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Abstract

Models are important tools to address sustainability challenges associatedwith developing

aquaculture at farm, regional and global scales. Farm-scale models (FSMs), which are inte-

grated mathematical models developed to simulate farm operations, can quantify energy,

mass or economic input flows and predict a variety of outputs such as fish biomass, waste

and by-products. The variety of farming systems, equations available to build the models,

and objectives of applications and intended users has resulted in the publication of wide

range of FSMs. We performed a narrative review of 36 fish FSMs published from 1985–

2021 to address several questions: Can the main characteristics of these models be

defined? How do the farming system studied and the objectives of the study influence

model development? What are the main modelling techniques available to simulate the

main processes of a fish farm, and what are their advantages and disadvantages? How can

FSMs help address sustainability challenges of aquaculture? This review discusses

advances, limitations and future lines of research related to FSMs to help select existing

models, or develop new ones, that are suitable for their intended use and users. The article

is structured according to the main steps of the modelling process: (i) definition of scope

and objectives; (ii) process formulation and model selection at individual, cohort and farm

levels; (iii) implementation and evaluation; and (iv) applications (e.g. precision fish farming,

IMTAmodelling, supporting spatial management, life cycle assessment). At each step, rec-

ommendations are provided and research needs are stated.

K E YWORD S

bioeconomic and environmental impacts modelling in aquaculture, decision-support tools,
ecosystem approach to aquaculture, farm management, fish farming, individual-level models

1 | INTRODUCTION

The increase in the global population, concurrent with an increase in

per capita income and an associated shift to diets rich in animal

protein, is increasing demand for seafood products.1 Considering the

current status of wild stocks2 and the plateauing of2 or decline in3

global fisheries production despite improvements in management,

aquaculture could provide an increasing and significant proportion of
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animal-protein intake at the global level. Global aquaculture currently

produces ca. 114.5 million tonnes of products per year, with a value

of over 217 billion euros, representing 52% of the total aquatic food

supply for human consumption.2 The sector is projected to continue

growing, with an additional 26 million tonnes of aquatic animals pro-

duced in 2030.2 Aquatic animals (including fish, crustaceans and mol-

luscs), which represented 72% of global aquaculture production by

mass in 2018, was dominated by fish.2

In 2008, the Food and Agriculture Organisation and international

experts developed a strategy to ‘better integrate aquaculture activity

within its ecosystem in a way that it promotes sustainable development,

equity, and resilience of interlinked social and ecological systems’ called
the ‘ecosystem approach to aquaculture’ (EAA).4 The EAA has three main

objectives: ensure both (i) human well-being and (ii) ecosystem health

(i.e. preserve ecosystem functions and services) and (iii) facilitate the

achievement of both in the context of other sectors and policies. To

implement EAA, the farm (i.e. from a few tens to hundreds of m2,

depending on farm size, technology and species), the aquaculture zone or

hydrosystem (i.e. waterbody and watershed) and the global scale were

identified as the three relevant scales of analysis and action. At the farm

scale, major sustainability challenges include mitigating negative impacts

of nutrient emissions, decreasing escapes of farmed species, controlling

the appearance and spread of diseases, and increasing productivity and

ensuring economic viability of individual facilities. Priorities at the aquacul-

ture zone level include mainly the planning and definition of appropriate

locations for siting,5 as well as defining the ecological carrying capacity

(i.e. the maximum density of cultured species that does not cause unac-

ceptable ecological impacts6) of hosting ecosystems.7,8 Core issues at the

global scale include reducing pressure on wild stocks caused by produc-

tion of aquaculture feed,9 decreasing the material and energy footprint of

aquaculture, predicting effects of climate change on aquaculture produc-

tion10 and developing circular and integrated aquatic food systems.11

At each scale, models can play an important role in addressing many

of these issues, and developing them is of great relevance to translate

EAA principles and recommendations into action.4,12,13 Models can be

used as research tools to describe complex real systems in conceptual

objects, reveal system properties, establish research priorities, test scien-

tific hypotheses and help design experiments.14,15 They can also be used

as management and decision-support tools based on scenario analysis,

whether the scenarios are predictive (what will happen?), exploratory

(what could happen if?) or normative (what should happen?). According

to the EAA framework,4 tools designed at the farm scale should focus on

evaluating externalities of inputs and outputs, improving management,

facilitating budget calculation (e.g. biomass, nutrients, monetary) and esti-

mation of theoretical maximum farm production (i.e. production carrying

capacity16) and evaluating the feasibility of integrated multitrophic aqua-

culture (IMTA). In IMTA systems, species from multiple trophic levels are

farmed together at the same site, on the same farm17 or over a large

area18 to benefit from increased use of nutrient loads and species inter-

actions.19 According to the EAA, farm-scale tools are also perceived as

useful for aquaculture zoning and site selection, area management20 and

more specifically for assessing ecological carrying capacity and compli-

ance with environmental regulations.12 These objectives require

understanding physical, biological, ecological and economic interactions

and processes that occur among the many components of a complex

system. This can be facilitated by modelling these processes, as is the

case in farm-scale models (FSMs).

The literature regularly uses ‘FSM’ and similar terms, but these

terms may describe a variety of types of models applied in aquaculture.

Farm-scale modelling is rarely defined clearly, and its main defining fea-

tures are rarely specified, suggesting it has not been applied long enough

to establish a model-development process or standard terminology. In

this review, we define FSMs as integrated dynamic mathematical models

developed to simulate farm operations in a given farming system over a

defined period (from a few weeks up to an entire farming cycle) to quan-

tify energy, mass or economic inputs flows (e.g. water, feed, fingerlings,

money), and use of operations in the system, which produces fish bio-

mass (i.e. harvests and stocks) and other output flows, including waste

and by-products (e.g. dead fish, effluents). In this definition, focus is

placed on processes that occur within the farm boundaries, thus exclud-

ing many of the near- and far-field effects of aquaculture21 that require

considering environmental processes at larger scales. As this review

focuses on fish, the acronym ‘FSM’ will refer hereafter to fish FSMs.

Finding an adequate balance of complexity and data requirements and

ensuring that the FSM is fit for purpose requires considering several

issues during model development. Some of these issues include: what

questions the model will address (why?), what type of model is required

(how?), what outputs are expected (for what?) and for whom the tools

and results are intended. Guidelines for FSM-specific modelling are

needed to better understand how these questions should be addressed

during the modelling process, and more generally to increase the accu-

racy, utility and rigour of models that are developed for various uses and

users.22 To our knowledge, no such guidelines are available, and no

reviews have attempted to examine critically how the FSMs developed

to date have addressed these steps. Furthermore, to our knowledge, no

recent review has focused on FSMs applied to fish farming. Although a

book chapter on FSMs applied to shellfish systems has been

published,23 these systems differ greatly in the metabolism of the ani-

mals farmed, their extractive feeding behaviour and farm management.

Reviews of FSMs for fish farming have had a limited scope, focusing on

economic aspects24 or on a single species and specific contexts.25

The present study provides a narrative review of the modelling pro-

cess for fish FSMs based on guidelines developed for ecological/

environmental models.14,15,22,26 This review includes models published

from 1985 to January 2021 that cover different species, rearing systems

and ecosystems and were developed to explore production, environ-

mental or economic aspects of fish farming. The literature search was

conducted in the Web of Science and Google Scholar databases using

combinations of the terms ‘fish farming’, ‘aquaculture’, ‘model’, ‘model-

ling’, ‘farm-scale’, ‘production’ and ‘simulation’. The ‘snowball’ method

was then used to expand the search. Only models described in peer-

reviewed journal articles and PhD theses in English were included.

Table 1 summarises the 36 FSMs considered in our review.

The review is organised according to the main steps of the model-

ling process, with a particular emphasis given to the model-selection

step. In Section 2, we describe how the definition of the context
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under study and of the objectives can influence FSM construction,

and we provide an example of a conceptual model of a marine fish

farm. In Section 3, we review how the processes simulated in FSMs can

be formulated into equations and discuss model selection as a function of

criteria such as complexity, data requirements and generality. In Section 4,

we focus on model implementation and evaluation, which include param-

eter estimation and model validation, along with appropriate sensitivity

and uncertainty analyses. In Section 5, we discuss challenges and oppor-

tunities in four areas of application of FSMs identified as relevant for

implementing the EAA: precision fish farming (PFF), IMTA modelling,

supporting spatial management and life cycle assessment (LCA). From

these applications, we show how farm-scale modelling is a key step to

contribute to challenges highlighted in the EAA, at the farm level and

higher levels. Overall, this article discusses advances, limitations and future

lines of work related to FSMs to facilitate selection of existing models or

development of new tools suitable for their intended use and users.

2 | DEFINITION OF SCOPE AND
OBJECTIVES

The first step in the development process of FSMs consists of defin-

ing the research questions and objectives of the study, con-

ceptualising the system and defining the context under study (i.e. type

(s) of farming techniques, fish species and ecosystems).

2.1 | Questions and objectives

Modelling a fish farm can be useful to answer a variety of biological, eco-

logical, engineering, management, economic and environmental ques-

tions. In FSMs, specific questions are usually translated into estimating or

optimising three types of performance: (i) biotechnical (rearing),

(ii) economic or (iii) environmental. The most common biological and eco-

logical questions include understanding responses (e.g. growth, survival)

and interactions (e.g. eating, breathing, excretion) of the farmed fish

populations within their often-variable rearing environment. Engineering

questions are related mainly to planning the design of future facilities to

reduce risks and guarantee fish welfare and growth. This includes site

selection for ponds or open-water systems to predict farm productivity

as a function of environmental characteristics (e.g. water quality and

quantity, soil conditions, fertility). For highly intensive land-based sys-

tems, it is more about designing rearing systems to modify the ambient

environment to meet biological requirements. Management questions

encompass a broad spectrum of aspects about predicting or optimising

daily operations (e.g. determining stocking and feeding rates, predicting

dissolved oxygen [DO] levels and examining effects of different manage-

ment strategies).79 Economic questions are about finding the most eco-

nomically efficient scale, technology, resources, schedule and practices

(e.g. heating water, feeding rates, maintaining DO at a given level) to min-

imise production costs, maximise revenue at an acceptable level of risk80

or, for small-scale farming, free up funds to pay salaries to support a fam-

ily. Environmental questions are usually related to predicting and

minimising nutrient-related impacts of a given facility or comparing these

impacts among scenarios or systems. FSMs can also help estimate

resource-use efficiency, in particular for fossil energy and feed inputs,

and thus quantify other forms of pressure on the environment. In the

studies reviewed, FSM objectives were often not explicitly reported or

vaguely stated, such as needing an FSM to ‘manage fish production

ponds’,36 ‘predict outcomes of different management strategies’,27

‘ascertain the temporal pattern of waste loads/discharges’66 or ‘meet

fish production targets while maintaining effluent loading compliance’43).
It is essential to define the question and objectives explicitly, as they

serve as a pillar for subsequent modelling steps (e.g. to ensure that

models are selected primarily to meet the modelling objectives, to verify

the fitness for purpose afterwards).

2.2 | Conceptual model of a fish farm

A conceptual model of the system (i.e. a fish farm, in an FSM) is an

easy way to visualise and summarise how a system works.

Conceptualisation is one of the early steps of the modelling process

which shows and summarises key components of the real system,

how these components are connected by processes and what data

(inputs) are needed to simulate these processes.14,15 It also helps iden-

tify the relevant level of organisation and decide what ecological

details need to be included or ignored. Box (e.g. Refs. 54,57,70) or pic-

ture (e.g. Ref. 44) models are commonly used as conceptual designs

for FSMs. Approximately half of the models reviewed in this study

included a conceptual model. Conceptualisation is usually performed

after defining the context under study, questions and objectives; an

example is presented here (Figure 1) to provide rapid insight into the

general structure of FSMs and the processes that they often simulate.

In FSMs, the fish-farm system is usually represented at three

levels of organisation: individual fish, the cohort or rearing unit, and

the farm (Figure 1). In operational terms, this translates into the inte-

gration of different modules (sub-models seen as building blocks) to

simulate specific processes at each level, making FSMs integrated

models. The lowest level of organisation can either be the individual,

which allows the model to produce information at the fish level and

potentially to consider properties that differ among individuals in a

population (i.e. inter-individual variability, see Section 3.3.3.2), or a

population, which provides aggregated outputs for a group of individ-

uals. The lowest organisation level should be chosen based on the

amount of detail required and the need to consider inter-individual

variability, but it is usually driven mainly by which growth model is

chosen, which is the core of FSMs. Indeed, all the FSMs reviewed,

except that of Rizzo and Spagnolo30 and RACEWAY,44 are based on

individual prediction and growth models, although few of these FSMs

consider inter-individual variability. At the individual level, the mod-

ules simulate fish growth mainly as a function of the physical environ-

ment (i.e. temperature and water quality), feed availability and quality,

and the status of the individual fish (e.g. size, body weight), which are

the main forcing variables and inputs (Table 2). Other important pro-

cesses simulated at this level are thus feed ingestion and assimilation,
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respiration and production of metabolic waste (i.e. faeces and dis-

solved nutrients). The second level of organisation is the cohort (i.e. a

population of individuals of the same species and age). Modelling at

the cohort level captures effects of farm-management decisions on a

fish population and its rearing environment. At this level, effects of

other important practices, such as feeding, aeration, fertilisation and

water-exchange strategies, on the carrying capacity of the rearing unit

and potential growth rate of fish can also be examined. Main inputs at

this level are thus the description of rearing practices and production

objectives (Table 2). Depending on the amount of detail required, this

level can be combined with the rearing-unit level, which is the con-

tainment system in which one or more cohorts can be stocked. The

third level is the farm level, which represents a group of homogeneous

or heterogeneous rearing units. The processes simulated include

stocking management on the farm, water flow and quality, waste

treatment and economic flows. At this level, the main inputs are the

description of farm infrastructure and farming cycles. Outputs

produced at each level are dynamic data, which can be integrated up

to the farm level to produce aggregated data about a system's produc-

tion, environmental (e.g. emissions, resource availability, impacts) and

economic performances (Tables 1 and 2).

2.3 | Farming systems and hosting ecosystems

The type of farming system and ecosystems studied strongly influence

the processes that need to be simulated in the model and the state

variables that should be included. Many systems can be used to pro-

duce fish in aquaculture. The main types of fish farming systems can

be classified along a gradient of rearing intensity, from extensive sys-

tems, such as earthen ponds and other open-water systems (e.g. cage

or net pen), to more intensive semi-closed or fully closed land-based

systems (e.g. tanks, raceways, recirculated aquaculture systems [RAS],

hatcheries) (Figure 2). Farm management and operations vary greatly

F IGURE 1 Conceptual model of a marine fish farm that shows the most important processes simulated in farm-scale models at individual,
cohort/rearing unit and farm-organisation levels. See Table 2 for the main inputs used to simulate these processes and the associated outputs.
[Correction added on 7 June 2022, after first online publication: The captions for Figures 1 and 2 have been transposed.]
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among these farming systems, which requires considering system-

specific processes in each model (Figure 2). For instance, in extensive

systems, fish yields depend greatly upon pond productivity, especially

the natural food web. Modelling plankton dynamics and its interac-

tions with ecological processes in the pond (e.g. sediment biogeo-

chemistry, sediment/water exchanges) and pond-management

decisions (e.g. fertilising, liming) is thus necessary. In contrast, in semi-

closed or closed systems, natural productivity generally influences

farm productivity little, as feed is provided by the farmer and water

quality (i.e. plankton dynamics) is monitored. Most FSMs applied to

intensive land-based systems can thus ignore plankton dynamics;

however, including water-treatment models (e.g. denitrification, CO2

stripping and degassing) to simulate dynamics of water quality due to

purification processes then becomes necessary. Variables that drive

fish growth and thus farm production also vary among farming

systems (Figure 2). For instance, water temperature can vary in open-

water systems, while water temperature is controlled in some land-

based systems and can be adapted to the thermal preference of the

farmed species. The same reasoning should be followed according to

the type of ecosystem studied, with specific ecological processes

that can influence the farm differently depending on salinity

(e.g. freshwater, brackish or marine waters), trophic state

(e.g. oligotrophic, mesotrophic, eutrophic) or latitudes (e.g. temperate,

subtropical, tropical). Knowing which processes are important and

which can be ignored for the system under study is essential to repro-

duce the system's behaviour correctly and keep the model as simple

as possible by representing only the most relevant processes and vari-

ables (principle of parsimony). As Ford (2010) states, ‘the key to a

model's usefulness is leaving out the unimportant factors and captur-

ing the interactions between the important factors’.81

The more flexible the model is, the more complex it usually

becomes. This can explain in part why most of the FSMs reviewed in

this study were initially developed for a limited context (i.e. usually

one type of farming system, one to three species and one type of eco-

system) (Table 1). Some were refined later to include new species or

systems. For instance, FARM was initially developed for marine

bivalve farming57 and was progressively adapted to pond and marine

fish farming.58,59 Similarly, the models developed by Besson et al.51

and by Halachmi49,50 were developed for RAS systems and later

adapted to sea-cage systems.67,69

2.4 | Species

Depending on the fish species under study, a varying degree of knowl-

edge and data availability can be expected. The FSMs reviewed referred

to species and production areas that are not representative of aquacul-

ture worldwide. In total, 30 species were studied, which is <10% of the

300 fish species farmed globally.82 FSMs were usually developed and

applied for the species most relevant to the researchers' region. Indeed,

the species studied most in the FSMs reviewed were seabass

(Dicentrarchus labrax) and seabream (Sparus aurata) (ca. 25% of the

FSMs for both species), and most of the models were developed by

European research teams. Knowledge of these species is much more

advanced than that of other species, which results in greater data avail-

ability. For instance, specific reviews of growth models are now avail-

able for some of these well-studied species (e.g. seabream83). The large

choice of individual growth models for these species can facilitate

development of new FSMs, allowing one to choose the most appropri-

ate tools to answer the question under study. In contrast, developing

FSMs for new species often means modelling in a context of limited

knowledge and data scarcity.73 Parameter estimation requires more

effort for these FSMs, as more experiments must be performed to

TABLE 2 Main inputs used in, and outputs produced by, farm-
scale models applied in fish farming

Organisation

level Inputs Outputs

Individual Species
• Individual-growth-

model parameters

(e.g. assimilation

efficiency, body

composition)

Environment
• Water physical (e.g.

temperature, salinity,

pH) and chemical (e.g.

NH3, NO3
�, O2,

chlorophyll a)

parameters

• Water current/flow

• Light availability

Rearing practices
• Feed availability and

composition

Biotechnical
• Growth

performance

Biological

• Biological waste

emission

Cohort or

rearing

unit

Rearing practices and
cohort characteristics

• Production schedule

(e.g. stocking/

harvesting date)

• Number and weight

of fish stocked in

each cohort

• Feed ration

• Desired commercial

weight

• Mortality rate

• Fertilisation rate and

composition

Biotechnical
• Stocks (harvest,

losses)

• Production

efficiency

• Resource-use

efficiency

Environmental
• Nutrient emissions

• Impacts on

downstream water

quality

• Water use

Economic
• Income

• Expenses

• Profitability

Farm Farm infrastructure and
farming cycle

• Technology

• Number, dimensions

and locations of

rearing units

• Production schedule

(transfers between

rearing units)

Market prices
• Input and output

values

• Interest and

depreciation rates
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obtain parameter values. Using simpler models to build FSMs is often

the main approach for limiting data requirements. As highlighted in the

EAA, proactive research on new species should be promoted,4 even if it

initially requires developing simpler empirical models. Reviewing the

existing information before modelling is thus also a crucial step. Knowl-

edge also determines the amount of detail that can be considered and

indicates potential uncertainty in the predictions.

3 | PROCESS FORMULATION AND MODEL
SELECTION

The second step of FSM development relates to process formulation

and model selection, which consider the choice of state variables, the

equations available to model relevant processes and the assumptions

and constraints associated with each modelling alternative. The reasons

for the model chosen should be explicitly stated and will depend on the

context under study, the objectives, data availability and the desired

complexity or generality, among others. This section presents the types

and families of models used in the FSMs reviewed to simulate most

important processes at individual, cohort/rearing unit and farm levels.

3.1 | Types of models and criteria for model
selection

One essential characteristic that differentiates models is the distinc-

tion between empirical and mechanistic models.84 Choosing an

empirical vs. mechanistic approach in an FSM, especially in models at

the individual level, can influence the FSM's properties greatly.

Empirical models (also called ‘descriptive’, ‘statistical’, ‘quantitative’
or ‘phenomenological’) describe observed patterns using equations

and parameters that have been fitted statistically, without explicitly

describing/formalising the underlying processes. In contrast, mecha-

nistic models (also called ‘theoretical’) are based on theories about

the processes thought to underlie phenomena. The boundary

between these model types is sometimes narrow, as it is common to

include empirical equations in mechanistic models to improve the fit

between observations and simulations (see examples in

Section 3.2.1). Empirical models are generally simpler (e.g. fewer

input parameters, state variables and forcing variables), easier to cali-

brate and quicker to run. Their disadvantage is, however, that they

have less flexibility (i.e. more difficult to apply to other contexts) and

predictive power (i.e. few predictions can be extrapolated out of the

range of the data used for calibration85 and cannot consider changes

in the system14).84 Empirical models are, thus, preferred when con-

structing FSMs when knowledge of the processes is low, such as for

new species or environments. Empirical models are thus frequently

used as an initial approach.86 If general applicability is the priority,

such as simulating several species using the same set of equations,

mechanistic models are more suitable if knowledge and data are

sufficient.

When constructing FSMs, other general choices can influence a

model's properties and outputs, such as how time (e.g. discrete

vs. continuous) and space (e.g. spatially heterogeneous, or not) are

modelled and whether random events are allowed (stochastic models)

F IGURE 2 Important limiting variables and processes to consider to model a variety of fish farming systems
[Correction added on 7 June 2022, after first online publication: The captions for Figures 1 and 2 have been transposed.]
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or not (deterministic models). Dynamics of FSMs are driven by envi-

ronmental conditions and farmers' decisions, which can vary over

space (e.g. practices differ among rearing units) and time (e.g. seasonal

change in temperature). FSMs usually use discrete time steps. The

time step is based on the most critical processes to consider and the

amount of detail. For instance, it can be 1 day for predicting overall

growth, or shorter (hour or minute) when metabolic loops that result

in fish growth are also simulated. Some FSMs include the spatial

dimension, either by making the model grid-based or simply attribut-

ing processes clearly to a unit of organisation (e.g. individual, cohort,

rearing unit). In FSMs, the choice between deterministic and stochas-

tic models is largely a function of the need to represent variability

among individuals at the cohort level and influences mainly model

complexity and computing time (see Section 3.3.3.2).32,80 This general

modelling terminology is used and illustrated with examples in the fol-

lowing sections.

3.2 | Processes and models at the individual level

3.2.1 | Growth

An organism grows due to deposition and accretion of several nutri-

ents from the feed into the body. Nutrient deposition allows tissues

and organs to develop and ultimately allows the individual to increase

in volume, mass and size. Assimilating and depositing nutrients in an

organism for growth, as well as maintaining body components, costs

energy. Besides supplying nutrients, feed also meets an animal's

energy requirements. For this reason, fish growth models often repre-

sent feed quantity and quality, as both strongly influence the amounts

of nutrients and energy available to a fish. Because body size and

water temperature are key drivers of a fish's ability to ingest and

assimilate feed, growth models often include these variables. Many

other biotic (e.g. sex, age, genetic pool, parasites, microorganisms, fish

stocking density) and abiotic (e.g. light intensity, photoperiod, DO and

NH4 concentrations in water, water salinity, currents) factors are also

known to influence fish growth, but they are less often included in

growth models.

Individual-level models developed for fish can be classified into

four families: (i) simple growth functions (Table 3), (ii) traditional

bioenergetic models, (iii) Dynamic Energy Budget (DEB) models and

(iv) nutritional models. This distinction is based mainly on model

theories and the currency used (mass or energy). It also reflects the

chronology of the development of fish growth models and the pro-

gressive transition from empirical to mechanistic models. Each fam-

ily of models, except for a subgroup of nutritional models

(metabolic-flux models), was used in at least one of the FSMs

reviewed (Table 1). The main concepts, mathematical equations and

characteristics of capacity, complexity and data requirements of

each model family is presented below and then summarised

(Table 4). For more detailed information about individual growth

models, refer to previous reviews of models for fish83,87,88 or for

other aquaculture species.86

Simple growth functions are semi-empirical models that use

regression or polynomial equations to describe the increase in body

mass or length over time. Fish growth is often described with three

stanzas: exponential, linear and asymptotic growth for early stages

(fry), juveniles (fingerlings) and adults, respectively. Depending on the

growth stanza examined in the model, the growth function has a dif-

ferent shape (e.g. exponential, bounded, sigmoidal).88 The main simple

growth functions include temperature-independent models such as

the von Bertalanffy growth function (VBGF),89 the Gompertz90 func-

tion, polynomial functions and temperature-dependent models, such

as the thermal-unit growth coefficient (TGC) model91,92 and the func-

tion of Lupatsch and Kissil (1998) (Table 3).93 Some of these models,

such as VBGF or TGC, have been applied to many different fish spe-

cies, demonstrating their general applicability to fish. Parameter esti-

mation requires few data (e.g. time series of body mass and water

temperature for temperature-dependent models) and use mathemati-

cal fitting methods (e.g. see Refs. 94,95). The use of simple growth

functions in FSMs is therefore useful in contexts where few data are

available, such as for new aquaculture species or data-poor environ-

ments. Due to the functions' empirical nature and few inputs, their

parameter values are often site-specific and have limited ability for

reuse.

Traditional bioenergetic models (thus excluding DEB models)

describe the allocation of feed energy to different metabolic process

in an organism, including growth, following a factorial scheme

(Figure 3a). These models are based on the principle of energy conser-

vation. All of the energy available to an organism comes from the

feed. The organism assimilates a fraction of this energy and then

TABLE 3 Simple functions commonly used to predict fish growth

Model Variable and parameter Unit

von Bertalanffy

W tð Þ¼W∞ 1�e�k t�t0ð Þ� �b W : weight

W∞: asymptotic weight

k: relative growth rate

t: age

t0: initial age

b : dimensionless factor

g fresh

weight

g fresh

weight

day�1

day

day

-

Gompertz

W tð Þ¼ a �eb�ec�t a : asymptotic weight

b : curve-displacement

coefficient

c: growth rate

t: time

g fresh

weight

-

-

day

Thermal-unit growth coefficient (TGC)

Wf ¼ W1�b
0 þT � t �TGC

� � 1
1�b

with

TGC¼W1�b
f �W1�b

i
T�t

Wf : final weight

W0 : initial weight

b : allometric coefficient

t : time

T : water temperature

g fresh

weight

g fresh

weight

-

day
�C
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egests the remainder as faeces. The assimilated energy can subse-

quently be used or lost through several pathways (Figure 3a): excre-

tion of dissolved nutrients, respiration associated with feed

processing (i.e. ‘specific dynamic action’ or ‘heat increment’), storage
of assimilated energy, egestion of waste, maintenance (e.g. basal

metabolism, thermal regulation), activities (e.g. swimming) and growth

(e.g. somatic growth, gonad formation, synthesis of lipid reserves). In

traditional bioenergetic models, these energy fluxes are represented

by specific terms of balanced equations with either energy inputs

from feed (factorial models) or energy allocated to growth (net-

production or net-energy models) which are unknown and subtracted

from the other terms. In factorial models, energy allocated to growth

must be defined from experimental data or by assuming the genetic

growth potential (also called ‘desired growth rate’). Growth is thus

often expressed using the simple growth functions presented previ-

ously (e.g. TGC in the bioenergetic model of Cho and Bureau,96 expo-

nential functions in those of Lupatsch et al.98,99 and Glencross97).

When an individual-level model aims mainly to predict fish growth,

factorial models have no advantage over simpler models. In contrast,

in net-production models such as scope-for-growth models,100 the

energy available for growth is the state variable. Unlike simple growth

functions, net-production models can estimate fish growth under lim-

iting food availability. This can be useful when stocks are not fed ad

libitum, such as in unfed pond systems, or when fish do not have full

and constant access to the feed distributed.92 The development and

parameter estimation of bioenergetic models is usually performed by

estimating each term in the equation using allometric relationships or

statistical regressions, based on experiments. These experiments have

been described extensively by Strand101 and Jørgensen et al102 More

generally, bioenergetic models have the advantage of estimating,

within a common conceptual framework, growth potential, solid and

dissolved metabolic waste production and oxygen consumption. Tra-

ditional bioenergetic models have been criticised for their lack of par-

simony103 and generality.104,105 They may involve many parameters,

which often do not have any biological meaning outside of the species

for which they were defined.103,106,107 Probably for this reason and

because of the time required to parameterise models for new species,

most traditional bioenergetic models used in aquaculture have been

applied to only one or two species (Table 1). A few of them have been

applied to more species (suggesting more generality), such as the bio-

energetic model in the MOM model,55,56 or Aquafish, the individual-

growth model used in FARM.58,59 Other models are used in other

fish-related research areas. For instance, Fish bioenergetics108 is a

popular model that has been used in ecology for more than 20 years

and now includes parameters for more than 73 species. A critical anal-

ysis of these models, however, lies beyond the scope of this study.

DEB models are mechanistic bioenergetic models based on a the-

ory founded on physiological principles that are common to all spe-

cies. DEB theory can be applied to ectothermic or endothermic

organisms that are isomorphic (whose body shape does not change

over time). Because DEB models can describe the life cycle of an

organism through multiple stages (e.g. embryo, juvenile and adult

stages in a general model organism), model parameters can changeT
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over time. This feature contrasts with traditional bioenergetic models,

which do not represent the entire life cycle of individuals107 and thus

ignore effects of metabolic adaptations on energy-balance dynam-

ics.106 DEB theory uses differential equations to describe flows of

assimilation and use of energy from food for an organism's mainte-

nance, reproduction and development (Figure 3b) in response to two

forcing variables: temperature and food availability.109–112 In this the-

ory, after being assimilated, energy is stocked in a reserve compart-

ment (specific to DEB). Part of this energy (determined by the

parameter Kappa) can be used for structure (i.e. somatic maintenance

and growth), and, for embryos and juveniles, the rest (1-Kappa) is used

for maturity (i.e. complexification of structure) and maintenance of

maturity. For adults, who have reached maximum maturity, this

remaining energy fraction can be used for maturity maintenance and

reproduction (i.e. gonad formation and gamete production). A stan-

dard DEB model includes 12 parameters, but depending on the objec-

tives of application, not all of these parameters are necessarily

useful.113 Estimating these parameters requires collecting a large

amount of data derived from life-history traits and experiments. These

data and the methods to collect them have been described else-

where.114 The Add-my-Pet database provides access to parameters

for more than 3000 species,115 including many farmed fish species.

Completeness of the data used to calibrate and assess goodness-of-fit

of the models is also provided for each species in the database, all-

owing overall model quality to be assessed. Compared to traditional

bioenergetic models, DEB models have greater generality but corre-

spondingly greater complexity. State variables of standard DEBs

(i.e. structure, reserve, and maturity or reproduction buffer [some-

times called ‘gametes’]) are defined in an abstract way, and neither

they nor energy fluxes can be measured directly and operationally, as

can be done with traditional bioenergetic models.107 Moving from

model variables to real-world measurements thus requires auxiliary

(or conversion) parameters.116 This high level of abstraction, as well as

the expertise required to develop and implement DEB models,86 may

limit its wide applicability, although some ‘simpler’ variants of general
DEB theory also exist.116 These variants provide a variety of compro-

mises in model capacities and data requirements. The ability of DEB

models to represent the entire life cycle of an animal and to quantify

reproduction can be useful for modelling farming systems in which

reproduction occurs and early stages are important, such as hatcher-

ies, nurseries and extensive pond systems. Moreover, DEB's ability to

quantify reproduction also connects individual animals to the popula-

tion level,86 which provides the option to simulate population dynam-

ics within the DEB framework.117,118

Other families of individual-level models, such as nutritional

models, can be used to predict individual fish growth. Nutritional

models can estimate fish growth by simulating the fate and accretion

of nutrients in the organism, following principles of energy and mass

conservation. They include models with two levels of complexity: sim-

ple nutrient mass-balance models96,119,120 and more complex

metabolic-flux models.121–124 Both can simulate fish growth as a func-

tion of food nutrients, unlike traditional bioenergetic and DEB models,

which often ignore the types of nutrients that provide energy in the

food (except some, such as RAC or MOM) and the balance among

nutrients required to meet fish requirements. In mass-balance models

(Figure 4a), nutrient groups of interest are macronutrients

(e.g. protein, lipids), while metabolic-flux models (Figure 4b) also con-

sider the composition of macronutrient substrates (e.g. amino acids,

F IGURE 3 Diagram of individual-level models based on energy, including (a) traditional bioenergetic models and (b) Dynamic Energy Budget
models. SDA, specific dynamic activity.
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fatty acids). These two types of models, however, ignore micro-

nutrients and additives (e.g. vitamins, minerals, trace elements).

Because most of the FSMs reviewed include mass-balance modules to

estimate farm waste (but not growth), these models are described in

more detail in Section 3.2.3. Metabolic-flux models are mechanistic

models based on the compartmental approach,125 which consists of

subdividing an organism into multiple compartments (e.g. gut, blood,

other organs) through which pools of nutrients with homogeneous

kinetics (e.g. protein, lipids, glucose) can circulate. Metabolic loops are

used to describe the synthesis and degradation of these nutrient pools

(see Zhang et al.126 for a detailed description of nutrient metabolism

in fish). Flows of macronutrients or substrates that circulate between

these pools or enter or leave the system are described using differen-

tial equations based on the principles of stoichiometry and kinetic sat-

uration. Although mechanistic, these models do not necessarily follow

a generic framework, are often parameterised for a single species102

and have many parameters (e.g. up to 100). Estimating parameters of

metabolic-flux models usually requires in vivo and in vitro experimen-

tal data (including digestibility data), but no standard method has been

developed to collect them. Metabolic-flux models have been applied

to several mammals (see references in Dumas et al.87) but only to a

few fish species, including Atlantic salmon,122 rainbow trout124 and

Senegalese sole (Solea senegalensis).123 The outputs of these models

include most of those produced with traditional bioenergetic and DEB

models (Table 4) and extend to nutrient composition in the fish body

and metabolic waste. Only one example of an FSM based on a meta-

bolic flux model was identified during the literature search, but as this

commercial model has not been presented in a peer-reviewed article

or a PhD thesis, we excluded it from the review. The relatively recent

development of metabolic-flux models, their few applications to fish

and their high complexity likely explain why no peer-reviewed FSM

based on a metabolic-flux model was identified. The development of

such FSM, however, would provide new perspectives for applications,

including prediction of fish body composition as a function of feed

composition and formulation, or farm production and environmental

performances due to new feed formulations (see Section 5.3) and

more accurate prediction of production in an IMTA context (see

Section 5.2). Development of such models should therefore be

encouraged; they may become the next generation of FSMs if devel-

oped in the direction of less complexity and more generality.

3.2.2 | Food intake

Food is the only source of energy and nutrients that animals have for

maintenance, development and reproduction. Fish that feed on plank-

ton, insects, macrophytes, benthic organisms or other fish can obtain

food from the environment, as is generally the case in extensive pond

systems. In semi-intensive or intensive systems, exogenous feed is

provided to fish to meet energy and nutrient requirements and ensure

growth objectives (Figure 2). Only FSMs developed for pond aquacul-

ture have included processes related to the availability of natural food

from the environment. Some of them (e.g. POND, FARM) can also

include exogenous feed supply. The natural food considered in these

models is generally limited to phytoplankton or zooplankton. Consid-

ering plankton as food requires considering primary productivity

dynamics in the FSM, either as a forcing or non-forcing variable (see

Section 3.4.3.2). How much natural food or distributed feed is

ingested by fish is another important question, as it ultimately deter-

mines fish growth potential, as well as nutrient and economic losses

due to uneaten feed. Predicting feed intake is particularly complex,

however, as it is influenced by many factors, including nutritional

F IGURE 4 Individual-level models based on nutrients, including a (a) nutrient mass-balance model and (b) metabolic-flux model (adapted from
Johnston et al.127). ATP, adenosine triphosphate; IM, intermediary metabolism; LM, lipid metabolism; PD, protein degradation; PS, protein
synthesis.
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(e.g. proximate composition, dietary preferences, feed attractiveness),

environmental (e.g. DO, salinity, temperature, photoperiod), physio-

logical (e.g. genetics, hormonal system) and production-related

(e.g. feeding frequency, feeding rate, feeding time) ones.128

The modelling approach used to estimate the quantity of feed

ingested by fish depends strongly on the family of growth model used

in the FSMs. In most FSMs based on simple growth functions, ingested

feed equals distributed feed minus a potential fraction of uneaten feed

(see Section 3.3.1). In these FSMs, growth is predicted using empirical

functions (e.g. von Bertalanffy, TGC models) that do not explicitly

include variables for the amount of feed distributed or ingested

(Table 3). In FSMs based on simple growth functions, feed supply and

feed intake (if calculated as a percentage of feed supply) can still be

simulated and vary over time, for instance, using feeding charts or feed

conversion rates (FCR, i.e. the number of units of ‘dry’ aquafeed

required to produce 1 unit of ‘fresh’ fish biomass) (see Section 3.3.1).

However, feed supply and feed intake will not influence growth predic-

tions in these FSMs. In contrast, feed supply or availability is a forcing

variable of traditional bioenergetic and DEB models. Besides feed avail-

ability, the number of variables used to estimate feed intake can vary

widely among traditional bioenergetic models. In the FSMs of Yi31 and

Cuenco et al.27 and in POND,32,33 the ingestion rate depends on 4–6

physiological or environmental variables, including fish size/weight,

temperature, photoperiod, DO concentration, ammonia (NH3) concen-

tration and feed availability. Some authors demonstrated greater influ-

ence of temperature than other variables on feed intake.27 In more

recent bioenergetic or DEB-based FSMs, feed intake is essentially a

function of fish body mass, temperature and feed availability. In the

RAC model, for instance, the energy flow from the feed ingested is esti-

mated from maximum ingestion capacity, a temperature-response law

and fish body mass. FARM and the FSM of Canale et al.43 follow the

same modelling logic, except that ingestion rate is not function of fish

mass but instead of stomach size and fullness (satiety). In these two

models, the evacuation rate of the fish's digestive tract thus determines

its ability to ingest food again. In DEB theory, feed intake is propor-

tional to animal surface area and varies as a function of feed density

and temperature according to the Arrhenius law. Other modelling

methods have been developed in the literature to estimate feed intake

by fish at the individual or population level (e.g. multiple-regression

models, chemical contaminant mass-balance model128), but they are

used much less often in FSMs than the methods mentioned.

3.2.3 | Feed assimilation, egestion and excretion of
metabolic wastes

In fish, non-assimilated feed is egested as faeces, and assimilated

nutrients that have not been used to produce new tissues or energy

are excreted as metabolic end-products with high nitrogen (N) and

phosphorus (P) contents. Faeces contains the nutrients already pre-

sent in the feed, but in percentages that vary with the ability of the

fish to digest and assimilate them. Approximately 80%–90% of N is

excreted as un-ionised NH3 through respiration and urine, while

10%–20% of the remaining N is excreted as ammonium (NH4
+ or

ionised ammonia), urea (CH4N2O), uric acid (C5H4N4O3), amino

acids (H2N–HCR–COOH), creatine (C4H9N3O2) and creatinine

(C4H7N3O).129,130 P is excreted mainly as orthophosphates (H2PO4
�,

HPO4
2� and PO4

3�). Biological waste also includes carbon dioxide

(CO2) released by respiration.

The method used most to estimate waste emissions, particularly

for FSMs based on simple growth functions, is to connect the growth

model to a nutrient mass-balance model. In the mass-balance

approach (Figure 4a), digested nutrient fluxes are estimated using

apparent digestibility coefficients (ADCs) for several macronutrient

feed compounds, feed dry weight or feed organic matter. When mac-

ronutrient compounds are used, feed is described by its content in pri-

mary nutritional categories (i.e. proximate composition: protein, lipids,

dietary fibre, ash and N-free extracts [mostly carbohydrates, including

starch]). The categories of macronutrient considered in mass-balance

models vary among studies but should include at least protein, lipids

and starch, which together represent ca. 80% of feed dry weight and

nearly 100% of its energy. Undigested nutrients egested as faeces are

calculated as a difference (1–ADC). Nutrients retained in the biomass

gain (from the growth model or an FCR) are estimated by multiplying

the initial and final proximate composition of the fish body by the ini-

tial and final body mass, respectively. Finally, dissolved wastes are cal-

culated as the difference between retained and digested nutrients. C

and N fluxes can also be calculated from macronutrient fluxes by con-

sidering their stoichiometry (e.g. protein is 1/16 N).131 Simplified ele-

ment mass balances can also be determined by considering C, N or P

ADCs.45,66 This approach, however, cannot quantify nutrient or

energy losses in faeces. For additional information about estimating

waste emissions with nutrient mass-balance models, see reviews by

Bureau and Hua129 and Reid et al86 Besides mass-balance models,

other methods have also been used to estimate fish waste emissions.

For instance, Islam132 developed linear regressions between N and P

emissions and FCR. Some statistical models were developed to esti-

mate total N, which was assumed to equal the sum of NH3 and NH4
+

emissions, as a proportion of distributed feed, without explicitly con-

sidering feed digestibility or assimilation efficiency by fish.45,46 To be

rigorous, however, such empirical models should be used for the same

species, range of temperature, feeding regimes and other environmen-

tal conditions for which they were initially developed, which probably

greatly limits their possible reuse.

In traditional bioenergetic and DEB models, parameters for

energy-assimilation efficiency are used to estimate the fraction of

ingested energy that can be used for metabolic processes and poten-

tially to estimate the non-assimilated energy egested as faeces. Most

models use a single parameter, but some FSMs (e.g. RAC, MOM) spec-

ify an assimilation-efficiency parameter depending on the type of

macronutrient that provides the energy. FSMs usually assume that

parameters for energy-assimilation efficiency and ADCs remain con-

stant over time. Less frequently, ADCs can vary by fish age, as in the

INAPRO model. In traditional bioenergetic models, all non-assimilated

energy is assumed to be lost as faeces, which differs from DEB

models, which can include losses related to digestion.112 This loss
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fraction of dissipated energy, which represents 10% of ingested

energy in a standard DEB model, is often assumed to be zero in

FSMs.74,133 The energy fluxes allocated to faeces can then be

converted to mass fluxes using energy-density coefficients (kJ g�1

faeces) in traditional bioenergetic models or using molecular-weight

(g mol�1) and chemical-potential (J mol�1) coefficients in DEB models.

Bioenergetic models use a variety of methods to estimate dissolved

waste. N excretion can be considered proportional to oxygen

consumption,65,86 assimilated energy from protein43 or ingested N.40

The same type of approach can be used for P excretion, but this vari-

able is usually estimated from N excretion.65 The excretion term in

standard DEB models is not a single process, as it is in traditional bio-

energetic models. In standard DEB models, N emissions can be esti-

mated from energy costs related to assimilation, dissipation (i.e. work

that does not produce new biomass, such as maintenance, and over-

head costs) and growth107,112 as done for seabass by Stavrakidis-

Zachou et al77 Estimating dissolved P emissions is more complex,

however, as standard DEB models do not consider P in an organism's

biomass components (i.e. structure, reserve and reproduction buffer).

Relationships between P and C or N fluxes in an organism must there-

fore be assumed. For instance, in the FSM of Serpa et al.,36 dissolved

P (and N) emissions of white seabream (Diplodus sargus) were esti-

mated as a function of the C emitted by respiration and C:P ratio in

the food, assuming that C and P losses must be directly proportional

to C and P inputs in food, to ensure that the organism's C: P ratio is

maintained.

3.2.4 | Respiration

Fish consume oxygen during respiration to produce energy from

organic compounds in the feed; this reaction also produces CO2 and

water. Most FSMs developed for land-based systems estimate oxygen

consumption by fish, while only a few FSMs developed for sea cages

(e.g. RAC, FARM, FSM of Besson et al.69) do. In the open-water sys-

tems studied, authors often acknowledge that DO concentration is

not a limiting factor.54,70,73

Two main approaches are used in FSMs to represent fish oxygen

consumption45: (i) it is estimated at the individual or population level

or (ii) water flows required to make DO concentration non-limiting are

calculated. Several linear functions that used distributed feed quan-

tity, fish body mass or temperature as proxies to estimate oxygen con-

sumption at the individual level have been proposed.45,46 Some of

these functions can be connected to simple growth functions or used

in traditional bioenergetic models. Fish respiration can also be esti-

mated using indirect calorimetry principles, as in MOM or the FSM of

Besson et al69 This method assumes that the energy lost through res-

piration equals that used to oxidise excreted dissolved nutrients. To

estimate fish respiration, a nutrient mass-balance model can first be

used to estimate digested and non-retained proteins, lipids and carbo-

hydrates; then, these nutrient fluxes are converted to energy fluxes

using macronutrient energy densities and converted again to O2

fluxes using oxy-caloric coefficients (see Table 2 in Reid et al.86).

In FSMs based on traditional bioenergetic models, oxygen

consumption by fish is usually estimated by summing the oxygen

or energy consumption associated with multiple metabolic costs.

Most of these FSMs estimate resting respiration, which corre-

sponds to oxygen consumption for basal metabolism and feed

digestion, using temperature-dependent allometric relationships,

and ignore metabolic costs of swimming. Similarly, like excretion,

oxygen consumption is not a single process in DEB theory,107

and it can be derived from the energy used for growth and lost

through dissipation. The energy expended for swimming and its

associated oxygen consumption are probably low for fish reared

in environments with slow currents (e.g. ponds, tanks, raceways,

cages in protected bays).134 In rivers or offshore cage systems,

however, currents are usually stronger and the energy costs of

swimming higher. FSMs developed for high-current systems

should probably include swimming costs when estimating fish

respiration. FARM can estimate oxygen consumption due to

swimming, but it requires current intensity as input data

to do so.

3.3 | Processes and models at the cohort or
rearing-unit level

3.3.1 | Feeding and feed wastage

In fed aquaculture, the quantity and quality of feed distributed to a

rearing unit depends on several factors. Farmers usually determine a

feed ration from a feeding chart that provides theoretical rations

(expressed as a percentage of stocking biomass) as a function of fish

size and temperature. These theoretical rations are then adapted daily

as a function of fish state (e.g. behaviour, health stress), environmental

conditions (e.g. current, DO), farming cycle (e.g. starvation before han-

dling) or feed availability on the farm.135 Because a fish's nutritional

requirements and ingestion capacity also vary during its life cycle, pel-

let composition and size are adapted for a given species over the

farming cycle. Optimising feed quality and quantity according to these

factors meets fish growth potential and minimises feed losses

(i.e. uneaten feed).

In FSMs, the feed ration can be either a forcing variable or an out-

put of the model. The latter approach is generally used in FSMs based

on factorial models (e.g. Refs. 31,70,76),which estimate the feed

ration from energy or nutrient requirements (see Section 3.2.1). Thus,

they can be used to produce a feeding chart or optimise the ration for

growth or economic objectives. In the former approach (feed ration as

a forcing variable), the user must provide a time series of distributed

feed (as in RAC, FARM and FINS, among others) which are used to

determine farm performances. Feed ration data can be obtained from

farm records, feeding charts or the FCR. Calculating feed ration from

a single FCR is easy and common in FSMs39,42,46,51,66,69; however,

doing so seriously limits model capacities and generality,43 as feed

rations must be assumed to remain constant over time, and FCR is

highly farm specific.
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Likewise, the quantity of uneaten feed is either a parameter or an

output of FSMs (Table 5). In FSMs based on simple growth functions,

uneaten feed may be often expressed as a fixed percentage of the

feed distributed. In the FSMs reviewed, this percentage ranges from

0%33 to 41%70 for pelleted feed and up to 52% for trash-fish feed.70

In other studies and non-aquaculture FSMs, this percentage generally

ranges from 1% to 6% for feed pellets.119,136–140 However, some

FSMs estimate uneaten feed by calculating the difference between

the feed ration and the maximum ingestion capacity or energy

requirements. When estimated, the percentage of uneaten feed

ranges from 1%70 to ca. 50%.64 Wastage rate is difficult to measure

experimentally at the cohort or farm level, particularly in open-water

systems. The wastage rate may vary as a function of feeding strate-

gies, abiotic conditions (e.g. temperature, hydrodynamics) or fish-

feeding behaviour, and vary greatly over time on a given farm. For

instance, the in situ percentage of uneaten feed was measured as

9%–52% over several experiments on the same farm.141 Conse-

quently, uncertainty in feed wastage, whether modelled or set as a

parameter, is likely to be high. This uncertainty has consequences on

estimating waste at rearing-unit and farm levels, given the high per-

centage of wasted feed in total waste. For instance, feed wastage of

3% represented 12% of total particulate waste of a salmon farm.142

When feed wastage exceeds 15%–20%, total particulate waste con-

sists mostly of wasted feed.141 Estimates of waste emissions may thus

differ greatly among FSMs depending on whether the percentage of

uneaten feed is set by the user or estimated by the model.

3.3.2 | Other types of waste in farm effluents

Fish-farm effluents can contain nutrients (e.g. metabolic waste,

uneaten feed, fertiliser, dead fish), chemicals (e.g. antibiotics, pesti-

cides, hormones), pathogens and heavy metals.143 Nutrient waste

products were the only waste type considered in most of the FSMs

reviewed, but two FSMs also considered the release of chemicals and

pathogens. The nutrient waste streams modelled in the reviewed

FSMs represent nutrient emissions from metabolic waste, often

uneaten feed and fertiliser, but rarely those from decomposition of

dead carcasses (e.g. FINS). When mortality is high, these fluxes should

also be considered, particularly if farm-management practices do not

remove carcasses and process them on land.144 The release of patho-

gens (i.e. Hepatopoietic necrosis virus, Oyster herpes virus and Vibrio

aestuarianus) was included in the ABC model, a recent FSM developed

from FARM components.78 In ABC, pathogen loading is a function of

the total number of animals at the source (i.e. the primary emission

site), proportion of animals infected and a shedding rate per individual.

ABC also includes functions for pathogen infection (see

Section 3.4.3.4) and transport both within and among farms. Among

the FSMs reviewed, only ERA-AQUA, an FSM developed to perform

risk assessments of veterinary medicinal products applied in pond

aquaculture, incorporated the release of chemicals (i.e. oxytetracycline

and benzalkonium chloride).38 ERA-AQUA represents 15 processes to

model drug transfer and dissipation among the sediment, fish, pond

water and the watercourse that receives the effluent compartments,

TABLE 5 Mean percentage of uneaten feed (as a percentage of feed ration) set in or estimated by farm-scale models

Mean uneaten feed System Species Feed type References

Parameters set by the user

30% Pond African catfish (Clarias gariepinus) N.S. 40

1% Recirculated African catfish N.S. 51

52% Marine cage Large yellow croaker (Larimichthys crocea) Trash fish 70

41% Pelleted

5% Marine cage Red drum (Sciaenops ocellatus) Pelleted 73

5% Marine cage Atlantic salmon (Salmo salar) N.S. 61

3% Marine cage Seabream (Sparus aurata) Pelleted 58

7% Pond Nile tilapia (Oreochromis niloticus) Pelleted 60

3% Recirculated Nile tilapia N.S. 52

10% Pond Nile tilapia N.S. 39

0% Pond Nile tilapia Pelleted 33

Estimated by the model

ca. 50% Marine cage Seabream N.S. 64

33% Marine cage Seabream Pelleted 65

38% Seabass (Dicentrarchus labrax)

1–7% Hatchery Coho salmon (Oncorhynchus kisutch)

Chinook salmon (Oncorhynchus tshawytscha)

N.S. 43

15% Lake cage Chinook salmon Pelleted 53

Abbreviation: N.S.: not specified.
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using mass-balance equations. None of the FSMs reviewed, however,

modelled heavy-metal loads.

3.3.3 | Biomass and stocking density

Information about the number of fish alive (cohort size) over time and

their weight distribution is necessary to estimate the stocking biomass

in a rearing unit; these variables can be simulated in population

dynamics models (also called ‘biodemographic models’) (Figure 5).

Cohort size

Cohort size is determined by several factors. Seeding (i.e. the number

of fingerlings introduced into the rearing unit) and natural reproduc-

tion increase the number of stocked animals, while natural mortality,

other losses, transfer and harvests decrease it. Seeding depends on

farm practices: animals can be introduced once, at the beginning of

the farming cycle, or continuously during the farming cycle. The

seeding rate (i.e. number of fingerlings introduced per unit time) is

therefore a model input. Fish do not reproduce in most fish-farming

systems (e.g. cages, raceways, RAS) because they are usually

harvested before they reach sexual maturity, except for some species

such as tilapias, which reach sexual maturity when smaller than mar-

ket size. Reproduction is therefore almost never modelled, except by

certain models applied to pond polyculture systems. Concerning mor-

tality (expressed as the number of dead fish, or percentage of fish in

stocks, per unit time), a distinction is made between ‘natural’
(or ‘physiological’) mortality, which is theoretically independent of

farming practices, and additional mortality or losses, which are related

to farm operations (e.g. harvests, transfers between rearing units), dis-

eases, escapes, predation or theft.25,73 Most FSMs use a fixed mortal-

ity (or survival) rate that is expected at the end of a rearing cycle or

based on historical data.25 A linear (mortality rate remains constant

over time) or exponentially decreasing function (mortality rate

decreases with fish size/weight) is then fitted to this final mortality

rate to determine instantaneous mortality during the farming cycle.

This ‘survival modelling’ method was the one most commonly used in

FSMs developed more than 30 years ago.80 Other methods, such as

those used in agent-based models to represent mortality based on

foraging and interaction with predators, have thus rarely been incor-

porated into FSMs to date.145 Natural mortality is sometimes assumed

to be zero due to a lack of information or available relationships

(e.g. Refs. 47,71,77). Additional losses can be added to represent the

influence of the quality of the rearing environment on fish mortality.

For instance, the ABC model considers pathogen interactions with

stocking biomass and predicts mortality due to disease.78 In some

pond FSMs, additional losses related to cannibalism or interspecific

predation are also simulated using predator–prey relationships in a

population dynamics model.35 In other FSMs, the additional loss rate

is essentially used to adjust farm-production efficiency as a function

of different rearing practices (e.g. good, average, bad).30,73 FSMs use a

variety of methods to simulate harvest. Harvest rates (expressed as a

number or percentage of individuals per unit time) and frequency may

form part of input data,73 or harvesting can be triggered automatically

when a targeted market size/weight of the animals is reached.71,76–78

Inter-individual variability and weight distribution

Most processes simulated at the individual level in FSMs are likely to

vary among individuals of a cohort. Studies of inter-individual variabil-

ity in wild fish populations usually focus on age distributions; in

farmed fish cohorts, however, individuals have the same age, so

weight distribution due to genetic variability is usually studied. This

variability also influences fish ingestion and assimilation capacity, sur-

vival and waste emissions. Although nearly all of the FSMs reviewed

F IGURE 5 General structure of a population dynamics model applied to fish-farming systems. The symbols + and – indicate whether the
process increases or decreases population size, respectively.
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are based on individual-level models and thus can represent inter-

individual variability,145 they rarely do so; more often, they assume

that individual weight predictions are mean values that can be used at

the cohort level.34,43,45,51,66,69,70,73 Different scenarios (e.g. worst-

case, average, best-case) are sometimes used to resolve variation in

growth among individuals; however, results of these scenarios remain

determined by the parameter values and data set beforehand.34 In

some FSMs, variability is represented among individuals or classes of

individuals.30,57,63,72,77 A common method is to use probability distri-

butions, usually Gaussian, for one or more parameters of the growth

model (e.g. assimilation efficiency) and to perform as many simulations

as there are individuals in the cohort (e.g. Monte Carlo simulations).

Models that use random values for model parameters, called stochas-

tic (or probabilistic), are more complex than deterministic models

(no random processes) because of the mathematics involved.80 They

also take more time to run because of the large number of simulations

required, which greatly increases computing time.32 One technique to

represent inter-individual variability without increasing computing

time is to represent the cohort as super-individuals, which are a set

(class) of hundreds or thousands of homogenous individuals.146 This

can be done using Markov matrices, such as in the Rizzo and Spagnolo

model.30 Because of these constraints, a few models, such as FARM,

provide the ability to choose between inter-individual or inter-class

variability. The feasibility of integrating inter-individual variability into

an FSM can also differ among families of individual-level models. For

instance, DEB theory already considers inter-individual variability due

to physiological and environmental factors in a relevant mechanistic

way. DEB models can predict biological traits (e.g. food ingestion,

growth) of interest in toxicokinetic models, which can be further

predicted under dynamic environmental conditions (especially food

quality, food availability and temperature) over an animal's life

cycle.147 This can facilitate to some extent the relationship between

processes simulated at individual and cohort levels.

Another source of inter-individual variability in fish farming is

feed accessibility. Most FSMs consider permanent, equitable and non-

competitive access to food resources. Feed is usually assumed to be

distributed evenly throughout the entire cage volume and accessible

to fish until the population has met its feed requirements or eaten all

the feed. Other FSMs, such as that developed by Føre et al.,71 model

the 3D positions of pelleted feed in a cage to represent the amount of

time that pellets are available to fish. This time depends on the set-

tling rate of pellets and current intensity. In this model, intake is deter-

mined by the stomach volume of fish and their ability to reach the

pellets. In the FSM of Serpa et al.,37 the settling rate of pellets and the

height of the tanks (settling distance) are included to represent the

access time to the resource. The only FSM reviewed that considers

competition for feed was that of Cuenco et al.,27 which assumes that

access to food is positively correlated with fish size (i.e. the largest

ones eat first). Better consideration of individual behaviour

(e.g. searching for food) and collective behaviour (e.g. competition for

resources) in FSMs would probably improve understanding of how

feed is wasted, reduce uncertainty surrounding feed wastage and

improve estimates of environmental impacts of fed-fish farming.

Protocols and techniques already developed for individual-based and

agent-based models145,148 will help integrate inter-individual variabil-

ity into FSMs.

Stocking density

Stocking density (expressed as biomass or number of individuals per

unit area or volume) is an important parameter in aquaculture because

it can influence growth performance,149 survival and animal

welfare,150 as well as the quality of the rearing environment. In FSMs,

stocking density is often assumed to be unlimited. Some FSMs state

this assumption explicitly,54 but most do not.53,66,76,77 Some models

provide the ability to set or estimate a maximum stocking den-

sity.30,51,67,69,73 In FINS and the FSM of Halachmi,49,50,67 maximum

density is used to back-calculate an initial density, which ensures that

the stocking density does not exceed the maximum density. The FSM

of Besson et al.51 follows the same method, except that a second fac-

tor also limits the initial density: the ability of a biological filter to pro-

cess N-NH3. This ability also limits the seeding rate in the Seginer and

Halachmi model,47 which can optimise annual stocking density as a

function of temperature and market prices or demand for fish. In the

adaptation of Besson et al. ‘s model51 to marine farms,69 the DO con-

centration limits seeding rate. None of the FSMs reviewed except

AquaFarm appears to consider minimum stocking density. In

AquaFarm, when the density reaches a minimum threshold, fish can

be transferred to a smaller rearing volume on the farm. Similarly, when

stocking density reaches a maximum threshold, fish can be transferred

to larger rearing volumes, or the cohort can be split into sub-cohorts

that are transferred to different rearing units.

3.4 | Processes and models at the farm level

3.4.1 | Stocking management

Halachmi67 described stock management at the farm level. In the sim-

plest systems, fingerlings are introduced into rearing units, and fish

are harvested progressively when they reach a marketable size or all

at once at the end of the farming cycle (total harvest). In more com-

plex systems, fish can be transferred between rearing units before

harvest to sort them into homogeneous batches or to control stocking

density. This kind of stock management requires defining a production

plan that includes dates of operations, seeding rate, size at seeding,

harvesting rate and market size.45 This plan is incorporated into the

model using a farm-management module, and this information is the

main input data. The farm-management module developed by

Halachmi49,50,67 is one of the most complex and sophisticated among

those in the FSMs reviewed. It uses queuing theory to optimise rea-

ring unit allocation, seeding rate and density, the number of rearing

units and other criteria to increase biomass turnover. The RDSS model

has interactive planning to display data entered by the user and track

farm operations. INAPRO, FINS, FARM and the FSM of Besson

et al.51,69 have simpler farm-management modules that do not include

optimisation functions. Except for INAPRO and FINS, these FSMs
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cannot model fish transfers between rearing units. Several of the

FSMs reviewed have no farm-management module. Instead, they

either simulate each rearing unit and then integrate at the farm

level63,76,77 or represent the farm as a ‘black box’ that has only one

rearing unit. If a study's objective is to estimate the potential produc-

tion of a farm based on few data and assumptions, a farm-

management module is not essential. A ‘black box’ solution can be

suitable and easier to implement. If the objective is to estimate envi-

ronmental impacts of farm effluents, however, spatially explicit repre-

sentation of the farm's stocking biomass is important.151 For instance,

to predict the fate of particulate waste from marine cages into the

environment, it may be relevant to have time series at a high spatial

resolution, as particle transport is driven by currents, which are not

necessarily homogeneous at the farm level.

3.4.2 | Waste and water treatment

In land-based systems and certain types of semi-enclosed systems at

sea,152,153 different types of filters and treatment systems are used to

collect, treat or extract particulate and dissolved wastes.154–156 The

main types of filters used in aquaculture include mechanical filters,

clarifiers or settling tanks to collect particulate waste; columns for

CO2 stripping and degassing; and biofilters that contain media seeded

with nitrifying bacteria to convert NH3 into nitrites (NO2
�) and then

nitrate (NO3
�), and denitrification reactors in which bacteria convert

NO3
� into N2. The clean water may return to the fish tank (RAS) or be

discharged (flow-through systems). Among the FSMs reviewed, only

those applied to land-based aquaculture systems (e.g. RAS34,48,51),

aquaponic systems52 or hatcheries43 consider wastewater treatment.

They often use static models of treatment processes, in which the

efficiency of each type of filter is set to remove either a fixed percent-

age (static) or a fixed rate (dynamic). For instance, Besson et al.51

assume 90% and 100% efficiency for mechanical and biological filters,

respectively. Filter efficiency can vary greatly depending on the tech-

nology used,157 and significant differences between theoretical and

measured efficiencies have been highlighted.158 For clarifiers, models

that describe sedimentation dynamics of particles in tanks can be

used.52 The capacity of biological filters is usually estimated using

dynamic models that simulate dynamics of N transformation by bacte-

ria.34,52 Models such as AQUASIM, specifically designed to simulate

dynamics of N flows in RAS, are also available.158

3.4.3 | Local environmental impacts

Near- and far-field environmental impacts21 of fish farming include

(i) the use of natural resources and effects of nutrient waste on receiv-

ing environments (e.g. effects on water quality, benthic effects,

eutrophication),159 (ii) increased risk of diseases and possible transfer

to wild species,160 (iii) effects of contaminants (e.g. antibiotics, ther-

apeutants, chemicals) on ecosystems and (iv) changes in food webs

(e.g. attraction of non-farmed species to farms) caused by the

presence of farmed fish, farm structures and waste emission,161

(v) risks related to the introduction of non-indigenous species162 and

(vi) genetic pollution.163 Among them, only some environmental

impacts related to the release nutrients, pathogens or contaminants

can be modelled at the farm level (i.e. using FSMs alone), because

other impacts occur due to or rely on environmental drivers related to

larger bay-scale and ecosystem-scale processes. The latter impacts

can, however, be modelled by combining FSMs and other types of

models, for instance by coupling FSMs with Lagrangian or Eulerian

models to simulate benthic effects or pelagic biogeochemistry, respec-

tively (see Section 5.3). Approximately 40% of the FSMs reviewed

aimed explicitly to assess local environmental impacts of fish farming.

All of them except ABC78 and ERA-AQUA38 were limited to water-

quality issues or benthic effects of solid waste, which aligns with the

general trend over the past few decades for carrying-capacity models

to focus on eutrophication.164

In aquaculture, water quality can be described using many vari-

ables, the most important of which are pH; concentrations of O2,

NO2
�, total dissolved N, P and C, microalgae; and the ratio of NH3:

NH4
+ concentrations. In general, nutrient fluxes are simulated using

mass-balance approaches in which farm emissions are determined by

considering all sources (inputs) and sinks (outputs) for each element or

molecule, as well as possible degradation/transformation into other

types of substances. Transforming these fluxes into concentrations

requires monitoring volumes of water input and water output. Effects

of fish farms on water-quality variables are described below, and then

methods to estimate these impacts in the FSMs reviewed are pres-

ented. Finally, methods used in the FSMs reviewed to estimate other

environmental impacts, such as disease spread or negative effects of

veterinary medicinal products, are briefly presented.

Dissolved oxygen concentration

Several physical and biological mechanisms can modify water DO con-

centration. The maximum DO concentration is determined by water

temperature, salinity and pressure. Variation in DO concentration

over time depends on the sources and sinks from the farm. DO con-

centration decreases with fish respiration, so is highly correlated with

stocking density. It also decreases with bacterial activity and decom-

position by living organisms (e.g. bacteria, plankton) in the system.

The amount of particulate matter in the water, including fish faeces,

can also decrease the mixing and dispersal of O2 in the water volume.

In contrast, three main mechanisms increase DO concentration: pho-

tosynthesis by micro- and macro-algae, aeration systems (e.g. aeration

by gravity, O2 injection, pumps) and gas transfers at the air/water

interface (increased by wind). O2 mass-balance models used in FSMs

represent some of these processes. The O2 mass balance simulated in

the AQUASMAT model is one of the most detailed. It considers atmo-

spheric exchanges, photosynthesis, instantaneous biochemical

demand, respiration of farmed fish and microorganisms (i.e. algae, bac-

teria), the oxygen used by bacteria for nitrification and oxygen inputs

from aeration systems. In FARM, DO concentration is estimated sim-

ply from the biological oxygen demand due to primary production, fish

respiration and oxygen inputs from aeration systems. FARM considers
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effects of DO concentration on fish growth and survival, but the

nature of these effects is not detailed.58 Other FSMs, such as RDSS,

RACEWAY or that of Munro,39 have O2 mass-balance models with

intermediate levels of detail. Stigebrandt164 argues that fish respira-

tion is the main O2 sink on fish farms and that a simple mass balance

can be used, in which DO concentration equals the input DO concen-

tration minus fish respiration divided by the water-exchange flow.

The FSM of Besson et al.51 calculates the chemical oxygen demand,

also called theoretical oxygen demand, necessary to oxidise particu-

late wastes. These concepts, which are proxies used to estimate DO

demand due to bacterial decomposition, can be calculated using stoi-

chiometric coefficients (kg O2 kg macronutrient�1) for each macronu-

trient in faeces and uneaten feed.165,166

Nutrient enrichment, algal growth and eutrophication

C, N and P are the main elements that limit primary production. Inputs

(e.g. feed, fertilisers) and effluents from aquaculture are sources of C,

N and P and can therefore stimulate the development of primary pro-

duction (e.g. bacteria, macrophytes). In extensive and semi-intensive

systems, phytoplankton are a direct or indirect source of food for the

reared species. However, excessive primary production and its

decomposition can consume too much oxygen and lead to hypoxia or

anoxia. The risk of eutrophication can be assessed by estimating C, N

and P inputs into the environment and predicting the subsequent

response of primary production.

In the FSMs reviewed, only models applied to pond systems can

simulate primary production as a function of C, N or P inputs. In

POND, AquaFarm and the FSM of Yi,31 microalgae growth is a func-

tion of the limiting element (C, N or P). In comparison, in AQUASMAT

(application to freshwater ponds in Nigeria) and FARM (application to

freshwater ponds in Thailand), N is assumed to be the limiting element

and thus the only driver of phytoplankton growth. Effects of nutrient

concentration on microalgal growth are usually determined using

Michaelis–Menten kinetics.167 Light intensity, water temperature or

pH are other variables used in FSMs to determine microalgal growth.

In POND, light intensity is assumed to be the limiting variable when

inputs of C, N and P are non-limiting. Other types of models can also

be used to simulate trophic interactions in aquatic ecosystems, in par-

ticular food-web models such as Ecopath with Ecosim,168 including in

pond systems.169 FARM includes an ASSETS module170 to estimate

primary production and a eutrophication score. In applications of

FARM to offshore systems, however, primary production has been

ignored due to the short residence time of the water volume on a

farm.58

Toxicity of dissolved waste

Dissolved waste produced by fish metabolism can have direct or indi-

rect toxic effects.171 NH3 excreted by fish is toxic to farmed animals

but potentially also to other organisms in the environment.172,173

Depending on water temperature and pH, NH3 can naturally trans-

form into NH4
+, which is much less toxic to fish. NH3 can also be

converted into NO3
� by bacteria via a two-step nitrification process.

When incomplete, this reaction results in the production of NO2
�,

which can also have toxic effects by interfering with oxygen transport

and causing respiratory distress in farmed species.174,175 The CO2

excreted during respiration via gills can be transformed into different

forms (H2CO3, HCO3
�) or remain in the water as dissolved gas.

Increased CO2 concentration can influence fish directly, but also

decrease water pH and thus influence NH3:NH4
+ ratios. Several FSMs

such as POND, AQUASMAT, AquaFarm, RDSS and the FSM of

Gholizadeh45can simulate dynamics of NO2
� and NH3 concentrations

in the environment, but none of them considers toxic effects of these

nutrients on animals. The FSM of Cuenco et al.27 and Yi31 simulate a

negative feedback of NH3 concentration on ingestion capacity and a

threshold concentration beyond which fish stop eating. These latter

processes are of particular interest in systems with little or no water

renewal, such as ponds, semi-closed systems, or closed systems.

Overall, models are needed that can use a given duration of exposure

to a given concentration of toxic substances to predict effects on

growth, development and reproduction over time.176 Bioenergetic

models, and specifically DEB, are gaining much attention as a tool to

predict these effects on individual animals,116 suggesting that future

DEB-based FSMs could be appropriate tools to better predict the

influence of toxic substances on fish farm productivity.

Other local environmental impacts

Pathogens and therapeutants released by farms or present on or in

fish can have negative effects on the environment, fish and human

health. In ABC,78 host-pathogen interactions in a rearing unit are

represented using the Susceptible-Exposed-Infected-Recovered

(SEIR) model, which is well known in epidemiology to describe dis-

ease dynamics within populations. It is based on dynamic ordinary

differential equations that consider dynamics of the number of indi-

viduals that are susceptible to disease, that become infected and

that recover or die after infection. This model can predict impacts of

disease spread on farm productivity and is a first and important step

to examine subsequent risk of transfer to wild species. In compari-

son, ERA-AQUA38 predicts risks of using medicines mixed into feed

(i.e. feed treatments) or applied directly to pond water (i.e. bath

treatments) to four endpoints: cultured species, non-target aquatic

organisms (e.g. algae, invertebrates, fish) in the ecosystem that are

exposed to aquaculture effluents, consumer health and trade of the

harvested products. It first estimates exposure concentration in the

four compartments that it simulates (i.e. sediment, fish, pond water

and effluents) and then calculates a risk quotient for each endpoint

based on specific safe-exposure concentrations. Other models were

developed to assess the emission, fate, exposure and ecotoxicologi-

cal risks of veterinary medicinal products used in aquaculture (see

the review of Rico et al.177). Although they are not FSMs, some of

these models rely on data provided by FSMs, suggesting the poten-

tial for coupling them with FSMs. Although issues such as disease

spread and effects of therapeutants can influence ecological carrying

capacity strongly,78 they are still rarely considered when estimating

ecological carrying capacity. Modelling these issues is another devel-

opment pathway for future FSMs or larger modelling systems that

include FSMs.

CHARY ET AL. 2143



3.4.4 | Farm economics

Aquaculture, like any human economic activity, must provide enough

profit to live on. Optimising farm production does not necessarily maxi-

mise farm profit.24 Including economic modules in FSMs can thus help

select the most profitable options and increase farm efficiency, produc-

tivity and competitiveness. In the FSMs reviewed, bioeconomic mod-

ules were used mainly to estimate economic profitability of the farming

activity under given conditions (e.g. species, location, technology, feed,

region) or compare it among a variety of scenarios. In this aim, the

models develop a profit-and-loss-account analysis of production. Costs

are assigned to all inputs, while prices are assigned to all outputs or

products to estimate farm profit. Several costs and revenues can be

included in profit-and-loss-account analysis (Table 6). Three cost cate-

gories can be analysed: (i) fixed, (ii) depreciable and (iii) variable. Fixed

costs are costs disconnected from farm outputs (e.g. insurance, rent).

Depreciable costs are related to fixed costs and represent the loss of

value of fixed items after some period (e.g. depreciation of equipment).

Variable costs are neither fixed nor depreciable, and usually vary as a

function of farm production (e.g. feed, fingerlings, energy, labour).

Depending on the regulatory context, variable costs may also include

environmental taxes such as effluent taxes.51 Among the FSMs

reviewed, only POND and the FSM of Rabass�o and Hernández68

included all three cost categories. Depreciable costs and fixed costs are

rarely considered. Simplifying farm economic flows can be justified for

analysing comparative scenarios, but models developed to estimate

farm profitability in absolute terms should include these costs, as well

as all income sources (e.g. public subsidies, closing value), as they usually

include only the sale of harvested fish. Aquaculture farms can provide

several regulating ecosystem services,178 such as C and N sequestration

in bivalve and seaweed farming, respectively, which can be assigned an

economic value179 and considered in economic analysis when relevant.

For instance, in a regulatory-economic environment that rewards

reductions in externalities through ‘nutrient credits’ or other economic

incentives,180 this type of revenue should also be considered in profit-

and-loss-account analysis, as they can influence farm profitability

greatly, particularly for extractive aquaculture or IMTA systems.181 In

fact, the first principle of the EAA explicitly recommends considering

the full range of ecosystem functions and services and ensuring a

sustained supply of them to society. FSMs focused on farm economics

should therefore progressively include the economic value of other eco-

system services (i.e. provisioning, regulating, supporting and cultural)

used and provided by aquaculture systems, as it can foster effective

implementation of management options that support development of

aquaculture practices in accordance with EAA principles.179

Profit-and-loss-account analysis helps measure how well a busi-

ness is performing, but additional financial statements (e.g. balance

sheets, capital account) and economic feasibility analyses (e.g. net pre-

sent value, internal rate of return, marginal analysis) are required for a

comprehensive economic analysis. These are rarely considered in the

FSMs reviewed, except for RDSS and the FSMs of Rabass�o and

Hernández68 and Hernández et al54 Some FSMs also included optimi-

sation methods in the bioeconomic module to help managers make

decisions about production strategies, such as seeding and harvest

schedules,47 seeding density59 and other practices (e.g. feeding rate,

water heating).30 None of the FSMs reviewed used economic analysis

for risk assessment or management, although it is another important

area for application of bioeconomic models in aquaculture.24 In addi-

tion, none of the FSMs reviewed included social aspects of produc-

tion, such as income generation, employment opportunities or gender

equality. Although these social aspects (human well-being) are fully

integrated in EAA principles, FSMs are probably not the most suitable

tools to consider them.

4 | FARM-SCALE MODEL
IMPLEMENTATION AND EVALUATION

The third step of FSM development includes parameter estimation

and model evaluation, along with appropriate sensitivity and uncer-

tainty analyses. This process does not have to follow a rigid step-by-

step procedure but is rather an iterative operation which can be

repeated a few times. Parameter estimation (also called

parameterisation) is the process of setting values for each parameter

in model equations.15 Parameter values can be taken directly from the

literature, measured in experiments or obtained by calibration. Cali-

bration (also called ‘tuning’) is an iterative process that searches for

the best agreement between predicted and observed data for

TABLE 6 Examples of costs and revenues to consider when applying profit-and-loss-account analysis to aquaculture systems

Costs Revenue

Fixed Depreciable Variable Variable

Insurance

Rent

Taxes

infrastructure (e.g. cage, tank, building, boats)

Equipment (e.g. pump, filter)

Feed

Fingerlings

Labour

Energy (e.g. electricity, fuels)

Water

Oxygen

Chemicals (e.g. fertiliser, therapeutant, disinfectant)

Delivery and shipping (e.g. harvest, transport)

Maintenance

Effluent taxes

Sales

Closing value

Subsidies

Nutrient credit
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different sets of parameters or different ranges of values. It can be

used to estimate parameter values when data are not available, not

completely adequate (e.g. values for a different species or ecosystem)

or need to be adjusted when value intervals are too wide. Some

authors use ‘calibration’ to describe parameter estimation. Once

parameters are obtained and, optionally, calibrated, the model must

be evaluated in light of its objectives. This evaluation can be qualita-

tive or quantitative.26 Qualitative evaluation can aim to understand

whether the model meets its objectives, to assess the validity of scien-

tific assumptions or to assess the transparency of the process that

produced the model. Quantitative evaluation, often referred to as

‘validation’ (also called ‘corroboration’ or ‘testing’), consists mainly of

objective tests of how well model outputs fit data not used to con-

struct or calibrate the model14 (i.e. how its outputs fit independent

empirical observations). This section presents the concepts and key

questions to consider in each phase for FSM implementation and

evaluation, as well as a review of how they have been applied to the

models analysed in this study.

4.1 | Parameter estimation and model validation

As mentioned, the effort and supporting data required to estimate

FSM parameters depends greatly on the species (e.g. well-known

vs. new species) and ecosystem under study, the type of individual-

level model selected (e.g. empirical vs. mechanistic) and the level of

detail required, among other factors. As individual-level models are

the core of FSMs, modellers should pay particular attention to how

they parameterise it. Using a standard process to estimate individual

parameters, as for traditional bioenergetic models, and developing

open-access parameter databases (e.g. Add-my-Pet for DEB115) can

help greatly to reduce the time and resources necessary to develop

new FSMs or adapt existing FSMs to new contexts. Simple models,

which contain only a few well-defined or directly measured parame-

ters, may not require calibration14; therefore, they have not been

applied much in simple FSMs. In FSMs based on more complex

individual-level models, such as bioenergetic-based FSMs, calibration

is a more common practice often used to obtain values for missing

parameters rather to refine literature values. This is likely because

modellers often struggle with data scarcity and would rather use data

for validation than calibration.

Validation is often related to the unresolved and sometimes philo-

sophical debate about its necessity, feasibility and the methods used

to perform it.182 In FSM development, the need to perform validation

is determined by the purpose of the model, but validation is certainly

possible and often essential for user acceptance. For instance, when

FSMs are developed to describe or organise knowledge about a new

farming system, validation is unnecessary and irrelevant, but for man-

agement and decision-support tools, validation appears necessary.

Modellers often want good agreement between model outputs and

observations for a few key variables. Depending on the question that

the model was developed to answer, certain processes will be

prioritised for validation; thus, modellers implicitly accept that some

variables may not be well reproduced. Modellers should explain, how-

ever, why lower-priority processes are reproduced less well and draw

conclusions about limits of the model's ability to answer the question.

Validation results were reported for half of the FSMs reviewed

(Table 1). Among them (Table S1), ca. 80% considered weight�/

length-at-age observations (e.g. Refs. 64,70) and, more rarely, addi-

tional variables for fish performance (e.g. feed intake), water or sedi-

ment quality (e.g. Refs. 36,40). From a practical viewpoint, compared

to other processes simulated in FSMs, fish weight can be easily mea-

sured in any farming system. For instance, in controlled land-based

systems, nutrient concentration in water and sediments can be mea-

sured on the farm43 and used to evaluate the fish excretion predicted

by the model. In open-water systems, however, it is nearly impossible

to measure fish excretion, as the nutrients are immediately dissolved

in the water column, flushed with the current, transformed into differ-

ent compounds, added to background concentrations and assimilated

by primary producers. Thus, validation is context dependent. Interest-

ingly, for outputs such as biomass production at the cohort or farm

level, only 2 of the 36 FSMs reviewed reported having performed vali-

dation.35,62 One difficulty with validating such aggregated outputs is

that when a model performs poorly, modellers do not necessarily

know why, particularly if no sensitivity analysis was performed. This

outcome suggests that individual processes should be validated

before aggregated outputs, which seems reasonable in a context in

which new modules are added to adapt models to new applications.

Furthermore, additional validation seems necessary when models are

applied to a new context, whose values of forcing variables may differ

greatly from those explored during the initial validation.

In addition, the FSMs reviewed were often validated without ref-

erence to quantitative criteria, leading to subjective conclusions

about ‘reasonable’, ‘acceptable’ and ‘sufficient’ model performances

(Table S1). For instance, Ernst et al.34 validated their FSM by compar-

ing many outputs (i.e. water quality, fish growth and mortality, energy

and water budgets) to many observed values from the literature but

provided only qualitative statements about model performances.

Qualitative criteria based on visual assessment were widely used,

such as by Canale et al.,43 who compared measurements and model

predictions of P concentration in different compartments of a farm.

Other authors used a variety of quantitative goodness-of-fit indica-

tors, especially mean relative error, mean absolute error76 or root

mean square error.54 Although quantitative, these criteria can still be

interpreted subjectively. Another way to evaluate the performance of

an FSM (or its modules) is to perform regression analysis between

predicted and observed values, as performed in.33,64,73 This simple

parametric test examines the difference from 0, 1 and 1 of the inter-

cept, slope and coefficient of determination (R2), respectively, from

which one can obtain useful information about systemic biases of

the model and qualify model performances (e.g. Ref. 183). Although

some authors state ‘there is not, and never will be, a totally objective

and accepted approach to model validation’,184 it seems clear that

validation based on statistical tests and reporting an associated level

of significance will provide more insights into FSM performances to

end users.
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4.2 | Model uncertainty

Assessing uncertainties in integrated modelling may increase trust in

model results; thus, from a management viewpoint, knowing the degree

of uncertainty in model predictions seems to represent a key pre-

requisite for interacting with stakeholders.185 This review found no

studies specifically focused on uncertainty analysis of FSMs, although

recent studies considered the variability in DEB-simulated growth tra-

jectories due to uncertainty in parameters and initial conditions

(e.g. Refs. 77,186). Indeed, assessing uncertainty propagation in inte-

grated mathematical models, such as FSMs, is complex. Here, we pro-

vide ideas for future assessment of uncertainty in FSMs by starting

from existing examples of uncertainty analysis in integrated models

available from other scientific domains, and in particular from the study

of Payne et al.,187 who assessed uncertainties in predictions of climate-

change impacts on marine ecosystems. These authors approached

uncertainty by breaking it down into (i) structural (model) uncertainty,

(ii) initialisation and internal variability uncertainty, (iii) parameter uncer-

tainty and (iv) scenario uncertainty. In FSMs, structural uncertainty can

be related to differences in model conceptualisation and underlying

hypotheses, and it is present at each level of organisation: individual,

cohort and rearing unit. Inventorying the ranges of types and families

of individual-level models in the literature for the most common target

species (e.g. trout, salmon, seabass, seabream, tilapia) could be useful to

assess structural uncertainty in FSMs. To assess uncertainty, model

inter-comparison, widely used in other fields (see some examples for

marine fisheries and ecosystems,188 for forestry189 or for ocean biogeo-

chemistry190), could represent the basis for predicting fish growth

under common forcing variables (i.e. environmental conditions and

feeding regimes). Indeed, this approach could be broadened to higher

levels of organisation in FSMs by considering different processes for

representing cohort size and inter-individual variability. Uncertainties in

model initialisation and parameter values are explored more often.

Some of the FSMs reviewed (e.g. Refs. 27,40,49) performed a sensitiv-

ity analysis of parameters, which ranks the most influential ones; for

instance, Cuenco et al.27 identified that food-consumption parameters

were more influential, and thus critical, than metabolism parameters.

Based on the confidence with which parameters were estimated, and

their uncertainty, one can obtain a preliminary indication of the poten-

tial overall uncertainty in model predictions. For growth models, uncer-

tainty in initial conditions is also often investigated in management

applications (e.g. Ref. 186): a straightforward and effective approach is

to explore the variability in model predictions as a function of fish size

at stocking, which is available to both farm managers and regulators.

Although validation experiments often evaluate the response of FSMs

under different forcing conditions (see Section 4.1), they rarely assess

the uncertainty associated with external forcing. This represents a

weakness for two contexts in which models can be applied:

(i) simulation in data-scarce conditions and (ii) scenario simulations that

address climate-change effects (e.g. Ref. 191). Generalising this con-

cept, and bridging to the following section on model applications, we

share the viewpoint of Jakeman et al.,26 who stated that ‘model uncer-

tainty must be considered in the context of the purposes of the model’,

with a broad distinction between models used to predict and those

used to build scenarios.

5 | APPLICATIONS OF INTEREST FOR
THE EAA

The fourth step of FSM development is model application. The FSMs

reviewed were developed for various purposes, including estimating

or comparing production31,34,76; socioeconomic outputs51,69 or envi-

ronmental impacts57,68 of scenarios; optimising production, resource

use or facilities30,35,67,72; verifying compliance with effluent-discharge

regulations43; and facilitating site selection.63 In summary, the most

frequent applications are assessment of production or ecological car-

rying capacity (with a focus on eutrophication impacts), as well as eco-

nomic assessment or optimisation. FSMs can contribute to other key

sustainability challenges highlighted in the EAA, at the farm level and

higher. We demonstrate this ability by presenting four innovative and

relevant applications of FSMs for EAA: (i) PFF, (ii) evaluation of perfor-

mances and feasibility of IMTA systems, (iii) support for spatial man-

agement and (iv) LCA. These applications were also selected to

address potential interests of a broad audience, including farm man-

agers, scientists, regulators and policymakers.

5.1 | Precision fish farming

The PFF framework192 was introduced by adapting the Precision Live-

stock Farming approach to aquaculture.193 A PFF system consists of a

real-time observation component, a dynamic model and a ‘control’ com-

ponent, which help farmers make optimal animal-production decisions,

thus pursuing some of the EAA objectives. Observation components

can include various real-time sensor networks. These may focus on

detecting temporal and spatial variability in DO throughout cage farms

(see e.g.194) and involve telemetry measurements of heart rate and

swimming activity, which could provide useful information for assessing

the physiological status of farmed fish.195 In general, monitoring and

analysis of fish behaviour is receiving great attention, providing informa-

tion required to guide daily feeding, schedule making and disease diag-

nosis.196 Hydroacoustic systems are increasingly used to support farm

operations; for instance, active systems can provide information about

fish speed, direction and 3D movements, while passive systems can be

adopted to monitor behaviour of certain target species.

In this context in which observation is rapidly developing, the rel-

atively slow development of a new generation of reliable dynamic

FSMs that can predict changes in fish variables due to changes in

external forcing and control variables seems to be one of the main

constraints hindering implementation of the PFF framework. Notably,

most FSMs have a temporal resolution that is too coarse for PFF

applications. Future FSMs could overcome this limitation by adopting

approaches based on control theory (e.g. Ref. 197), as used in other

industrial fields. Current FSMs could be combined with data-

assimilation and machine-learning techniques, if appropriately
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calibrated, to produce short-term predictions of DO concentration

dynamics on a farm.198 As discussed (Section 3.4.3.1), current FSMs

represent DO concentration on farms with differing degrees of com-

plexity, so developing specific ‘oxygen-simulation modules’ that can

be adapted to different farm settings (i.e. environmental conditions

and data availability) could be useful. For monitoring purposes, these

short-term oxygen predictions would benefit from acquiring real-time

data from current meters to estimate the renewal time of water in

cages in marine and freshwater environments.

Examples of ways to improve existing FSMs include improving

representation of individual behaviour (e.g. searching for food) and

collective behaviour (e.g. competition for resources, use of the water

column) to improve representation of the key drivers of feed intake

and thus explain how feed is wasted and what causes inter-individual

variability in growth. This step could reduce the uncertainty currently

associated with parameterising these processes. In parallel, refining

the ability of mass-balance and metabolic-flux models to represent

digestibility and faeces production as a function of diet composition

could increase the ability to represent complex interactions among

feeding strategies, water quality and fish welfare on the farm.

Assessing the accuracy of these models and using them to make

short-term predictions could benefit from a wide range of automatic-

recognition methods based on computer vision,199 including direct

(e.g. swimming velocity and acceleration) and indirect (e.g. detection

of uneaten pellets) observations of feeding behaviour.

5.2 | Feasibility and performances of integrated
multitrophic aquaculture systems

IMTA, a direct application of the EAA integration principle integrating

the EAA at the farm level, is perceived as a more sustainable practice;

however, it requires more research to better assess its feasibility and

performance. IMTA systems can include fed species (e.g. fish, shrimp),

as well as extractive species such as algae that can feed on dissolved

inorganic waste generated by the fed species200,201 or filter-feeders

and detritivores that can feed on organic waste.202 IMTA can take

many forms depending on the associated species (and their subse-

quent trophic niches), rearing technologies and environment

(e.g. land-based vs. open-water IMTA) and the chronology

(i.e. simultaneous vs. sequential farming of organisms) and level

(i.e. low to high) of integration investigated. The theoretical advan-

tages of IMTA are increased nutrient-use efficiency and production of

additional biomass and income.203 As Reid et al.86 describe, however,

the performances and feasibility of IMTA systems depend on many

factors, including (i) an adequate biomass ratio among co-farmed spe-

cies, (ii) synchronicity between nutrient loading and uptake dynamics

and (iii) the location of extractive species relative to the spatial distri-

bution of nutrient streams. These factors can strongly influence the

quantity, quality, temporal dynamics and location of nutrient streams

in the systems and thus determine the ability of an IMTA to derive

added value from these interspecific relationships. The influence of

these factors on farm production, profitability and environmental

pressure can be studied by modelling IMTA systems with FSMs, which

makes them key tools to promote and develop IMTA under the EAA.

One key challenge when designing a new IMTA system is to find

a biomass ratio between the fed and extractive species that reduces

nutrient loss to the environment. For instance, if one aims to add sea-

weed farming to an existing salmon farm, the question becomes how

much seaweed biomass is needed to remove a given percentage of

the dissolved N excreted by the fish. Answering this question requires

quantifying (and qualifying) the waste generated by a given salmon

biomass over its farming cycle and the N sequestration potential of

the same biomass of seaweed over this period. FSMs that incorporate

individual-level models of species from different trophic levels

(i.e. IMTA-FSMs) can be used to do this. FSMs can also be used to cal-

culate and optimise the biomass ratio according to a sequestration

objective or practical rearing constraints. For instance, Reid et al.204

estimated that 6.7 (±1.5) kg of the kelp Alaria esculenta should be

harvested to remove the dissolved N excreted by 1 kg of Atlantic

salmon over a 2-year production cycle. In another study, Chary

et al.74 estimated that removing 100% of particulate waste from red

drum faeces would require growing 1.3 kg of the sea cucumber Holo-

thuria scabra per kg of fish but that reaching this biomass ratio on the

farm is infeasible in practice due to density constraints on the sea

cucumber. Given current stocking-density limits for sea cucumbers,

the IMTA system would be able to reduce its net particulate waste

load by only 1% compared to that of a fish monoculture. This latter

study highlighted the importance of representing rearing constraints.

These types of data are usually represented in FSMs but not necessar-

ily in IMTA models (e.g. see Refs. 205,206).

A second important point is to ensure that nutrient emission

dynamics from species at higher trophic levels match those of nutrient

uptake of extractive species. This is often complex, as the length of

the farming cycle and biophysical requirements will vary among co-

farmed taxa. Extractive species usually have shorter farming cycles

than fed species. For instance, microalgae and ragworm farming cycles

last a few days to a few weeks, respectively,207,208 while fish-farming

cycles often range from 6–24 months. Thus, the dynamic character of

FSMs and the ability of some of them (e.g. bioenergetic-based FSMs)

to represent effects of environmental forcing on the metabolism of

farmed species might be able to synchronise or optimise nutrient

emission and uptake as a function of environmental forcing.

Third, extractive species in an IMTA system should be placed

close to nutrient streams. As most extractive species farmed in IMTA

are sessile (e.g. bivalves, seaweed) or move slowly, they will not be

able to access waste-nutrient streams if they are not near them. FSMs

provide dynamic and sometimes spatially explicit emissions data that

can be used as inputs in waste-dispersal (for particulate waste) or

-diffusion (for dissolved nutrients) models to estimate the organic

footprint and nutrient plume of the farm, respectively. When coupled,

these tools can help understand how waste is dispersed with currents,

diluted in the water column or deposited on the seabed (see

Section 5.3 for further details). Thus, combining FSMs and these site-

or bay-scale models can help select the most suitable locations for

extractive species.
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Some challenges, however, remain to be addressed to develop

FSMs for use in an IMTA context. The first challenge is to produce

models that represent multiple organisms from different trophic

levels. This may be facilitated by broader appropriation of mechanis-

tic modelling methods and theory, such as DEB (e.g. the DEB-based

IMTA model of Ren et al.205). A second challenge is to consider the

issue of waste quality better, as most IMTA models are based on bio-

energetic modelling and thus ignore the nutrient profile of waste and

its ability to meet requirements of extractive species. Developing

FSMs based on bioenergetic models that simulate nutrient fluxes76

or based on metabolic-flux models, which predict an organism's

growth as a function of the nutrient profile of its food (see

Section 3.2.1 and Figure 4), would be of interest to improve esti-

mates of the production of IMTA farms. A third and final challenge is

to include economic analysis in future IMTA-FSM, as the profitability

of IMTA systems is often questioned, particularly when ecosystem

services are not internalised (Section 3.4.4). Except for a few applica-

tions performed with FARM,58,61 the profitability of IMTA systems

has rarely been analysed as a function of production and environ-

mental performances.

5.3 | Supporting spatial management

An ecosystem-based management approach, such as EAA, considers

humans as an integral part of the natural ecosystem and, when applied,

can show trade-offs and interactions between management goals and

goods and services provided by natural ecosystems.209 Turning an

ecosystem-based management approach into practice has become criti-

cal in the context of maritime spatial planning (MSP),210 which is a man-

agement tool for maintaining marine ecosystems in a healthy condition

while ensuring the sustainable exploitation of ecosystem goods and

services.211 Like maritime uses, aquaculture experiences conflict with

other activities and with conservation priorities. In the EU, for instance,

where EU Directive 2014/89 provides a legal basis for such an inte-

grated management approach,212 aquaculture is perceived in many

contexts as a ‘new player’ in the seascape. Science-based zoning and

site selection of aquaculture, performed in the framework of

implementing MSP, has been acknowledged by researchers213 and

more recently the EU214 as a priority for sustainable expansion of the

sector. Concepts such Allocated Zones for Aquaculture215 were intro-

duced to support this approach and models are recognised as useful

tools for supporting these tasks,20 particularly to better understand

aquaculture–environment interactions at different levels.

Spatial management of aquaculture involves two of the three

scales defined in the EAA, which are addressed by different types of

models. FSMs can be coupled with particle-tracking (Lagrangian)

models to represent interactions at the local scale (e.g. a specific farm

lease) or with Eulerian approaches to represent higher spatial scales

(e.g. bay, coastal waterbody). FSMs can also be integrated into wider

sustainability assessments using LCA, for instance, by considering

total environmental burdens associated with production and transpor-

tation of energy and feed used by the farm (see Section 5.4).

For management at a local scale, the ultimate aim of integrating

or coupling an FSM with a dispersal model is to estimate pressure

(e.g. flows of organic matter or solid waste) or impact (e.g. total sul-

phide concentration, indicators of benthic community status) on sedi-

ments.216,217 This is associated, implicitly or explicitly, with the

concept of assimilative capacity218 and represents a useful resource

for siting farms (i.e. by considering bathymetry and water currents). In

a management perspective, this type of model can identify a farm's

Allowable Zone of Effect215 (i.e. where limited impact is permitted).

Particle-tracking dispersal models are well established tools for

assessing local interactions (e.g. Refs. 136,219). These models can rep-

resent farm-level processes with differing degrees of complexity, and

the availability of detailed dynamic or cage-specific animal-production

input data can improve model accuracy (as mentioned for

DEPOMOD138,140). One advantage of coupling FSMs with dispersal

models is that the FSMs predict dynamics of farm waste at high spa-

tial resolution; this is useful as particle transport is driven by currents,

which vary over time and space. Examples of coupling of FSMs and

dispersal models are already available (e.g. Refs. 65,66,75). Along with

the accuracy with which FSMs represent farm-management pro-

cesses, a key pre-requisite for integrating FSMs into local manage-

ment tools seems to be the ability to represent the proportion of

uneaten feed lost to the environment. Existing mathematical equa-

tions discussed in this review could be improved in the future by con-

sidering fish behaviour in cages. In this sense, this is likely a cross-

cutting theme between the fields of farm management (see the

section on PFF) and spatial management.

A gap seems to exist, however, for aquaculture zones (addressed

by Eulerian models), as no FSMs have been specifically developed to

feed into the complex biogeochemical models used in operational

oceanography.220 Complex models such as ERSEM221 and BFM222

seem to be required to assess potential interactions of multiple farms

with coastal biogeochemical processes and lower trophic levels, which

is a key step for estimating the nutrient-related ecological carrying

capacity of a marine area prioritised for aquaculture. This type of

approach was satisfactorily applied in studies that used modified bio-

geochemical models and quantified fish-farm effluents (e.g. combined

use of Delft3D-FLOW and EcoWin,223 use of POM-ERSEM to predict

effects of farm effluents in Greece224). In these studies, however,

FSMs were not directly coupled with the reaction-transport biogeo-

chemical models. In this sense, developing FSMs specifically designed

to feed into operational oceanography models could help greatly to

define and manage Allocated Zones for Aquaculture. Promising

efforts, which highlight the future potential of these developments,

have been made to facilitate online use of biogeochemical models.225

This idea is supported by results of studies that focused on constraints

that have hindered off-the-coast and offshore marine aquaculture

expansion,226 and could help derive future recommendations for

implementing MSP that include aquaculture. In this study, stakeholders

highlighted the need for informed management plans that could pre-

vent food depletion, disease spread and subsequent decrease/collapse

of production. Further development of ecosystem-based models in off-

shore areas was recommended to optimise the use of space. Indeed,
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while at the farm level, the use of sensors (as in PFF) is expected to

support future development of spatial management, at the

aquaculture-zone level, the ultimate complexity of FSMs will likely

depend on the data available. In this respect, interest in applying satel-

lite remote sensing (SRS) in aquaculture227 to provide data for applying

FSMs to site selection has increased in the past decade. Although using

SRS to assess aquaculture-zone suitability has focused mainly on

surface-water temperatures (e.g. Ref. 228), future FSMs may benefit

from development of new algorithms and SRS products (e.g. better

characterisation of suspended matter, detection of harmful algal

blooms229,230), thus providing new opportunities in this area.

5.4 | Life cycle assessment

An aquaculture farm can have impacts that are distant from its loca-

tion due to direct or indirect resource use or pollutant emissions in

earlier or later stages of the life cycle of the product system.

Assessing the environmental sustainability of aquaculture systems

therefore requires extending analysis from the farm level to the

entire value chain and using multi-criteria methods. A framework

commonly used to assess environmental impacts of a variety of pro-

duction systems, including aquaculture systems, with a systemic per-

spective is LCA. LCA is a standardised method that compiles

resource use and emissions to the environment ‘from the cradle to

the grave’, that is, from extraction of raw materials; through produc-

tion, transport and use; up to the end-of-life or recycling.231 The

scope of an LCA is therefore much wider than that of an FSM. In

LCA, each resource used and substance emitted is attributed to one

or more impact categories and converted by characterisation models

into potential environmental impacts.232 Life-cycle impact categories

include, among others, climate change, eutrophication, acidification,

energy use, biotic and abiotic resource use, aquatic ecotoxicity and

ozone depletion. Over the past two decades, LCA has been applied

extensively to aquaculture systems. A recent meta-analysis identified

65 studies and 179 aquaculture systems, of which 67% were fish-

farming systems.233 This and other reviews233–235 have shown that

the feed-production stage is the largest source of impact in most of

the impact categories usually assessed (including climate change,

acidification, cumulative energy use and net primary production use)

and that LCA is therefore particularly sensitive to yields (productivity)

and input-use efficiency, in particular FCR, which are two characteris-

tics represented by FSM. FSMs can therefore be useful tools to pro-

vide detailed inputs for LCA and help assess environmental impacts

of aquaculture systems.

With a life-cycle perspective, an initial strategy to decrease total

environmental burdens of fed-fish farming is to achieve equal or

higher yields while using fewer resources, especially feed, per unit of

production. Large room for improvement still exists to increase pro-

ductivity and decrease environmental impacts of the production of

major species such as carp, tilapia and milkfish. Much of this perfor-

mance gap could be closed by keeping better records, along with

monitoring water quality.236 As mentioned, FSMs can be useful tools

to support daily production management, allowing farmers to keep

track of production data; predict body weight; optimise feed manage-

ment as a function of stocked biomass, environmental conditions and

species' energy or nutrient requirements; analyse on-farm perfor-

mances and report changes. Several examples of commercial user-

friendly FSMs dedicated to the sector are already available, but fur-

ther development of such tools for species produced globally, and for

data-scarce contexts will be important. Wider adoption and use of

these tools by farmers could help them calculate feed requirements

more accurately, thus decreasing feed losses, nutrient losses and the

FCR. Furthermore, coupling these FSMs with simple LCA software

would allow farmers to predict potential consequences of better man-

agement practices on environmental impacts of their products and

help them prioritise improvements.

A second strategy to decrease environmental impacts of fed-fish

farming systems is to design innovative formulations that incorporate

more sustainable ingredients. Ingredients used in aquafeed differ in

their nutrient profiles and environmental impacts.237,238 For instance,

fish meal and fish oil are important sources of high-quality proteins,

omega-3 fatty acids and micronutrients,239 but producing them can

pressure forage fish stocks and marine food webs.240 Alternative pro-

tein and lipid sources can be obtained from crop-based ingredients,

but they have their own strong limitations, typically due to containing

carbohydrates with low digestibility for carnivores, containing anti-

nutritional elements239 and having higher overall impacts on eutrophi-

cation, land use and human and ecosystem toxicity than fish meal and

fish oil.233,241 Similarly, livestock by-product meals have several

advantages, including a high protein content and well-balanced amino

acid profile, but can have a high ash content and may carry environ-

mental burdens associated with livestock production.236 One major

challenge for enhancing the sustainability of aquafeed is, thus, to

design new eco-efficient aquafeeds based on alternative ingredients

that can meet fish nutritional requirements, reduce the overall pres-

sure on marine and land ecosystems and contribute less to climate

change. FSMs can influence the design of innovative eco-friendly feed

formulations. As Bohnes et al.233 state, most LCA studies that esti-

mated and compared impacts of conventional and modified

diets166,242–245 did not address the FCR comprehensively, often

assuming it to be constant. This is a strong assumption,239 as a change

in ingredients can strongly influence feed digestibility and nutrient use

by fish,246 both of which determine the FCR. Recently, Ghamkhar and

Hicks,247 in a comparative impact assessment of 12 aquafeeds,

highlighted the need to consider the FCR of aquafeed with respect to

the quantity and quality of fish produced. To do so, the authors per-

formed LCA on previously published results and tested feeds whose

FCR had been measured experimentally. A complementary pathway is

to develop and use FSMs based on metabolic-flux models to predict

fish growth, body composition and nutrient emissions as a function of

feed formulation (Section 3.2.1). If sufficient digestibility data for

ingredients are available to calibrate these models, developing such

FSMs and using them with LCA could serve to simulate formulation

scenarios and assess their influence on FCR and impacts on the

environment.
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6 | CONCLUSIONS

To our knowledge, this is the first review of fish FSMs that has covered

multiple species, systems and applications. This narrative review con-

siders 36 models published from 1985–2021 applied to freshwater and

marine species and a variety of rearing technologies, including ponds,

tanks, cages, raceways, RAS and hatcheries. It includes models developed

to explore production, environmental or economic aspects of fish farm-

ing as well as tools that can support innovative applications, such as PFF,

IMTA modelling, spatial management of aquaculture and LCA. Some

models that fit our definition of FSMs, particularly commercial ones,

were not included because they have not been presented in a peer-

reviewed article or Ph.D. thesis. Our review identified important issues

at each step of the modelling process, provided recommendations and

suggests research needs. We observed limited scoping, characterised by

vague objectives rather than explicit questions, and a lack of conceptual

models. We encourage future FSM modellers to give greater attention

to defining a model's scope and objectives, and more specifically to state

the specific management or research question for which the FSM is built.

Doing so will help others determine whether these FSMs could be

appropriate for reuse in other contexts. This review showed that a vari-

ety of FSMs are available to simulate processes at individual, cohort and

farm levels, each of which has advantages and disadvantages in terms of

complexity, generality and data requirements. This variety can raise

questions about the inter-comparability of predictions of different FSM.

This kind of comparison has yet to be performed for aquaculture FSMs

and remains an area for further research. Data availability is a major con-

straint in the development of FSMs, particularly for parameter estima-

tion. Developing open-access parameter databases is, therefore,

encouraged, as it may greatly decrease the time and resources needed

to develop new FSMs and help adapt them to new contexts. Validating

FSMs often relies on qualitative assessment, and uncertainty analysis is

almost never performed, which may lead to subjective conclusions about

model accuracy. We provide recommendations for performing validation

and uncertainty analysis in FSMs based on methods used in other scien-

tific domains. Improving these aspects is important to increase model

users' confidence in FSMs and will help them use FSMs for management

and decision-making.
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