[bookmark: _Ref62564422]Table S1. Approaches used in and conclusions drawn from the validation step of the farm-scale models (FSMs) reviewed in this study. Only FSMs that used a formal approach to validation are presented. N.S.: not specified.  
	[bookmark: _Hlk54344450]Model name
	Processes or variables considered in the evaluation
	Analytical assessment method
	Authors’ conclusions about model validation (paraphrased)
	Key reference(s)

	N.S.
	Growth (weight)
	· Regression of observed vs. simulated (R² estimated)
· Test for deviation of regression slope from 1 and intercept from 0

	The model successfully predicted growth variations among ponds that received the same nitrogen and phosphorus inputs.
	1

	POND
	Growth (weight)
	· % deviation of observed vs. simulated
	The model was validated for five fish species under various production conditions, indicating that it is a relatively robust and flexible tool for predicting fish growth in aquaculture ponds.
	2

	AquaFarm
	Growth rate, water-quality variables, aeration, fertiliser and feed requirements, other variables
	· Visual assessment - detailed graphs with observed vs. simulated data
· Qualitative assessment of each module’s agreement with field, literature and unpublished data
	Predictions lay within ranges of observations and showed similar cause-and-effect behaviour for independent and dependent variables. The model provides useful and sufficiently accurate decision support.
	3

	N.S.
	Growth (length), net yield (cage production), percentages of males and females at harvest
	· Regression of observed vs. simulated (R² estimated)
	The model underestimated yields and the length of males. The model underestimated the percentage of fingerlings at harvest and net yields. 
	4

	N.S.
	Growth (weight and length), biogeochemical variables of water, porewater and sediment 

	· Regression of observed vs. simulated (R² estimated)
· Test for deviation of regression slope from 1 and intercept from 0
	The coupled biogeochemical–fish Dynamic Energy Budget model recreated the dynamics of fishponds reasonably well, although some water-column variables were occasionally over- or underestimated.
	5,6

	N.S.
	Water and sediment biogeochemical variables, including concentrations of total nitrogen, total phosphorus (TP) and dissolved oxygen (DO) 
	· Paired t-test to determine differences between observed and simulated data
· Qualitative comparison with literature (simulated) data
	Validation of systems dynamics models would require a stronger dataset, as indicated in the difference in evaluation of the Thai and Vietnamese models.
	7

	AQUASMAT
	Growth (weight and length), condition factor, feed conversion ratio, water-quality variables including water temperature, pH, and concentrations of DO, total ammonia nitrogen and nitrate 
	· Relative bias and one-way ANOVA F-test 
	Model predictions were considered acceptable.
	8,9

	N.S.
	Comparison of predicted and measured TP concentrations
	· Visual assessment - detailed graphs with observed vs. simulated data
· % deviation of observed vs. simulated
	Phosphorus mass-balance models (based on a rigorous sampling protocol and extensive data) were developed, validated and successfully used to predict net discharge of phosphorus from the hatchery.
	10

	RACEWAY
	Water-quality variables including pH and carbon dioxide concentrations
	· Qualitative comparison with literature (simulated) data
	None
	11

	N.S.
	Growth (weight and length)
	· Regression of observed vs. simulated (R² estimated)
· Goodness-of-fit coefficient, root mean square error and mean absolute percentage error
	The model was able to predict results compatible with observations.
	12

	N.S.
	Growth (weight)
	· Correlated inspection approach, residual errors 
· Regression of observed vs. simulated (R² estimated)
· Student’s t-test and Kleijnen’s test
	None
	13,14

	FIS-C
	Food intake, solid loading rate (sedimentation rate), dissolved phosphorus and TP
	· Visual assessment - detailed graphs with observed vs. simulated data
· Qualitative comparison with literature (field) data
· Student’s t-test
	Model estimates of food consumed by chinook salmon in net pens generally followed the observed monthly ration. Predictions of solids beneath net pens generally followed observed trends in feeding and in sedimentation at a mid-lake site. The yearly mean phosphorus loading rate did not differ significantly from the mean of the empirical loading rate predictors tested.
	15

	N.S.
	Growth (weight)
	· Regression of observed vs. simulated (R² estimated)
· Root mean square error
· Theil’s inequality coefficient
	Various aspects of the model were validated, but the influence of water temperature on fish growth may need to be revised.
	16

	FARM
	Growth (weight), farm production, feed conversion ratio
	· Visual assessment - detailed graphs with observed vs. simulated data
· % deviation of observed (literature and field data) vs. simulated
· Regression of observed vs. simulated (R² estimated)
	Many of the functions used in FARM have been previously used in studies of system-scale carrying capacity, validated for systems in Europe and China. New modules were successively added to adapt FARM to new applications and species. Each addition of individual model in FARM (to cover new species) was followed by an additional validation phase. 
	17–22

	RAC
	Growth (weight and length)
	· Regression of observed vs. simulated (R² estimated)
· Test for deviation of regression slope from 1 and intercept from 0
	The model behaved reasonably for water temperatures from 9-26 °C.
	23–25

	N.S.
	Growth (weight)
	· Regression of observed vs. simulated
· Student’s t-test and Kleijnen’s test
	The model’s validity was not rejected at the 95% confidence level.
	26

	LYCWM
	Growth (weight), solid and dissolved nitrogen (N) emissions
	· % deviation of observed vs. simulated
	The model predicted fish growth and particulate and dissolved nitrogen emissions well. 
	27

	N.S.
	Growth (weight)
	· Visual assessment - detailed graphs with observed vs. simulated data
	Similarity between simulation results and observed growth development indicated that the model featured the main mechanisms and effects required to estimate the performance of healthy Atlantic salmon in production facilities.
	28

	N.S.
	Weight distribution
	· Quantile regression 
· Goodness of fit estimated with the R1(τ) coefficient
	The quantile regression mixed-thermal growth coefficient model provided good overall representation of the variability in fish growth on the fish farm over the entire production cycle.
	29

	FINS
	Growth (weight)
	· Regression of observed vs. simulated (R² estimated)
· Test for deviation of regression slope from 1 and intercept from 0
	The calibrated von Bertalanffy generalized model simulated the weights observed on farms in Mayotte well. It showed good transposability to a tropical region with similar environmental characteristics.
	30–32

	Protein and energy flux model
	Growth (weight)
	· Regression of observed vs. simulated (r estimated)
· Student’s t-test, mean absolute error, mean absolute percentage error
	Overall, model outputs matched the production data in the 3 batches well. Observed data and simulated final weights differed by less than 15 g, for a final weight of ca. 435 g. The maximum mean absolute error was 21.1 g per fish (i.e. 8.3%).
	33

	N.S.
	Growth (weight)
	· Visual assessment - detailed graphs with observed vs. simulated data
	Although not evident for growth, the model tended to underestimate feeding rates, especially at higher temperatures.
	34





References
1. 	Yi Y. A bioenergetics growth model for Nile tilapia (Oreochromis niloticus) based on limiting nutrients and fish standing crop in fertilized ponds. Aquac Eng. 1998;18(3):157-173. doi:10.1016/S0144-8609(98)00028-4
2. 	Nath SS. Development of a decision support system for pond aquaculture. Phd thesis, Bioresource Engineering Department, Oregon State University. 293 pp. Published online 1996.
3. 	Ernst DH, Bolte JP, Nath SS. AquaFarm: simulation and decision support for aquaculture facility design and management planning. Aquac Eng. 2000;23(1-3):121-179. doi:10.1016/S0144-8609(00)00045-5
4. 	De Graaf GJ, Dekker PJ, Huisman B, Verreth JAJ. Simulation of Nile tilapia (Oreochromis niloticus niloticus L.) culture in ponds, through individual-based modelling, using a population dynamic approach. Aquac Res. 2005;36(5):455-471. doi:10.1111/j.1365-2109.2005.01228.x
5. 	Serpa D, Pousão-Ferreira P, Caetano M, Cancela da Fonseca L, Dinis MT, Duarte P. A coupled biogeochemical-Dynamic Energy Budget model as a tool for managing fish production ponds. Sci Total Environ. 2013;463-464:861-874. doi:10.1016/j.scitotenv.2013.06.090
6. 	Serpa D, Pousão P, Ferreira H, Cancela L, Teresa M, Duarte P. Modelling the growth of white seabream (Diplodus sargus) and gilthead seabream (Sparus aurata) in semi-intensive earth production ponds using the Dynamic Energy Budget approach. J Sea Res. 2013;76:135-145. doi:10.1016/j.seares.2012.08.003
7. 	Munro LI. Development and application of dynamic models for environmental management of aquaculture in South East Asia. PhD thesis, University of Stirling. 242 pp. Published online 2014.
8. 	Anyadike CC, Mbajiorgu CC, Ajah GN. Aquacultural Engineering Aquacultural System Management Tool (AQUASMAT) I : Model development. Aquac Eng. 2015;69:60-77. doi:10.1016/j.aquaeng.2015.10.002
9. 	Anyadike CC, Mbajiorgu CC, Ajah GN. Aquacultural system management tool II : analytical and management capability. Agric Eng Int. 2017;19(3):97-104.
10. 	Canale RP, Whelan G, Switzer A, Eisch E. A bioenergetic approach to manage production and control phosphorus discharges from a salmonid hatchery. Aquaculture. 2016;451:137-146. doi:10.1016/j.aquaculture.2015.09.008
11. 	Colt J, Watten B, Rust M. Modeling carbon dioxide, pH, and un-ionized ammonia relationships in serial reuse systems. Aquac Eng. 2009;40(1):28-44. doi:10.1016/j.aquaeng.2008.10.004
12. 	Gholizadeh M. Development of an integrated model for sustainable aquaculture and optimization of fish production in raceway systems. PhD thesis, School of Graduate Studies, Universiti Putra Malaysia. 148 pp. Published online 2017.
13. 	Halachmi I. Aquacultural engineering mathematical principles of production management and robust layout design : Part II . Upscaling to a 1000-ton / year recirculating aquaculture system (RAS). Aquac Eng. 2012;50:11-19. doi:10.1016/j.aquaeng.2012.03.003
14. 	Halachmi I. Aquacultural engineering mathematical principles of production management and robust layout design : Part I . 250-ton / year recirculating aquaculture system (RAS). Aquac Eng. 2012;50:1-10. doi:10.1016/j.aquaeng.2012.03.001
15. 	McDonald ME, Tikkaneq CA, Axler RP, Larsen CP, Host G. Fish Simulation Culture Model ( FIS-C ): A bioenergetics based model for aquacultural wasteload application. Aquac Eng. 1996;15(4):243-259.
16. 	Hernández JM, Gasca-leyva E, León CJ, Vergara JM. A growth model for gilthead seabream (Sparus aurata). Ecol Model. 2003;165:265-283. doi:10.1016/S0304-3800(03)00095-4
17. 	Ferreira JG, Hawkins AJS, Bricker SB. Management of productivity, environmental effects and profitability of shellfish aquaculture — the Farm Aquaculture Resource Management (FARM) model. Aquaculture. 2007;264(1-4):160-174. doi:10.1016/j.aquaculture.2006.12.017
18. 	Ferreira JG, Saurel C, Ferreira JM. Cultivation of gilthead bream in monoculture and integrated multi-trophic aquaculture. Analysis of production and environmental effects by means of the FARM model. Aquaculture. 2012;358-359:23-34. doi:10.1016/j.aquaculture.2012.06.015
19. 	Ferreira JG, Sequeira A, Hawkins AJS, et al. Analysis of coastal and offshore aquaculture: Application of the FARM model to multiple systems and shellfish species. Aquaculture. 2009;289(1-2):32-41. doi:10.1016/j.aquaculture.2008.12.017
20. 	Ferreira JG, Falconer L, Kittiwanich J, et al. Analysis of production and environmental effects of Nile tilapia and white shrimp culture in Thailand. Aquaculture. 2015;447:23-36. doi:10.1016/j.aquaculture.2014.08.042
21. 	Cubillo AM, Ferreira JG, Robinson SMC, Pearce CM, Corner RA, Johansen J. Role of deposit feeders in integrated multi-trophic aquaculture — A model analysis. Aquaculture. 2016;453:54-66. doi:10.1016/j.aquaculture.2015.11.031
22. 	Cubillo AM, Ferreira JG, Lencart-Silva J, et al. Direct effects of climate change on productivity of European aquaculture. Aquac Int. 2021;29:1561–1590. doi:10.1007/s10499-021-00694-6
23. 	Baldan D, Porporato EMD, Pastres R, Brigolin D. An R package for simulating growth and organic wastage in aquaculture farms in response to environmental conditions and husbandry practices. PLoS One. 2018;13(5):e0195732. doi:10.1371/journal.pone.0195732
24. 	Brigolin D, Pastres R, Tomassetti P, Porrello S. Modelling the biomass yield and the impact of seabream mariculture in the Adriatic and Tyrrhenian Seas (Italy). Aquac Int. 2010;18(2):149-163. doi:10.1007/s10499-008-9232-4
25. 	Brigolin D, Meccia VL, Venier C, Tomassetti P, Porrello S, Pastres R. Modelling biogeochemical fluxes across a Mediterranean fish cage farm. Aquac Environ Interact. 2014;5(1):71-88. doi:10.3354/aei00093
26. 	Halachmi I. Aquacultural engineering mathematical principles of production management and robust layout design : Part III . 2500-ton / year fish farming in marine net cages. Aquac Eng. 2013;54:110-117. doi:10.1016/j.aquaeng.2012.11.001
27. 	Cai H, Ross LG, Telfer TC, Wu C, Zhu A. Modelling the nitrogen loadings from large yellow croaker (Larimichthys crocea) cage aquaculture. Environ Sci Pollut Res. 2016;23(1):7529-7542. doi:10.1007/s11356-015-6015-0
28. 	Føre M, Alver M, Arve J, et al. Modelling growth performance and feeding behaviour of Atlantic salmon (Salmo salar L .) in commercial-size aquaculture net pens : Model details and validation through full-scale experiments. Aquaculture. 2016;464:268-278. doi:10.1016/j.aquaculture.2016.06.045
29. 	Estruch VD, Mayer P, Roig B, Jover M. Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management. Aquac Res. 2017;48(12):5901-5912. doi:10.1111/are.13414
30. 	Chary K, Fiandrino A, Covès D, Aubin J, Falguière JC, Callier MD. Modeling sea cage outputs for data-scarce areas: application to red drum (Sciaenops ocellatus) aquaculture in Mayotte, Indian Ocean. Aquac Int. 2019;27(3):625-646. doi:10.1007/s10499-019-00351-z
31. 	Chary K, Aubin J, Sadoul B, Fiandrino A, Covès D, Callier MD. Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): Assessing bioremediation and life-cycle impacts. Aquaculture. 2020;516. doi:10.1016/j.aquaculture.2019.734621
32. 	Chary K, Callier MD, Covès D, Aubin J, Simon J, Fiandrino A. Scenarios of fish waste deposition at the sub-lagoon scale: a modelling approach for aquaculture zoning and site selection. ICES J Mar Sci. Published online 2021:18. doi:10.1093/icesjms/fsaa238
33. 	Nobre AM, Valente LMP, Conceição L, Severino R, Lupatsch I. A bioenergetic and protein flux model to simulate fish growth in commercial farms: Application to the gilthead seabream. Aquac Eng. 2019;84:12-22. doi:10.1016/j.aquaeng.2018.11.001
34. 	Stavrakidis-Zachou O, Papandroulakis N, Lika K. A DEB model for European sea bass (Dicentrarchus labrax): Parameterisation and application in aquaculture. J Sea Res. 2019;143:262-271. doi:10.1016/j.seares.2018.05.008

