Bouraké. A low light 
level (ca. 70 µmol m−2 s−1) was provided by the same source 

of light used for the incubations (see below) to allow corals 
to recover for an hour.

Fragments were first incubated twice for 50 ± 10 min in 
the morning under high tide conditions. The first incubation 
was carried out in the dark to measure day respiration (day 
R) rates and the second in the light to measure net photo-
synthesis (Pn) rates. Pn rates were measured using saturating 
light intensity (250 ± 10 μmol m−2 s−1) provided by one 
bank of four T5 bulbs (10,000°K, Giesemann, Germany). 
Seawater in beakers was renewed between the dark and the 
light incubations using the same sample of seawater col-
lected in Bouraké during sampling. After the first two incu-
bations (i.e., dark and light), corals were let to recover for 
two hours under a low light level in fresh seawater collected 
in Bouraké at intermediate conditions between high and low 
tide. During the afternoon falling tide, when the seawater in 
the lagoon reached values close to projected future condi-
tions, fresh seawater was collected again and the corals were 
gently transferred and let to recover in the collected seawater 
for about one hour. Two incubations were then carried out 
in the afternoon to measure the Pn and R rates of corals 
under low tide conditions, using the same methodology as 
the incubations carried out in the morning. Because pO2 
levels are low at the falling tide, Pn was conducted first in 
the afternoon so that R would not be constrained by low pO2. 
This resulted in a total of four sets of incubations of the same 
30 coral fragments collected in the morning (see also Sup-
plementary Figure S1 for a summarized representation of the 
incubation chronology). This exact sampling procedure and 
incubation protocol were carried out on the 12th of March 
with corals from Bouraké, and on the 13th of March with 
corals from the reference site.

Photosynthesis and day respiration rates

The experimental set-up used (i.e., incubation duration and 
volume of beakers) was as in Biscéré et al. (2019), which 
allows to measure clear DO variations without variations 
exceeding 15–20% during the incubation. For each incu-
bation, coral fragments (n = 5–7) of the five species were 
placed in individual 100 mL Pyrex glass beakers (n = 30) 
filled with seawater and hermetically sealed underwater with 
transparent cellophane and a rubber band after all air bub-
bles were removed, to avoid any bias from O2 exchanges 

Table 2   Values of pHT (in total scale), temperature (T) and dissolved oxygen (DO) used during the four incubations of corals from the reference 
(R1) and Bouraké (B2) sites under present-day, and future conditions

Seawater Incubation R1 corals Incubation B2 corals

Conditions pHT T (°C) DO (mg L−1) pHT T (°C) DO (mg L−1)

Present-day 8.03 29.8 6.0 7.98 29.4 5.9
Future 7.73 32.0 4.6 7.65 31.3 4.8
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with air (Biscéré et al. 2019). Three control beakers, in 
which no coral fragment was placed, were used to measure 
the metabolic microbial activity of the water. Control beak-
ers were emptied and filled again with fresh seawater for 
each new incubation. Beakers were placed on two submers-
ible multi-stirring plates with n = 18 individual stirring posi-
tions each (Fig. S1), which continuously stirred the seawater 
in each beaker, and were semi-submersed in a thermostatic 
water bath settled at ± 0.5 °C from the temperature of the 
collected seawater (Table 2). After five minutes of incuba-
tion, and at the end of each incubation, concentrations of 
DO were measured in each beaker, where O2 sensor spots 
were fixed, using an optical fiber (PreSens Fibox 4 trace). 
Rates of Pn and day R were calculated using the change of 
DO concentrations in each beaker, corrected by the mean 
of the microbial activity measured in three empty beakers, 
and normalized by the incubation duration, the volume of 
seawater in each beaker, and either the coral’s surface or its 
content in chl a (Edmunds and Gates 2002).

Rates of gross photosynthesis Pg were calculated as the 
sum of |Pn| and |R|. Photosynthesis to respiration ratio (Pg: 
day R) was calculated as:

with Pg and day R in μmol O2 cm−2 h−1. The value of hours 
of daylight equalled 12.2 on March 13th in New Caledonia. 
At the end of each incubation pair (dark and light), coral 
fragments were frozen at  – 20 °C for subsequent measure-
ments of chlorophyll (chl) concentration and symbiont den-
sity and surface area. Values of Pg are presented hereafter 
as normalized by the chl content (Pchl) or by the surface area 
(PS) of each coral fragment.

Statistical analyses and data presentation

Statistical analyses were carried out and figures were pro-
duced using RStudio v.4.1.0 (2021), including the pack-
ages {ggplot2}, {stats}, {ARTool} and {car}. Data were 
first visually inspected and abnormal values were deleted. 
Homogeneity of variance was tested using the Bartlett test 
and the distribution of variances within groups was checked 
graphically on a normal P-P plot (i.e., expected vs observed). 
Chlorophyll and Symbiodiniaceae contents did not meet the 
assumptions of normality so values from both sites were 
compared using the non-parametrical Kruskal–Wallis test. 
Day R, Pchl, Ps and Pg: day R rates verified normality and 
homoscedasticity conditions, so a 2 × 2-way ANOVA was 
run to test for the effect of long-term exposure (i.e. site 
of origin: reference and Bouraké) and the effect of short-
term exposure (i.e. incubation conditions: present-day and 
future), and their interaction on corals’ P and R rates. As 

Pg ∶ day R =

Pg × hours of daylight

day R × 24

no interaction term was significant, post hoc Tukey HSD 
tests were not performed. P-levels were not adjusted. Data 
were presented using boxplots displaying median values 
(line) ± 25th and 75th percentiles (box), minimum and maxi-
mum values (whiskers), and mean values (dots).

Results

Environmental parameters at the study sites

Environmental data collected from 2016 to 2020 (see Mag-
gioni et al. (2021) for full data set) clearly demonstrated 
the large differences between the reference site R1 and the 
Bouraké site (Table 1). While the environmental param-
eters for seawater measured at the reference site R1 were 
all within the normal range known for New Caledonia, sea-
water temperature was on average 1 °C higher in Bouraké, 
and up to 3 °C higher during the hot season. Measured pH 
was ca. 0.2 pHT units lower, reaching the extreme value of 
7.23 pHT and pCO2 was three times higher in Bouraké than 
at R1. Measured DO was on average 1 mg L−1 lower than 
at R1 and salinity was on average 1 point higher, reaching 
extreme values during the summer (+ 3 points). Dissolved 
oxygen, temperature, pH and salinity fluctuated in relation 
to the tide, respectively up to 4.91 mg O2 L−1, 6.50 °C, 0.69 
pHT units, and 3.42 points within a day.

Chlorophyll and Symbiodiniaceae content

Chlorophyll and symbiont contents in coral fragments signif-
icantly differed between the Bouraké and the reference site 
(Fig. 2; Table 3). Bouraké fragments displayed significantly 
higher content of chl a for 4 out of 7 species; higher content 
of chl c2 for A. tenuis and M. stellata, higher symbiont den-
sity for A. samoensis, A. tenuis and P. cylindrica and higher 
chl a per symbiont for A. tenuis and M. stellata.

Photosynthesis and day respiration rates

ANOVA showed no significant effect of incubation con-
ditions (present day vs. future) on the photosynthesis and 
respiration rates of corals (Fig. 3 for the corals from the 
Bouraké site, Fig. S2 for corals from the reference site and 
Table 4 for statistical values).

In contrast, significant differences between corals from 
different sites were observed for the Pchl of all coral species, 
the Ps of three coral species, the Pg: day R of two species and 
the day R rates of Echinopora spp. (Table 4). Figure 4 pre-
sents the values of the four measured variables for fragments 
from both sites, after having pooled together both incuba-
tion conditions. Mean photosynthesis rates per chl a (Pchl) 
were lower for all corals originating from Bouraké compared 
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to the reference fragments (Fig. 4A). When normalizing P 
rates per surface area (PS), contrasting trends were observed 
depending on the species. While colonies of P. cylindrica 
from Bouraké increased PS, A. tenuis and Echinopora spp. 
displayed decreased PS, and the two other species had simi-
lar PS compared to colonies from the reference site (Fig. 4B). 
Mean respiration (day R) rates were lower for Echinopora 
spp. from Bouraké compared to the reference site, and com-
parable for the other species between both sites (Fig. 4C). 
The mean Pg: day R ratios of Bouraké fragments were higher 
for M. stellata, Echinopora spp. and P. cylindrica but similar 
for A. samoensis and A. tenuis compared to fragments from 
the reference site (Fig. 4D).

Discussion

Zooxanthellae and chlorophyll contents of corals from the 
Bouraké lagoon were in similar ranges or higher than those 
of usual tropical corals in New Caledonia and in the GBR: 
1–6 × 106 cells cm−2 of symbionts, 5–25 μg cm−2 of chl a 
and chl c2, 2–15 × 10–6 pg cell−1 of chl a (e.g., Connolly 
et al. 2012; Schoepf et al. 2015; Camp et al. 2020). These 
results demonstrate that despite developing in a site with 
extreme conditions, corals from the Bouraké lagoon display 
healthy levels of symbionts and chlorophyll, even during the 
hottest period of the year (February to March), when frag-
ments were collected for this study. This is coherent with 
the field observations made during sampling for this study, 
during which no sign of bleaching of corals in either site 

was observed. For a majority of species (five out of seven), 
chl a concentrations per surface area were even found to be 
higher at the Bouraké site than at the reference site. This 
resulted from increased symbiont densities and/or increased 
chl per symbiont in Bouraké corals compared to the refer-
ence site. The ability of Bouraké corals to maintain “nor-
mal” symbiont and chlorophyll contents under combined 
stressors could result from genetic adaptations, but several 
additional mechanisms could explain this ability. A first 
explanation could be related to the high levels of turbidity 
in the lagoon, especially at the end of the falling tide when 
the system empties and receives water rich in organic mat-
ter from the surrounding mangrove forest. Although light 
irradiance in the lagoon has yet to be extensively measured, 
the attenuation of solar radiations by turbidity has been 
shown to mitigate the stress exerted on corals from elevated 
temperatures and UV radiations by reducing photoinhibi-
tion and thus bleaching (Lesser and Farrell 2004; Sully and 
Woesik 2020). Many studies have reported lower bleaching 
rates at sites displaying higher turbidity levels in comparison 
to adjacent clear-water reefs (e.g., van Woesik et al. 2012; 
Morgan et al. 2017), and a similar mechanism could be at 
play in the Bouraké lagoon. A second mechanism involved 
could originate from the high nutrient concentrations (Rees 
and Smith 1991) which are likely to occur in the lagoon 
in relation to the surrounding mangrove ecosystem (Kris-
tensen et al. 2008). Increased heterotrophy has previously 
been evidenced in turbid coastal environments (Anthony 
2000) and has been shown to strengthen corals’ symbiosis 
and help to maintain chlorophyll contents and high symbiont 

Fig. 2   A Chl a and B chl c2 
content per unit surface area of 
the skeleton (μg cm−2); C sym-
biont density per unit surface 
area (× 106 cells cm−2), and 
D chl a content per symbiont 
(pg cell−1) measured on corals 
collected at the reference site 
and Bouraké site (n = 12 for 
A. tenuis and n = 5–7 for other 
species). Data are represented 
as median value (line) ± 25th 
and 75th percentiles (box), 
minimum and maximum values 
(whiskers) and mean value 
(dot). Asterisks indicate statisti-
cal differences between sites of 
origin (see Table 3)
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densities under warm and acidified conditions (Edmunds 
2011; Ferrier-Pagès et al. 2010; Houlbrèque et al. 2015). The 
combination of attenuated solar radiations and increased het-
erotrophy could be an explanation for how corals can main-
tain unchanged densities of symbionts despite developing 
in extreme environmental conditions. Isotopic analyses in 
both Symbiodiniaceae and tissues as well as measurements 
of nutrients, dissolved and particulate organic carbon, and 
different plankton populations are currently being carried 
out in the Bouraké lagoon to confirm whether increased het-
erotrophy could indeed support both hosts and symbionts in 
this extreme environment. A last specificity of the Bouraké 
lagoon that could influence the chlorophyll and symbiont 
content of corals is its high salinity, with daily fluctua-
tions in the summer ranging from normal values to 40 in 
relation to the tide (Maggioni et al. 2021). Indeed, higher 
thermotolerance and reduced sensitivity to bleaching were 
found on Aiptasia from the hypersaline Red Sea, partially 

explaining the strong heat tolerance of corals from the north-
ern Red Sea, and the Gulf of Aqaba (Gegner et al. 2017). 
Although corals from the Bouraké lagoon are not constantly 
exposed to high salinity as in the above-mentioned seas, they 
experience extreme levels which are comparable, therefore 
the same unknown mechanisms might have improved the 
persistence of symbionts in the corals from Bouraké, an 
interesting hypothesis that should be experimentally tested. 
Lastly, previous studies showed no effect of acidification on 
chlorophyll and symbiont contents in both short-time tank 
experiments (Godinot et al. 2011; Schoepf et al. 2013) and 
experiments using corals from volcanic CO2 seeps (Noonan 
et al. 2013; Biscéré et al. 2019), which suggests that acidity 
is not a key factor in their determination.

Although this study mostly focused on the symbionts’ 
responses to an extreme environment, the holobiont response 
as a whole was also investigated by characterizing the pho-
tosynthesis and day respiration of corals. By incubating cor-
als from an extreme and a reference site under both future 
and present-day conditions, we obtained information on (1) 
the respiration and photosynthesis responses of corals to a 
short-term exposure to future conditions; (2) the endosym-
biont specificities of corals originating from two contrasting 
environments. Photosynthesis and respiration rates meas-
ured during the incubations were in the same ranges as those 
measured in previous studies carried out in the Bouraké 
lagoon (Camp et al. 2017, 2020) and in other sites in New 
Caledonia (Biscéré et al. 2017, 2018). As hypothesized, a 
short-term exposure to future conditions (i.e. increased tem-
peratures of 2 ± 0.2 °C, decreased pHT of 0.3 ± 0.03 and 
decreased DO of 1.3 ± 0.02 mg L−1) did not significantly 
modify corals’ photosynthesis and respiration in comparison 
to present-day conditions. To the best of our knowledge, this 
is the first time that the effects of a short-term exposure to 
this trio of stressors is investigated. Previous studies that 
examined the effects of a short-term exposure to combined 
low pH and high temperature on corals’ P and R rates have 
shown conflicting and non-linear results (e.g., Brown et al. 
2019; Godinot et al. 2011; Hoadley et al. 2015). Overall, 
past results showed that temperature was the most impact-
ing factor on corals’ P and R rates, while the little effect of 
short-term exposure to acidified conditions was observed 
(e.g., Rodolfo-Metalpa et al. 2011; Comeau et al. 2017). The 
absence of detected effects on corals’ P and R rates in this 
study could come from the length of the incubations used 
in this study, which was shorter than in the aforementioned 
studies (hour long vs. 10 days to a month in previous studies) 
and might not allow for plasticity or inhibition processes to 
occur. The unchanged P and R rates could also result from 
offsetting effects between increased T and decreased pH and 
DO. Longer exposure of adapted and non-adapted corals 
to low pH, DO and high T would allow to assess whether 
the absence of changes observed in this study is due to the 

Table 3   Results from non-parametric Kruskal–Wallis test on the cor-
als’ chlorophyll (chl) and symbiont contents

Statistically significant values are in bold

Species Parameters df H p-value

A. samoensis chl a 1,13 3.50 0.063
chl c2 1,13 2.94 0.086
Symbionts 1,13 5.90 0.015
chl a cell−1 1,13 0.51 0.475

A. tenuis chl a 1,24 13.53 0.000
chl c2 1,24 11.49 0.000
Symbionts 1,24 6.06 0.014
chl a cell−1 1,24 15.30 0.000

Echinopora spp. chl a 1,13 2.47 0.116
chl c2 1,13 0.18 0.668
Symbionts 1,13 2.04 0.153
chl a cell−1 1,13 0.31 0.574

M. digitata chl a 1,11 0.13 0.715
chl c2 1,11 1.63 0.201
Symbionts 1,11 2.13 0.144
chl a cell−1 1,11 2.70 0.100

M. stellata chl a 1,13 4.60 0.032
chl c2 1,13 4.00 0.045
Symbionts 1,13 2.94 0.086
chl a cell−1 1,13 4.00 0.045

P. cylindrica chl a 1,15 8.37 0.004
chl c2 1,15 0.12 0.728
Symbionts 1,15 4.34 0.037
chl a cell−1 1,15 1.77 0.183

P. damicornis chl a 1,12 7.41 0.006
chl c2 1,12 1.25 0.262
Symbionts 1,12 3.10 0.078
chl a cell−1 1,12 0 1
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Fig. 3   Photosynthesis and respiration rates of fragments from 
Bouraké (n = 5–7 depending on species) incubated either under pre-
sent-day (green) or future conditions (grey). See Table 2 for seawater 
conditions. A Gross photosynthesis rates normalized by chl a content 
(Pchl, μmol O2 chl a−1 h−1); B gross photosynthesis rates normalized 
by surface (PS, μmol O2 cm−2  h−1); C day respiration rates normal-

ized by surface (Day R, μmol O2 cm−2  h−1), and D their Pg: day R 
ratios. Data are represented as median values (lines) ± 25th and 75th 
percentiles (box), minimum and maximum values (whiskers) and 
mean values (dots). No significant differences between incubation 
conditions were found (see Table 4)

Table 4   Results of a two x two-way ANOVA testing the effect of 
colonies’ origin (Bouraké and reference); seawater condition during 
incubations (HT: present-day and LT: future), and their interaction on 

the gross photosynthesis rates per chlorophylent (Pchl), and per sur-
face area (PS), day respiration (day R), and photosynthesis to day res-
piration ratio (Pg: day R) of colonies from five coral species

Significant values are in bold

Species Factor Pchl Ps day R Ps: day R

df SS F P df SS F P df SS F P df SS F P

A. samoensis Origin 1 0.035 26.38 0.000 1 0.005 0.02 0.898 1 0.109 1.52 0.230 1 0.035 0.257 0.617
Condition 1 0 0.33 0.568 1 0.126 0.40 0.535 1 0.001 0.02 0.887 1 0.201 1.49 0.235
Origin × cond 1 0 0 0.983 1 0.006 0.02 0.889 1 0.002 0.03 0.853 1 0.005 0.03 0.856
Error 22 0.029 22 6.979 22 1.584 19 2.966

A. tenuis Origin 1 0.471 14.70 0.001 1 1.107 6.90 0.017 1 0.013 0.24 0.631 1 0.229 0.38 0.544
Condition 1 0.011 0.35 0.563 1 0.007 0.04 0.838 1 0.184 3.26 0.088 1 1.982 3.31 0.085
Origin × cond 1 0.021 0.66 0.426 1 0.107 0.66 0.425 1 0.105 1.87 0.188 1 0.319 0.53 0.475
Error 18 0.577 18 2.892 18 1.014 18 10.768

Echinopora spp. Origin 1 0.439 13.33 0.001 1 1.892 5.70 0.026 1 0.760 8.71 0.007 1 0.622 3.04 0.095
Condition 1 0.006 0.18 0.674 1 0.186 0.56 0.462 1 0.091 1.04 0.318 1 0.161 0.78 0.385
Origin × cond 1 0.002 0.06 0.808 1 0.001 0.002 0.965 1 0.002 0.02 0.886 1 0.012 0.06 0.809
Error 22 0.724 22 7.298 22 1.919 22 4.502

M. stellata Origin 1 0.012 10.39 0.004 1 0.378 1.97 0.175 1 0.092 2.53 0.126 1 0.714 9.45 0.006
Condition 1 0 0.35 0.557 1 0.077 0.40 0.532 1 0.001 0.03 0.853 1 0.003 0.04 0.843
Origin × cond 1 0.001 0.58 0.455 1 0.025 0.13 0.723 1 0.010 0.26 0.612 1 0.020 0.27 0.610
Error 22 0.025 22 4.223 22 0.805 22 1.663

P. cylindrica Origin 1 0.030 6.36 0.018 1 4.399 9.25 0.005 1 0.123 0.88 0.357 1 0.796 10.02 0.004
Condition 1 0 0.10 0.759 1 0.413 0.87 0.359 1 0.057 0.40 0.531 1 0.001 0.02 0.880
Origin × cond 1 0.010 2.08 0.161 1 1.249 2.63 0.117 1 0.195 1.39 0.250 1 0.025 0.31 0.583
Error 26 0.121 26 12.358 26 3.651 26 2.066
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incubation length used or to compensating effects between 
the three stressors.

Conversely, corals’ origin had a significant and species-
specific effect on respiration and photosynthetic rates. While 
the incubation conditions were identical for both groups of 
corals, the rate of Pchl was significantly lower for all species 
from the Bouraké site. This could result from the higher 
density of chl a in Bouraké corals, which can lead to self-
shading and lower the absorption efficiency of pigments 
(Enríquez et al. 2005). Symbionts from Bouraké could also 
have adapted to the lower light intensity in the lagoon by 
displaying lower light intensity saturation points, leading to 
lower productivity compared to reference symbionts. The 
differences in the measured Pchl rates could also be caused 
by a change in symbiont types between Bouraké and the 
reference site, which has been shown to be a common adap-
tive feature in extreme environments (Howells et al. 2016). 
Camp et al. (2020) found differences in symbiont types 
between Bouraké corals and nearby reference corals. These 
changes were species-specific, which is consistent with the 
species-specific results found for Pchl rates. Adaptation of 
symbionts to acidified environments could for example take 
the form of the ability to enhance P rates by taking advan-
tage of increased pCO2. This adaptation has been shown to 
occur for some, but not all, host + symbiont assemblages 
(Biscéré et al. 2019; Inoue et al. 2013; Langdon and Atkin-
son 2005). However, the decrease in photosynthetic rates per 
chl a of Bouraké corals was counterbalanced by the increase 
in the chl a content of these corals per surface area. These 

two compensating factors resulted in P rates per surface 
area (PS) lower for A. tenuis and Echinopora spp., higher 
for P. cylindrica and comparable for the two other species 
at the Bouraké site. Furthermore, the differences observed 
between sites in the Ps rates were less pronounced than 
those observed for Pchl. In previous studies conducted at 
the Bouraké site, Camp et al. (2017) found no changes in 
PS rates for fragments of A. pulchra, A. muricata and P. 
lutea. Collectively, these results suggest that PS rates of the 
Bouraké corals are either comparable or slightly lower than 
those of corals from adjacent reference reefs.

Corals’ origin also had a significant effect on respiration 
rates, which were lower for two out of five species from 
the Bouraké site. It is established that water acidification 
increases energy demands to maintain calcification rates, 
although marginally (McCulloch et al. 2012). In an acidified 
environment like the Bouraké lagoon, unchanged or lower 
R rates of corals as observed in this study suggest either 
lower growth rates or reallocation of the energy budget. The 
former outcome seems likely, as Camp et al. (2017) reported 
lower calcification rates of Bouraké corals compared to ref-
erence corals. A study conducted at another mangrove site 
in Sulawesi, Indonesia also found that corals did not increase 
their R rates compared to control fragments (Camp et al. 
2016). Low pO2 characteristic of mangrove habitats (Kris-
tensen et al. 2008) could be a limiting factor in the ability of 
corals to increase their day R rates, especially at night when 
O2 is not being produced by symbionts. It is to be noted that 
previous studies carried out in Bouraké found that day R 

Fig. 4   Photosynthesis and respiration rates of fragments from the 
reference and the Bouraké site pooled between incubation conditions 
(n = 5–7 depending on species). A Gross photosynthesis rates nor-
malized by chl a content (Pchl, μmol O2 chl a−1 h−1); B gross photo-
synthesis rates normalized by surface (PS, μmol O2 cm−2 h−1); C day 

respiration rates normalized by surface (Day R, μmol O2 cm−2  h−1), 
and D Pg: day R ratios. Data are represented as median values 
(lines) ± 25th and 75th percentiles (box), minimum and maximum 
values (whiskers) and mean values (dots). Asterisks indicate statisti-
cal differences between sites of origin (see Table 4)
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rates of Bouraké corals were higher than those of reference 
corals (Camp et al. 2017, 2020). The discrepancy in results 
could come from the differences in experimental design, as 
well as differences in the species studied. Indeed, these pre-
vious studies incubated Bouraké and reference corals using 
seawater from their respective sites, while we compared P 
and R rates of both groups using seawater collected only in 
Bouraké.

Altogether, our results show that corals that have been 
chronically exposed to extreme conditions display different 
P and R rates than corals from an adjacent reference site. 
These differences persisted even when corals were exposed 
during short-term periods to contrasting incubation condi-
tions, suggesting that they originate from intrinsic traits 
rather than differing environmental conditions. This study 
does not allow to discriminate the role played by acclima-
tization (resulting from corals’ plasticity) and adaptation 
(resulting from genetic modifications) in the differences 
observed between both sites. As acclimation occurs at a 
faster rate than adaptation, knowing which process is preva-
lent is important to assess if corals’ have the potential to 
keep up with climate change (Palumbi et al. 2014). Trans-
plantation experiments and metatranscriptomic approaches 
would be necessary to assess the respective roles of adapta-
tion and acclimation, which have never been carried out yet 
in an environment combining this trio of stressors.

The Bouraké site is the first site displaying multiple and 
fluctuating stressors where corals’ endosymbiont functions, 
photosynthesis and respiration have been investigated. This 
study consolidates previous results from single-stressor sites, 
such as CO2 seeps, showing that corals’ responses to extreme 
conditions are largely species-specific. Indeed, variations of 
P and day R rates between Bouraké and reference corals 
were heterogeneous among species, and both increases and 
decreases in these values were observed. This is consistent 
with findings from coral communities developing around 
volcanic CO2 seeps in Papua New Guinea (Biscéré et al. 
2019; Strahl et al. 2015), which showed species-specific 
rather than stereotyped responses of P and R rates to their 
acidified environment. While Strahl et al. (2015) found no 
effect of pCO2 on R rates and heterogeneous effects on Pg 
rates, Biscéré et al. (2019) found increased Pg, day R and Pg: 
day R under elevated pCO2. This suggests that corals’ adjust-
ments to extreme environments can take diverse forms and 
that responses are species- and site-dependent rather than 
stereotyped (Hoadley et al. 2015). This study also highlights 
that some coral species might have more limited abilities to 
adjust to unfavorable conditions. For example, we found that 
the two Acroporidae species (A. tenuis and A. samoensis) 
displayed the lowest Pg: day R rates and were the only spe-
cies for which this value was not higher than that of the ref-
erence colonies. Increased P rates and Pg: day R ratios have 
been linked to higher productivity, which is thought to play 

an important role in corals’ tolerance to acidified conditions 
(Fabricius et al. 2011). This suggests that Acroporidae spe-
cies are undergoing higher energetic stress, and could thus 
be more vulnerable to any additional stressor occurring in 
the Bouraké lagoon. Past studies have also evidenced a lower 
resistance of Acroporidae to extreme conditions, suggesting 
they could be potential losers in our world’s future oceans 
(Loya et al. 2001; Schoepf et al. 2013). The vulnerability of 
Acroporidae could be further exacerbated by their typically 
low heterotrophic intakes and low heterotrophic plasticity 
compared to other genera such as Montiporidae or Pocil-
loporidae (Palardy et al. 2008; Conti-Jerpe et al. 2020; Sang-
manee et al. 2020). However, comparison of results between 
species is limited because tissue extraction and wax surface 
measurement is known to vary depending on each species’ 
structure and geometry (Edmunds and Gates 2002), leading 
to a species bias for chlorophyll contents, symbiont contents 
and surface area. As our results for photosynthesis and respi-
ration rates were normalized by chlorophyll and area values, 
species comparison for any of our studied variables is to 
be considered cautiously, which is why it was not further 
developed in this study.

The persistence of knowledge gaps on how single envi-
ronmental stressors affect corals’ metabolism obscures the 
interpretation of how these stressors could affect photosyn-
thesis and respiration when combined. While the effects of 
acidification and warming have been largely investigated, 
at least separately and on non-adapted corals, the effects 
of low DO on corals’ physiology are poorly understood. 
Deoxygenation is predicted to increasingly affect marine 
ecosystems as a result of global warming and eutrophica-
tion (Hughes et al. 2020). The few studies conducted on 
coral reefs (Altieri et al. 2017; Haas et al. 2014; Hughes 
et al. 2020) reported hypoxic thresholds around 3–4.0 mg 
L−1, although this value is likely to vary according to spe-
cies and site. As DO reach a minimum of 2.28 mg L−1 in 
the Bouraké lagoon, it likely acts as a stressor on corals’ 
metabolism. Additionally, as low DO limits aerobic metabo-
lism, it is thought to be even more harmful when combined 
with other stressors such as high temperatures or acidifi-
cation, which tend to increase the energy requirements of 
marine organisms (Breitburg et al. 2018). While hyposalin-
ity has been shown to be detrimental to corals’ metabolism 
(Moberg et al. 1997; Ferrier-Pages et al. 1999; Alutoin et al. 
2001; Gardner et al. 2016), the effects of high salinity have 
received little attention, although some evidence suggests it 
could convey thermotolerance to coral species (Gegner et al., 
2017). The numerous and concomitant stressors occurring in 
the Bouraké lagoon are thus both what make it a unique and 
valuable natural laboratory and what limit the interpretation 
of our results.

We recognise that our experimental approach has limita-
tions and that several caveats might interfere with our results 
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reporting low metabolic “stress” in corals that have devel-
oped in the extreme conditions of the lagoon of Bouraké. 
First of all, we compared only two sites: one within the 
Bouraké lagoon and one adjacent reference fringing reef, 
which does not allow us to investigate whether spatial vari-
ations occur in our studied system. Although environmen-
tal conditions are quite homogeneous within the Bouraké 
lagoon, which is why we based our experiment on a single 
site, we would recommend future studies to sample corals 
from several sites both within the lagoon of Bouraké and 
in adjacent fringing reefs. Furthermore, this experiment 
measured the photosynthesis and respiration of corals dur-
ing the morning low tide and during the afternoon high tide. 
This could introduce a bias in the comparison of photosyn-
thesis and respiration under low tide and high tide condi-
tions because metabolism is known to change in relation to 
the time of the day. Ideally, our experiment should also be 
repeated during the night to test both low and high tide con-
ditions on corals fully dark adapted, although such an experi-
ment would come with logistic and security constraints on 
a research vessel.

Although some limitations exist, corals from naturally 
extreme environments are an invaluable tool to understand 
the mechanisms supporting higher tolerance to future cli-
matic conditions. This study showed that corals that have 
been exposed their whole life, and possibly across genera-
tions, to extreme and fluctuating T, pH and DO, are able to 
maintain unaltered levels of symbionts and chlorophylls, as 
well as sustained photosynthesis and respiration rates. As 
such, the lagoon of Bouraké provides evidence that corals 
are able to maintain their autotrophic source of energy even 
under the combined effects of warming, acidification and 
deoxygenation, which have been feared to impair the physio-
logical mechanisms necessary for corals’ survival (Breitburg 
et al. 2018; Hughes et al. 2020). The variability of T, pH and 
DO occurring in the Bouraké lagoon could play a significant 
role in the ability of corals to cope with extreme conditions. 
Although research on the role of environmental variability is 
in its prime, it has been suggested to enhance corals’ plastic-
ity and possibly their tolerance to future projected conditions 
(Oliver and Palumbi 2011; Rivest et al. 2017; Schoepf et al. 
2015). Undergoing chronic varying conditions could have 
helped the Bouraké corals to survive the 2016 bleaching 
episode that impacted most reefs of New Caledonia (Ben-
zoni et al. 2017; Camp et al. 2017). Other specificities of the 
Bouraké lagoon, such as higher turbidity levels and poten-
tially higher nutrient concentrations, could also play a role 
in the survival of the documented coral species by counter-
balancing the negative effects of local stressors. The com-
bination of these specificities could explain why the lagoon 
of Bouraké is one of the only sites where corals developing 
under warm, acidified and deoxygenated conditions have 
been observed. While providing evidence for the ability of 

corals to develop under such stressors, it does not ensure that 
this ability could be generalized to other sites displaying a 
different set of unique environmental conditions and that this 
ability will be maintained in a warmer future (Grottoli et al. 
2014; Schoepf et al. 2015; Nohaïc et al. 2017).
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