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Introduction

Section 1 (S1) describes the core datasets used in the manuscript and our method to

estimate further restrict the output of Wang, Tandeo, et al. (2019). We provide additional
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details of the how synthetic aperture radar data is processed. In section 2 (S2), we provide

an alternative set of Figures using more lenient constraints of the model threshold of 50%

rather than 95% like that used in the main manuscript. In section 3 (S3), we provide

additional variations of Figure 3 of the main text that have different Ri constraints when

mapping ERA5, show different seasons, and show the ERA5 and SAR comparison for the

Northwest Indian Ocean.
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Text S1. - Extended Methods Description In this manuscript, we rely on the image

classification model of Wang, Tandeo, et al. (2019) which estimates the probability of

the ten most prevalent geophysical phenomena in the WV data. The ten geophysical

phenomena include:

• NV - no image variance (previously called ”pure ocean waves”)

• WS - Wind Streaks

• MC - Micro-scale Convection

• RC - Rain Cells

• BS - Biological Slicks

• SI - Sea Ice

• IB - Icebergs

• LW - Low Wind area

• AF - Atmospheric Front or air-mass boundary

• OF - Oceanic Front or ocean water boundary

are described in Wang, Mouche, et al. (2019). We focus on images with shallow convec-

tive cells (MC), wind-streaks (WS), and images with little or no image variance at MABL

length scales (NV). We make practical use of the WV data by using a convolutional neu-

ral network (CmWV) that calculates a probability of occurrence for each of the ten most

common phenomena (Wang, Tandeo, et al., 2019). The combined probabilities from all

ten classes sum to unity. The phenomenon with the highest probability determines the

(dominant) class of each image. To ensure the robustness of the results presented in the

main manuscript, we require at least 95% probability on the MC, WS, and NV classifi-
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cations. When we use we use a lower the probability of 50%, the results are not affected

and the Figures and corresponding conclusions are the same as the results presented in

the main manuscript. In the following section (S2), we present an identical set of Figures

corresponding the main text but using a probability threshold of 50%.

CmWV has a low false alarm rate for MC and WV even when lower selection thresholds

of 95% are selected. We find that CmWV sometimes misclassified other classes into the NV

category. To mitigate potential misclassifications, we use spectral analysis to distinguish

when the images have negligible atmospheric imprints within the MABL length scales

(typically 0.8 to 4 km). Spectral analysis using a Fast Fourier Transform (FFT) shows a

clear distinction between NV and WS/MC classes. In Figure SS1, we show the probability

density function (PDF) of the cross-wind MABL-scale (0.8 to 4 km) spectral variance

for each of these classes. Both the WS and MC classes have a broad range of variance

extending from 300 m2 to more than 2000 m2 while the NV class contains more than 90% of

its variance in the range from 20 to 500 m2. To reduce the number of NV misclassifications

we omit images classified as NV that had MABL variance larger than 250 m2. In Figure

SS2, we show the results when using the FFT information. The biggest impact is to the

NV class and we reduce the dataset by a factor of two. For the WS and MC events the

FFT constraint only has a minimal effect.

CmWV often misclassifies images into the ocean front or ice berg classes. This is most

likely because these are rare localized features embedded in one of the more common

classes (Wang, Tandeo, et al., 2019). Detecting MABL CS requires surface wind waves,
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so we cannot use sea ice images. Hence, we remove these three classes and proportionally

redistribute their probabilities to the remaining seven classes.

Next, we ensure that the SAR backscatter is consistent across the WV images, we

require ERA5 UN
10 ≥ 3 ms−1, which is just above the threshold for wind-wave generation.

Wang et al. (2020) demonstrated that WS induce much stronger image contrast at the

larger incidence angle. We have found that this is also true for MC and NV. Accordingly,

we limit our analysis to the WV2 images.

Text S2. - Alternative set of images using a probability of 50%

Here we provide an identical set of Figures SS3, SS4, SS5, SS6 that appear in the main

manuscript but with the exception that the model probability of Wang, Tandeo, et al.

(2019) is to a threshold of 50%. The results are very similar to those in the main text.

Notice the increase the shading in Fig. SS4 and the increased overlap between the MC,

WS, and NV classes. The regional patterns in Figs. S5, SS6 are similar to those in Figs.

3 and 4 in the main text.

Text S3. - Variations of Figures 3 and 4 from the main text

In this section we provide different variations of the criteria used in the main text to

demonstrate the minor impact on the results. Figs. S7, S8, and S9 show similar results

as those in Fig. 3 of the main text but change the Ri classification ranges of the ERA5

mapping.
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Figure S1. (a) PDFs of the FFT variance from 0.8 to 4 km scales for cells (unstable

in green), streaks (near stable in blue), and negligible atmospheric variability (stable in

red) detection from SAR. The vertical lines represent the median values.
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Figure S2. (a) PDFs of the MABL Ri estimated from ERA5 for cells (unstable),

streaks (near stable), and negligible atmospheric variability (stable) detection from SAR.

The dashed lines represent the SAR sampling when using the FFT energy in the band of

0.8 to 4 km.

Figure S3. (a) PDFs of the MABL Ri estimated from ERA5 for cells (unstable),

streaks (near stable), and negligible atmospheric variability (stable) detection from SAR

using a detection probability threshold of 50%.
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Figure S4. Occurrence of the Ri versus meridional (N-S) wind speed (UN
10) for the

three SAR classes for latitudes greater than 25◦N/S. The green, blue, and red shading

represents 10% of the maximum bin within this Ri-UN
10 space for MC, WS, and NV classes

respectively. The thin and thick contours represent 25 and 75 percentiles respectively. The

detection probability threshold is 50% rather than 95% as in the main text.
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Figure S5. Relative occurrence rate between SAR-detected MC, WS, and NV events,

top panels (a-c), using selected 2016-2019 S-1 data. Results are calculated for 2◦ bins.

Panels d-f show the same events but mapped using ERA5 unstable, near-neutral and

stable boundary layer stratification classes based on Ri as defined in the main text. The

detection probability threshold is 50% rather than 95% as in the main text.
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Figure S6. Relative occurrence rates between SAR-detected MC, WS, and NV images

in the western Indian Ocean. Panel a) gives the biweekly regional averages. It also shows

time series of averages among the three study BL stratification classes using ERA5 Ri

data. The maps in 2◦ bin-averaged seasonal WC and MC rates from the winter (Dec.-

Feb., DJF) and summer (Jun.-Aug.), JJA) monsoon periods. The surface wind vectors

are given as the barbs (direction from) where a full barb is 10 knots. The SSTv 27, 28,

and 29◦C contours are given as the solid, dash-dot, and dotted lines. These wind and

SSTv information are obtained by averaging ERA5 over our larger overall WV2 dataset

and not the 27% of selected images to show the climatology. The detection probability

threshold is 50% rather than 95% as in the main text.
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Figure S7. Relative occurrence rate between SAR-detected MC, WS, and NV events,

top panels (a-c), using selected 2016-2019 S-1 data. Results are calculated for 2◦ bins.

Results are calculated for 2◦ bins. Panels d-f show the same for ERA5 unstable (−0.012 <

Ri), near-neutral (−0.012 < Ri < 0) and stable boundary layer (Ri > 0) stratification

classes.
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Figure S8. Relative occurrence rate between SAR-detected MC, WS, and NV

events, top panels (a-c), using selected 2016-2019 S-1 data. Results are calculated for

2◦ bins. Results are calculated for 2◦ bins. Panels d-f show the same for ERA5 unstable

(−0.014 < Ri), near-neutral (−0.014 < Ri < 0.01) and stable boundary layer (Ri > 0.01)

stratification classes.
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Figure S9. Relative occurrence rate between SAR-detected MC, WS, and NV

events, top panels (a-c), using selected 2016-2019 S-1 data. Results are calculated for

2◦ bins. Results are calculated for 2◦ bins. Panels d-f show the same for ERA5 unstable

(−0.016 < Ri), near-neutral (−0.016 < Ri < 0.01) and stable boundary layer (Ri > 0.01)

stratification classes.
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Figure S10. Relative occurrence rates between SAR-detected MC, WS, and NV images

in the western Indian Ocean. Panel a) gives the biweekly regional averages. It also shows

time series of averages among the three study BL stratification classes using ERA5 Ri

data. Relative occurrence rate between SAR-detected MC, WS, and NV events in panels

(a-c), using selected 2016-2019 S-1 data. The maps in 2◦ bin-averaged seasonal WC

and MC rates from the winter (Dec.-Feb., DJF) monsoon period. Panels d-f show the

same events but mapped using ERA5 unstable, near-neutral and stable boundary layer

stratification classes based on Ri as defined in the main text.

June 7, 2022, 5:18am



X - 16 :

Figure S11. The same as Fig. SS10 except for the summer (Jun.-Aug., JJA) monsoon

period.
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