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Abstract
Mercury’s motion has been studied using numerical methods in the framework of a model
including only the non-relativistic Newtonian gravitational interactions of the solar system:
eight major planets and Pluto in translation around the Sun. Since the true trajectory of
Mercury is an open, non-planar curve, special attention to the exact definition of the advance
of Mercury’s perihelion has been given. For this purpose, the concepts of an extended and
a geometrical perihelion have been introduced. In addition, for each orbital period, a mean
ellipse was fitted to the trajectory of Mercury. I have shown that the perihelion advance of
Mercury deduced from the behavior of the Laplace–Runge–Lenz vector, as well as from
the extended and geometrical perihelion advance depend on the fitting time interval and for
intervals of the order of 1000 years converge to a value of 532.1′′ per century. The behavior of
the perihelia, either extended or geometrical, is strongly impacted by the influence of Jupiter.
The advance of the extended perihelion depends on the time step used in the calculations,
while the advance of the geometrical perihelion and that deduced by the rotation of the
Laplace–Runge–Lenz vector depends only slightly on it.

Keywords Gravitation · Celestial mechanics · Ephemerides · Reference systems · Planets
and satellites: individual (Mercury) · (Stars): planetary systems

1 Introduction

The numerical determination of planetary orbits is one of the important tasks of modern
astrophysics (Seidelmann et al. 1992, pp. 281–289). The orbit of Mercury is of particular
interest since the evolution of the eccentricity ofMercury to values large enough, owing to the
proximity of resonance with Jupiter, may allow collisions with telluric planets (Laskar and
Gastineau 2009). Moreover, it is currently accepted that the anomalous advance ofMercury’s
perihelion can only be explained on the basis of general relativity (Clemence 1947; Rana
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1987). And yet, up to now, initiatives have been taken to shed light on some of the limitations
arising from the ambiguous definition of Mercury’s perihelion advance.

The central question is thus to know what kind of physical quantity is considered as being
the perihelion advance and how can this be measured (Lo et al. 2013; Roy 2014; Park et al.
2017; Anderson et al. 1996). The various measurements of the perihelion advance are not
perfect and have inevitable experimental errors which contribute to the uncertainty in deter-
mining this quantity (Cicalò et al. 2016; Verma et al. 2014). Optical observations of Mercury
are subject to errors arising from the determination of the planet’s barycenter from its vis-
ible disk (Fienga 1999). In radar measurements, uncertainties may appear due to the very
weak detection signal depending on the topography of the planet, the speed, and the relative
positions of the observer and the planet. As the measurement results are analyzed using one
of the existing models to determine the orbital parameters, these parameters will depend on
the chosen model (Verma et al. 2014; Mazarico et al. 2014). Currently, the post-Newtonian
relativistic terms are automatically included in the equations of motion for the determina-
tion of the ephemeris of Mercury, which contributes to the value of the perihelion advance
(Clemence 1948). In the comparisons of the Mercury perihelion advance by the different
relativistic and non-relativistic models, the astronomical constants and ephemerides used in
the orbital calculations based on the numerical integration of the Newtonian gravitational
equations for N-bodies should be used without relativistic corrections (Le Guyader et al.
1993; Arminjon 2004). The perihelion advance of Mercury is very small, on the order of
575′′ per century (575′′/cy), and was discovered by Le Verrier in 1859 (Le Verrier 1859).

By processing the MESSENGER ranging data, Park et al. (2017) have estimated the total
precession rate of Mercury’s perihelion of 575.3100′′/cy±0.0015 ′′/cy. In their estimation,
(Park et al. 2017) used the parameterized post-Newtonian formalism (PPN) with fitted PPN
parameters in order to extract the Mercury’s precession rate from the MESSENGER ranging
data. The correction provided by general relativity is smaller and is about 42.98′′/cy (Nobili
and Will 1986; Biswas and Mani 2005). The analysis of radar ranging data between 1966–
1988 by Anderson et al. (1991) gives a slightly different value for the excess precession of
42.94′′/cy. Their difference 532.37′′/cy = 575.31′′/cy - 42.94′′/cy is due to influences from
other planets and can be explained by Newton’s classical theory of gravitation (Loskutov
2011). Different values for the perihelion advance due to the attraction of other planets of
the solar system have been published by different authors and are summarized in Table 1.

Quantities that are defined in an ambiguous way can introduce uncertainties that may
confuse their study. It is therefore very important to determine exactly what the perihelion
advance of Mercury means for theorists, and by what methods they have calculated it in
order to be able to compare their values with experimental results. Ambiguities are often

Table 1 Perihelion advance of Mercury

Reference Perihelion advance (′′/cy)

Misner et al. (2017) 531.54

Clemence (1947) 531.5

Rydin (2011) 531.4

Bretagnon (1982) 531.25

Narlikar and Rana (1985) 528.95

Rana (1987) 528.93

Le Verrier (1859) 526.7
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found in the definitions of what is called perihelion of an orbit, using the elliptical trajectory
characteristic of the two-body problem. When considering the N-body problem using the
extension of the parameters characterizing the two-body motion, special attention should be
paid to their physical meaning. It is for these reasons that I will reconsider in this paper a
certain number of concepts which are associated with the advance of Mercury’s perihelion
but which have an exact definition only in the framework of the two-body problem. Their
possible extensions to the N-body problem and the uncertainties and approximations that
might arise from such a procedure are discussed.

I will draw special attention to the relative positions of the barycenter of the solar system,
the barycenter of the two-body system of the Sun and Mercury, and the positions of the Sun
and the foci of the mean elliptical trajectory of Mercury (the closest focus to the Sun). The
concepts of extended and geometrical perihelia are introduced in order to give a distinct
account of their advance and to compare them to the value of the perihelion advance that
has been determined from the evolution of the direction of the Laplace–Runge–Lenz vector
(LRL) (Stewart 2005; Goldstein et al. 2008, pp. 102–106).

2 Calculations

In present calculations, only the non-relativistic Newtonian gravitational interactions of the
solar system, eight major planets, Pluto and the Sun, have been included. The ten-body
Newtonian gravitational equations (including the Sun) have been integrated over a time
interval of 262144 days with a time step of about 42 minutes. It should be noted that when
using this integration time interval, Mercury makes about 2980 revolutions around the Sun,
Venus 1167 and the Earth–Moon system 718. The configuration of the solar system’s four
outer planets has a periodicity of about 178.7 years (62270 days). Jose came to this conclusion
(Jose 1965) by examining calculations of the solar orbit around the barycenter of the solar
system. The trajectory of the Sun is considerably influenced by massive and distant planets.
The period defined by Jose is slightly larger than a period of Neptune around the Sun allowing
2, 6 and 15 complete revolutions of Uranus, Saturn and Jupiter, respectively. The perihelion
advance of Mercury in a time interval equal to about four Jose cycles has been analyzed, and
only then the average perihelion advance per century has been calculated.

For the integration of our ten-body solar system, one needs to know the values of the basic
parameters of the ten-body problem: the planet/Sun mass ratio, the Newtonian constant of
universal gravitation, as well as the initial values of the positions and velocities of all the
planets and the Sun. Even if the most available ephemerides are based on experimentally
measured data, they include corrections based on general relativity, since the values of all
the parameters depend on the model-dependent optimization procedures. Thus, Newtonian
ephemeris data without relativistic corrections are required for our calculations. Le Guyader
used an optimization program to subtract the relativistic corrections and the influence of
the moon which correspond to the particular values of standard gravitational parameters
(GM) taken from the DE200/LE200 ephemeris (Le Guyader et al. 1993). In order to obtain
ephemerideswithout relativistic corrections,Arminjon (2004)went further by simultaneously
fitting the standard gravitational parameters of planets and their initial positions andvelocities.
For pure Newtonian calculations, Roy (2014) used the initial positions and velocities of the
planets without the relativistic corrections as calculated by Le Guyader. But for the standard
gravitational parameters, Roy (2014) has used the IAU 1976 values from Taff’s book (Taff
1985, p.507). In the choice of the initial values for the numerical calculations, it is necessary
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to have coherence between the initial values of the orbital state vectors (three-dimensional
vector for the position and for the velocity) and the standard gravitational parameters. In this
study, the initial positions and velocities optimized by Le Guyader have been used, as far as
the standard gravitational parameters, and the astronomical unit are concerned, their values
as reported in the ephemeris DE200/LE200 (Le Guyader et al. 1993; Standish 1990) and
which were used by Le Guyader during the subtraction of the relativistic corrections have
been used.

AMATLABODE113 solver was used with RelTol=3×10−14 and AbsTol=10−16, values
that were slightly different from those recommended by Arminjon (2004) but which provide
a better accuracy for the initial data first used by Le Guyader et al. (1993). The coordinates
and initial velocities of the Sun, the eight major planets and Pluto at the date of the Julian
ephemeris JJ = 2451600.5 taken from the reference (Le Guyader et al. 1993) were used.
The integration results were analyzed in an invariant coordinate system related to the initial
value of the barycentric linear momentum vector Pi = ∑10

i=2 Mivi , of eight major planets,
and Pluto and the total angular momentum vector L = ∑10

i=1 ri ×Pi of the ten-body system
(Souami and Souchay 2012).

TheZ-axis is directed by the direction of the total angularmomentumL. Two other vectors,
C andD that are related to P andL, can now be defined by the following relations:C = P×L
and D = C×L. It is assumed that the X- and Y-axes are directed, respectively, along D and
C. The barycenter of the solar system, composed of ten bodies, is taken as the origin of our
invariant reference system. As for the barycenter of the two-body Sun–Mercury system, it
practically coincides with the center of the Sun’s position, and is located at a distance from
the center of the Sun of only about 1.4×10−5 of the Sun’s radius.

The maximum integration error of the MATLAB solver ODE113 has been previously
analyzed (Roy 2014; Arminjon 2004) by comparing the difference between the initial values
of the coordinates and velocities of the planets and their values after back and forth time
integration. Figure 1a and b show the relative error of the norm of the total angularmomentum
and the total mechanical energy with respect to the barycenter of the ten-body solar system,
respectively. These quantities are conservative. One can see that over a 700 year interval,
the magnitude of the relative error of the total angular momentum and the total mechanical
energy are, respectively, ∼10−14 and ∼10−13, which shows the reliability of the calculation
method.

3 Results and discussion

The position and velocity vectors uniquely describe the trajectory of the body in an inertial
reference frame. The Newtonian gravitational equations allow a direct numerical integration
of these quantities (Arminjon 2004; Laskar 1988). In astrodynamics, it is common to use
orbital elements instead of planetary positions and velocities which vary rapidly in space and
time. The reason for this choice is the slow variation of the orbital elements and their simple
geometrical interpretation, analogous to the Keplerian two-body problem, and assuming
that the orbit for each instant is a conic section. The Keplerian orbital elements can be
obtained from the position and velocity vectors by means of computer simulations (Vallado
and McClain 2013, pp. 95–105). However, the evolution of the solar system is strongly
influenced by the interactions between the planets and consequently these orbital elements
are time-dependent, and the perturbed motion is no longer Keplerian.
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Fig. 1 In Fig. 1a, and b, the relative error of the angular momentum and the mechanical total energy in the
barycentric referential of the ten-body solar system are, respectively, plotted

The inertial motion of the Sun follows a complicated trefoliar-like quasi-symmetrical Jose
cycle around the barycenter of the solar system (Charvatova 1988) and changes its position
relative to the foci of the mean elliptical orbit of Mercury. The question is therefore how to
extend the characteristics, such as foci and apsides of a Keplerian elliptic trajectory for an
N-body problem. Strictly speaking, physical quantities such as eccentricity, major axis, and
the foci of Keplerian elliptical trajectories are only defined for an ellipse, and therefore, for
the actual orbits of the planets of the solar system, these physical quantities are invalid.

For Keplerian orbits, the apsides remain fixed in space and the line of junction of the
apsides passes through the center of attraction. For the N-body problem, this is no longer
valid. The line that joins the closest point to the Sun to the farthest point from the Sun no
longer passes through the center of the Sun. It rotates slowly by performing librations around
the inertial reference frame associated with the barycenter of the solar system, thus breaking
the axial symmetry of an elliptical orbit. Another interesting difference exists between the
two-body and N-body Keplerian orbits concerning the closest and farthest points from the
Sun. For Keplerian orbits, the distance to the center of attraction is minimal and the velocity
is maximal at the perihelion; conversely, the distance to the center of attraction is maximal
and the velocity is minimal at the aphelion. For non-Keplerian orbits with N bodies, at the
closest (or farthest) distance from the attracting body, the velocity of a planet is not maximal
(or minimal). This is why several characteristics of an open evolutionary orbit should be
reconsidered, since their exact definition is only valid for a two-body Keplerian problem.

Different orbital characteristics of the two-body Keplerian problem will be now extended
to the orbits of the ten-body solar system. For example, the sidereal orbital period of a planet
can be defined as the time between two transits of the planet at the same point relative to
the fixed stars. This definition must be slightly modified if the planet has an evolving orbit
under the influence of other planets. The trajectory is open and therefore the planet passes
through different points at each revolution. One can then introduce the concept of the mean
Fourier period TFourier as the dominant peak of the spectral power (Fourier transform) of the
angle of the barycentric position vector of Mercury and the X (or Y) axis of the barycentric
reference system in a time interval allowing a very large number of revolutions of Mercury
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Fig. 2 Figure 2a shows the spectral power (in db) of the Fourier transform of the Mercury–Sun distance in a
time interval of 262144 days which permits a very large number of revolutions (2980) of Mercury around the
Sun. The red circle shows the position of the dominant peak. As shown in Fig. 2a, the period defined by the
dominant peak of the Fourier transform is equal to TFourier = 87.968 days. The periods calculated from Eq.
(3) based on the two-body model are shown in Fig. 2b. The average period obtained with this method gives:
T2−body = 87.969

around the Sun. Note that during the time interval of 262144 days Mercury makes about
2980 revolutions around the Sun. Figure 2a shows that the mean Fourier period as defined
above is equal to TFourier=87.968 days. The chosen time interval 262144=218 is convenient
for the fast Fourier transform (fft). Note that this time interval is slightly longer than four
Jose cycles: 262144 days≈ 717.7 years≈ 4×179 years.

This value can be compared with the mean orbital two-body period defined by analogy
with the two-body problem Tm

2−body=87.969 days as shown in Fig. 2b. These two mean
periods are slightly different, Tm

2−body �= TFourrier and for a more exhaustive analysis the
larger of these two mean periods will be used, which allows us to always include a closest
and a farthest point of approach to the Sun in the interval of a mean period. It should be
noted that depending on the number of iterations per year and the number of revolutions of
Mercury taken into account, the maximum value is sometimes the mean Fourier period and
sometimes the average two-body period. Once the mean orbital period has been chosen by
the method described above, one can fix on for the initial reference time, an arbitrary instant
which is different from the time of perihelion passage.

By definition, the perihelion of a planet in the two-body problem is the closest point
of approach to the Sun of its elliptical trajectory (Sun is considered to be at one of foci of
elliptical trajectory). In such a definition of perihelion, all the points of the elliptical trajectory
implicitly play a role since the perihelion must be the closest point to the Sun among all the
other points. The concept of perihelion can be extended to open trajectories close to the ellipse
and known at least on one mean period (as defined above). Thus, the extended perihelion is
the closest point to the Sun among all the other points of a quasi-elliptical trajectory of the
same mean period. In the same way, the extended aphelion is defined as the farthest point
from the Sun among all the other points of a quasi-elliptic trajectory of the samemean period.
The direction of the extended major axis for each mean period will then be considered as the
direction of the vector connecting the Sun to the extended perihelion. It should be noted that
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Fig. 3 In Fig. 3, the open trajectory of Mercury (curve in cyan) in the time interval of one mean period is
plotted. The line of the apsides of the fitted mean ellipse is represented by the green color segment. The
extended line of the apsides joining the extended perihelion (orange color filled circle with green edge color)
to the extended aphelion (blue color filled circle) is represented by the magenta color segment

lines joining, respectively, the extended perihelion and the extended aphelion to the Sun are
not collinear. The average angle between these two directions is about 179.955◦. Moreover,
the straight line joining the extended perihelion and the extended aphelion (extended line
of apsides, or extended apsides line) no longer passes through the center of the Sun. The
extended perihelion and the extended aphelion have no fixed position and undergo slow and
variable oscillations of very long periods.

As shown in Fig. 3 (cyan curve), the trajectory of Mercury even if it is close to an ellipse,
it remains an open curve. The Z-axis of Fig. 3 is drawn to the scale of the radius of the Sun:
D = 4.65047×10−3 AU in order to visualize the opening of the ellipse of about 10−4 AU.
The trajectory of the Sun follows the red line in Fig. 3. It is important to define the mean
elliptical trajectory associated with the quasi-elliptical orbit of Mercury as a mean ellipse
over the mean period in analogy with the two-body problem (blue curve). Since all the points
of the trajectory are not co-planar, a plane is first fitted to the points of the trajectory over one
mean period starting from the initial reference time, as shown in Fig. 4. (The plane is shown
in light brown color.) All the points of the trajectory are projected into this plane, and then an
ellipse (in blue color in Figs. 3 and 4) is fitted to all the projected points of the mean period
in the sense of a least squares fit. The foci of such a mean ellipse are then determined (star
points in black color in Fig. 4). In Fig. 3, the line of apsides of this mean ellipse is represented
by the green segment. The major axis of the mean ellipse is co-linear with the apsides line
of the latter.

The extended line of the apsides joining the extended perihelion (a orange color filled
circle with green edge color on the trajectory of Mercury Fig. 3) to the extended aphelion
(blue color filled circle on the trajectory of Mercury) is represented by the magenta colored
segment. It can be seen that the major axis of the mean ellipse and the extended line of the
apsides are not parallel and are spatially separated in the scale shown on the Z-axis in Fig. 3.
Therefore, in addition to the extended perihelion, the geometrical perihelion will be defined
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Fig. 4 In Fig. 4, the mean orbital plane fitted to the points of the trajectory (which are not coplanar) in the time
interval of one mean period is plotted in light brown color. An ellipse (shown in blue in Fig. 4) is fitted to all
the trajectory points projected onto this mean plane in the sense of a least squares fit. The perihelion (yellow
color filled circle with red edge color) and aphelion (black color filled circle) of this ellipse as well as its two
foci (star points in black color) are also represented

as the point of the mean ellipse closest to the focus of the mean ellipse which is closest
to the Sun. The geometrical perihelion is plotted in Fig. 4, as a yellow color filled circle
with red edge color, while the extended perihelion is represented in Fig. 3 with orange color
filled circle with green edge color. For the two-body problem, the directions of the extended
perihelion and the geometrical perihelion coincide. But for the N-body problem with N≥3,
these directions are distinct, and their motion with respect to an inertial coordinate system
must be evaluated separately.

It is important to underline that the concept of an average trajectory appears as soon as
one deals with small deviations from a well identified behavior. For example, in the descrip-
tion of the slow evolution of the orbital elements by the Lagrangian planetary equations,
one uses the Lagrangian constraints. But instead of Lagrangian constraints, one can also use
other constraints by reformulating new planetary equations called generalized gauge equa-
tions (Efroimsky and Goldreich 2004). Gurfil (2004) extended the generalized constraints
by presenting an averaged form of the gauge-generalized planetary equations with average
classical orbital elements.

The advance of the extendedperihelion and the geometrical perihelion canbe characterized
by the angle of rotation of the radius vectors pointing, respectively, to these perihelia with
respect to a predefined reference direction. The advances of these extended and geometric
perihelia can be thus compared to the angle of rotation of the direction of the LRL vector
with respect to this same reference vector.

In a large number of works the advance of Mercury’s perihelion is predominantly repre-
sented with the rotation of the LRL vector (Davies 1983; Goldstein et al. 2008, pp. 102–106).
In the two-body problem, this vector lies in the plane of the elliptical orbit, and is parallel to
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Fig. 5 In Fig. 5a, the angle (in angular seconds) between the reference vector and the direction of the LRL
vector is plotted as a function of time. In Fig. 5b, a close-up picture of this evolution in a time interval of one
century is presented

the major axis and points in the direction of the perihelion (Stewart 2005). Frequently, the
rotation of the LRL vector is also used to estimate the contribution of general relativity to the
perihelion precession of a planetary orbit (Landau and Lifšic 2010, p. 370; Weinberg 1972,
pp. 230–233; Garavaglia 1987). However, in the case of the N-body problem, the secular
rotation of this vector cannot be clearly identified with the advance of Mercury’s perihelion
(Ebner 1985).

The LRL vector can be evaluated at each point of the trajectory as soon as the evolution
of the position and velocity vectors in time is known. The LRL vector is noted by A in this
work. In the case of the two-body problem, A is a constant vector parallel to the major axis
and is directed toward the perihelion:

A =
(

M�MM

M� + MM

)2 [(

v2M − GM� + GMM

rM

)

rM − (rM ·vM ) vM

]

, (1)

where rM and vM are, respectively, heliocentric position and velocity vectors of Mercury.
For the N-body problem, the LRL vector becomes a continuous function of time. In order

to represent the rotation of this vector, it is necessary to follow its evolution with respect
to a fixed reference direction. We can define the fixed direction of reference as the line of
intersection of two instantaneous orbital planes: the initial osculating orbit plane of Mercury
and the initial ecliptic plane. Themean advance of the perihelion is generally estimated over a
period of a century, during which Mercury makes 415 revolutions around the Sun. The linear
least squares regression of the perihelion advance over a selected fitting time interval that may
be longer than one century produces a trend line. Then, the advance of the perihelion over a
century is calculated by the help of linear fit coefficients. The angle of rotation between the
direction of the LRL vector and the reference direction is shown in Fig. 5a. Figure 5b shows
a close-up picture of this evolution over a time interval of one century. This characteristic
behavior is identical to the curves presented by Narlikar and Rana (1985).
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Fig. 6 In Fig. 6a and b, the extended perihelion advance is plotted as a function of time. A close-up of the
behavior of this evolution in a time interval of one century is illustrated in Fig. 6b. The time evolution of the
LRL vector defined perihelion advance is also added in blue color in Fig. 6a and b for comparison purposes

The advance of the perihelion as defined by the LRL vector will be compared with the
advances of the extended and geometrical perihelia. For the two-body problem, the direction
of the LRL vector defined by Eq. (1), and the direction of the extended perihelia coincide.

The advance of the extended perihelion can be calculated as the angle between the fixed
reference direction and the position vector pointing to the extended perihelion at successive
mean periods. In Fig. 6a and b, an oscillatory behavior of the extended perihelion advance
with an amplitude of about 700′′ can be observed. Nevertheless, one can always note a linear
increase trend of the average advance of the extended perihelion. LRL vector is added in blue
in Fig. 6a and b for comparison purposes.

As defined above, the geometrical perihelion is the point of the mean ellipse closest to one
of the foci (closest to the Sun) of the mean ellipse. For the two-body problem, the direction
of the LRL vector and the direction of the geometrical perihelion coincide. The geometrical
perihelion advance is calculated as the angle between the reference direction and the vector
pointing from the focus closest to the Sun of the mean ellipse to the point of the ellipse closest
to this focus for each successive mean period. In Fig. 7a and b, the evolution of the advance
of the geometrical perihelion is presented.

The mean amplitude of the oscillatory behavior of the geometrical perihelion advance
is about 3700′′. Despite the greater amplitude of the oscillations of geometrical perihelion
advance, a linear trend of the increase if the mean geometrical perihelion advance is still
observed. The time-dependent LRL vector is also plotted in blue in Fig. 7a and b for compar-
ison purposes. It should be noted that the amplitude of the oscillatory behavior of extended
and geometrical perihelia are different by a factor of about 5.

In Fig. 8a, b and c, a Fourier analysis has been performed, evaluating the spectral power
of the perihelion advance associated with the rotation of the LRL vector with respect to
the fixed reference direction as well as to extended and geometrical perihelion advances.
As shown in Fig. 8a, the spectral power of the perihelion advance as defined by the LRL
vector is almost independent from the motion of Jupiter, while the extended and geometrical
perihelion advances depend strongly on it (Fig. 8b and c). There is a striking difference

123



Comparative study of Mercuryś perihelion … Page 11 of 16    33 

Fig. 7 Figure 7a and b demonstrate the behavior of the geometric perihelion advance as a function of time.
A closer look at the behavior of this evolution in a time interval of one century is illustrated in Fig. 7b. The
time evolution of the LRL-vector-defined perihelion advance is also added in blue color in Fig. 7a and b for
comparison purposes

between the spectral powers of the advances of the extended and geometric perihelia, since
the spectral power of the extended perihelion depends strongly on the half-period of Jupiter’s
revolution around the Sun (Fig. 8b), whereas that of the geometrical perihelion depends
on Jupiter’s period (Fig. 8c). In order to clarify the determination of average perihelion
advance per century of Mercury, I compared the influence of the fitting time interval on the
mean perihelion advances associated with the rotation of the LRL vector, the extended and
geometrical perihelia.

The mean amplitude of the oscillatory behavior of the geometrical perihelion advance of
Mercury is very large about 3700′′. The mean amplitude of the oscillations of the extended
perihelion is about 700′′ (about 5 times smaller), while the mean amplitude of the oscillations
of the advance of the perihelion associated with the LRL vector is only about 30′′.

In order to describe the dependence of the mean perihelion advance per century on the
fitting time interval, the evolution of the mean advance per century of the extended, geomet-
rical and LRL vector defined perihelia for three different calculation intervals: 520 years,
718 years and 1011 years are, respectively, plotted in Figs. 9, 10 and 11.

All the curves in Figs. 9, 10 and 11 show a convergence tendency of the all mean perihelia
advances per century toward a value of 532.1′′/cy. It should be noted, however, that the
mean perihelion advance per century as defined by the rotation of the LRL vector converges
very rapidly to an average value of 532.1′′/cy, while the convergence of the mean extended
perihelion advance per century is slower. Naturally, the slowest convergence is that of the
mean geometrical perihelion advance per century because of the oscillatory character of
greater amplitude. It should be noted that the shape of different mean perihelion advances per
century for short fitting periods may depend on the number of points used in the integration.
This dependence on the number of points used in the integration over an integration period
of 1011 years is illustrated in Fig. 12a, b and c.

The mean perihelion advance per century as defined by the rotation of the LRL vector
shows a very weak dependence on the time iteration step. The mean geometrical perihelion
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Fig. 8 In Fig. 8a, b and c, a Fourier analysis of LRL, extended and geometrical perihelia are, respectively,
performed. The spectral power (in db) of the advance of extended and geometrical perihelia (Fig. 8b and c)
as well as the perihelion advance associated with the rotation of the LRL vector (Fig. 8a) with respect to the
fixed reference direction as a function of the inverse of the frequency is plotted

Fig. 9 Perihelion advance deduced by the rotation of the LRL vector is fitted by the least squares method to
a linear function. In Fig. 9a, b and c, the mean perihelion advance over a century is deduced by the fitting
coefficients as a function of the fitting time interval for three different calculation intervals: 520 years, 718
years and 1011 years, respectively. For each interval, the calculation of the mean advance of the perihelion
per century is started on an initial fitting time period of 300 years, which is gradually increased with a step of
5 years

advance per century also shows a very weak sensitivity to the time step. The mean extended
perihelion advance per century is much more sensitive to the time step, and for higher fitting
time intervals, therewill be a convergence to the same value of 532.1′′/cywhichwas predicted
by the rotation of the LRL vector.
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Fig. 10 Advance of the extended perihelion is fitted by the least squares method to a linear function. In Fig.
10a, b and c, the mean perihelion advance over a century is deduced by the help of fitting coefficients as a
function of the fitting time interval for three different calculation intervals: 520 years, 718 years and 1011
years, respectively. For each interval, the calculation of the mean advance of the perihelion per century is
started on an initial fitting time period of 300 years, which is gradually increased with steps of 5 year intervals

Fig. 11 Advance of the geometrical perihelion is fitted by the least squares method to a linear function. In Fig.
11a, b and c, themean perihelion advance over a century is deduced by the fitting coefficients as a function of the
fitting time interval for three different calculation intervals: 520 years, 718 years and 1011 years respectively.
For each interval, the calculation of the mean advance of the perihelion per century is started on an initial
fitting period of 300 years, that is gradually increased it with a step of 5 years
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Fig. 12 Dependence of the mean extended perihelion advance per century on the number of points used during
the integration is illustrated in Fig. 12. For the integration period of 1011 years, three curves corresponding to
three different iteration steps (12, 18 and 24 iterations per day) are, respectively, plotted in Fig. 12a, b and c

In perspective, it is interesting to consider the long-term behavior of mean perihelion
advance per century, on a scale of time interval for a few million years calculated by special
algorithms for long-term orbital motion of the planets (Laskar et al. 2011). Future work will
be needed to address this issue.

4 Conclusion

The study of the mean perihelion advance of Mercury by means of numerical methods
within the framework of a model including only the non-relativistic Newtonian gravitational
interactions of the solar system: eight major planets and Pluto in translation around the Sun
shows the importance of the exact definition of the latter because of the open and not elliptic
trajectory of Mercury.

The notions of extended and geometrical perihelia have been introduced to distinguish
more precisely the differences with the concept of the perihelion for the two-body problem
and N-body problem. Since the period of revolution of Mercury around the Sun is no longer
a strictly periodic function with a fixed period, the concept of the mean period of revolution
has been introduced from Fourier analyses.

By fitting a mean plane to the trajectory of Mercury in a time interval of one mean period,
a mean elliptical trajectory has been introduced whose foci and perihelion positions define
the concept of a geometrical perihelion. The extended perihelion is defined as the closest
point to the Sun each time interval of one mean period. The behavior of the advance of these
new perihelia is compared with the rotation of the LRL vector.

I have shown in this study that the mean perihelion advance of Mercury per century as
deduced from thebehavior of theLRLvector, aswell as themean advances of the extended and
geometrical perihelion per century, will depend on the fitting time interval and for intervals
on the order of 1000 years, will converge to a value of 532.1′′/cy. Giant planets such as
Jupiter can strongly influence the advance of extended and geometrical perihelia, but have
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little direct influence on the perihelion advance as calculated on the basis of the LRL vector
rotation. It was also shown that the mean advance of the extended perihelion per century
depends strongly on the time step used in the calculations, whereas the mean advance of the
geometrical perihelion per century, as well as that deduced by the rotation of the LRL vector,
will hardly depend on the time step used in our calculations.

Acknowledgements The author thanks Virginia Hekinian for her valuable help for improving the English of
this manuscript.
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