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Abstract. Synthetic Aperture Radar (SAR) images of 
the ocean yield a lot of information on the sea-state 
surface providing that the mapping process between the 
imrface and the image is clearly defined. However it 
is well known that SAR images cxhibit non-gaussian 
statistics and that the motion of the scatterers on the 
surface, while the image is being formed) may yield to 
nonlinearities. 
The detection and quantification of these nonlinearities 
are made possible by using Higher Order Spectra (HOS) 
methods and more specifically, bispecirum estimation. 
The devclopment of the latter method allowed us to find 
phase relations between different parts of the image and 
to recognise their level of coupling, i.e. if and how wavcs 
of different wavelengths interacted nonliuearly. This in­
formation is qui te important as the usual modcls assume 
strong nonlinearities when the waves are propagating in 
the azimuthal direction (i.e. along the satellite \rack) 
and almost no nonlinearities when propagating in the 
range direction. In this paper) the mapping of the ocean 
surface to the SAR image is reinterpreted and a specific 
mode] (i.e. a Second Order Volterra Mode!) is intro­
duced. The nonlinearities are thus explained as either 
produced by a nonlinear system or due to waves prop­
agating into sclected directions (azimuth or range) alld 
interacting during image formation. 
lt is shown that quadratic nonlinearities occur for waves 
propagating near the range direction while for those 
travelling in the azimuthal direction the nonlinearities, 
when prcsent, are mostly due to wave interactions but 
are almost completely rcmoved by the filtering effect 
coming from the surface motion itself ( azimuth eut-off). 
An inherent quadratic interaction filtering ( azimuth high 
pass filter) is also present. But some other effects, ap­
parently nonlinear, are not dctected with the methods 
described here, meaning that either the usua\ relation 
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developed for the Ocean-to-SAil transform is somewhat 
incomplete1 although the mechanis1ns leading to its for­
mulation seem to be correct, or that these nonlinearities 
cannot be detected in the classical bispectrum theory. 

1 Introduction 

lmaging of the occan by satellite-borne SAR (Synthctic 
Aperture Radar) has been the subjeci of a large amount 
of literature for almost the last 20 years now, since the 
launch of SEASAT in 1978 and more recently of the 
ERS (European Remote Sensing) satellites series. Spe­
cial interest bas been devoted to the imaging of the 
occan surface and one of the main fields of investiga­
tion bas been the description of the ocean surface map­
ping to a SAR image (Keller and Wright, 1975; Hassel­
mann et al., 1985; Alpers and Bruning, 1986; Bruning 
et al., 1988, 1990; Hasselmann and Hasselmann, 1991; 
Krogstad, 1992; Krogstad et al., 1994; Hara and Plant, 
1994). 
The goal pursued by many researchers was to find a SAR 
spectrum inversion scheme in order to get all the rele­
vant information from a sea spectrum. Many models 
were devcloped) especially for taking into account the 
nonlinear relationship involvcd in the rnapping and due 
to the motion of the ocean waves during the aperture 
time (e.g. Alpers et al., 1981; Hasselmann and Ilassel­
mann, 1991) 
On the other hand, research in signal processing bas 
been focused, for a long time, on spectrurn estimation 
and information extraction using either non-parametric 
or parametric methods. However in the last decade, 
spectrum limitations and especially its phase blindness 
have involved the development of Higher Ortler Spec­
tra (HOS) methods (Nikias and Mendel, 1993; Nikias 
an<l Petropulu 1 1993). Phase estimation is paramount 
in nonlinear system identification and detection of non­
linearities in one or two dimensional (lD or 2D) signais. 



Jt thus sccmed then natural to apply these new tools to 
the case of SAR images where nonlinearities may hap­
pen\ according to the thcory, and try to find their loca­
tion and un<lerstand why they were present in order to 
givc a bettcr insight into the SAR inversion problem. 
T n this paper our main purpose is to detect and quantify 
the nonlinearities in SAR images. For that reason, the 
hispectrum estimation methods had to be developed and 
adaple<l lo the 2D case. lndeed, this kind of analysis is 
seldom encountered for images as there is a rather large 
amount of calculations which consume lots of memory 
consuming. 
Firstly1 we had to analyse the SAR transform and to 
simplify the problem, we retained the prccmincnt mod­
els (e.g. Hasselmann and Hasselmann 1 1991), that are 
currently widely accepted. These models are divided 
into two parts : a linear part, describing the direct 
mapping of the ocean without motion (RAR, or Real 
Aperture Radar transform) followed by a part due to 
the motion ( denoted the RAR lo SAR transform) and 
prcsenting all the nonlinearities. Our goal is thus to de­
tect the nonlinearities occurring for the whole mapping 
wiU10ut considcring a two step transform. 
Furthermore, many authors have explained the possible 
nonlinearities by considering the waves travelling in the 
azimuth (along track) or range (a.cross track) directions 
and setting some level of nonlinearities in the former 
case. ln order to verify if our analysis was relevant we 
simulated a nonlincar image by mixing the two parts 
described above, in parallel ways (linear and quadratic) 
using a Second Order Volterra Mode!. We then applied 
our method to the case of real SAR images acquired 
from the ERS-1 satellite and we selected images show­
ing three cases of travelling waves : range, azimuth and 
in-between. 
The first section presents the background for SAR imag­
ing t.heory and HOS clefinitions. It is then followed by 
a section on 2D signal bispectrum (or its normalised 
version, bicoherence) estimation where a solution for vi­
sualising and analysing the information contained in a 
four dimensional support is provided. Finally results 
and interpretation are given for the simulated images 
and the real ERS-1 ocean surface images. The meth­
ods developed gi ve us an insight into understanding the 
mechanisms involved in the arising of nonlinearities in 
the particular case of the analysis of occan SAR images. 

2 Theoretical background 

2.1 SAR mapping 

The study of ocean surface mapping by a satellite-borne 
SAR, and corollary the SAR spcctrum inversion have 
been the subject of abundant literature (Alpers and 
Rruning, 1986; Hruning et al., 1988; Hasselmann and 
Hassclmann, 1991; Krogstad, 1992). We assume that 
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an ocean surface can be seen as generated by the sum 
of independent oscillators of wavelength k and pulsation 
w (Hasselmann and Hasselmann, 1991), which provides 
the following wave height ({r, t) expression, 

((r, t) = L (k,J~, .eJ(k.r-w.t) + complex conjugate 
k ( 1) 

with w = (g. 1 k I)½ and k = (k,, ky) (in this paper 
all variables, except on contrary indications, will be 2D 
arrays). The Fourier coefficient is divided into its magni­
tude (k (which is a real nonnegative value) and its phase 
'Pk. We admit that the l.f)k are uniformly distributed over 
[O, 2.n] and are independent for each wavelength. Con­
sequently the sea spectrum Ssca(k) is given by: 

Ssea(k).(~k) 2 = {( •. e;~'.(k_e-;~,} = E{(;} 
{2) 

and 

where E {} denotes the mathematical expectation and 
-6.k is the step width of the wave vector. However1 this 
assumption docs not imply that E{(k, .(k,} = O. The 
RAR image amplitude field is givcn by: 

o-(r, t) =a(.l + L mk .ej(k r-w.t)+complex 
k 

conjugate) 
(3) 

where C1(r1 t) denotes the radar backscattering cross sec­
tion and 7f its spatial mean, mk is then a complex value. 
As previously said, the radar backscattering cross sec­
tion is linearly related to the wave amplitude (k-

( 4) 

The RAR linear transfer function Tk is the sum of three 
successive Modulation Transfer Functions (MTFs). The 
first one takes into account the fact that SAR images are 
built up in consecutive strips and sa waves can propa­
gate between two successive surface illuminations by the 
radar and consequently may induce a spectrum rotation 
(scanning distortion). However, as usual, this distortion 
is neglected for satellite-borne radar. The "tilt modu­
lation" is due to the angle bctween the target and the 
radar bcam and depends on the radar charactcristics 
(incident angle, polarisation ... ) (Hasselmann and Has­
selmann, 1991). The "hydrodynamic modulation", the 
lesser known of the MTF, takes into account the energy 
transfer between short waves and long waves and can 
play a significant role since the Bragg scattering mo<lel 
is valid at the consi<lered incident angle (e.g. Keller and 
Wright, 1975; Haraand Plant, 1994). However, this the­
oretical model is not always well verified and even the 
assumption of a linear hydrodynamic modulation ( and 
consequently of a linear RAR modulation) must be ex­
amined more carefully. 
The nonlinear step is due to wave motion during the 
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illumination. In the non di8persive theory, the radar 
backscattering cross section is misplaced in the azimuth 
direction, and so an SAR pixel is the sum of different 
RAR pixels (as usual, the range direction, i.e. the per­
pendicular direction to the satellite track, is in the y­
axis and the azimuth direction, i.e. along the satellite 
path, is in the x-axis). Because the misplacement is 
proportional to the wavc orbital velocity in the range 
direction and the radar backscattering cross section is 
alternatively bunched and dilated, this phenomenon is 
called the "velocity bunching". Such a phenomenon is 
a constructive mechanism and implies strong nonlinear­
ities especially when wa.ves propagate along the satellite 
track. Undcr a gaussian statistical description of the 
displaccment field, the SAR image spcctrum expression 
has been derivcd 1 and is linked both with the misplace­
ment and the RAR image spectrum. The SAR Fourier 
coefficient _Xsar(k) can be easily expressed using a sum­
maiion over the RAR pixels l'a'(x) by: 

.Y'""(k) = 1 I'"'(x).ejk,,(x)_e-jkx_dx (5) 

where Ais a given surface of summation and E(x) the 
misplacement. U nder gaussian statistics of the sea sur­
face, and when A -+ oo we obtain the following SAR 
spectrum: 

c (k) = ,21 e-j.k.x e-k;.(p,.(0)-P«(x)) 
Dsai- o · · · 

X 

(1 + PII(x) + j.k,.(PJ,(x) - p1,(-x)) 

+ k; .(PJ, (0) - p1, (x)) .(Pf ,(0) - p1, (-x)) .dx 
( 6) 

whcrc p denotes the correlation function. Because the 
RAR image and the displacement field are linearly de­
rived from the Discrete Fourier Transform (DFT) coef­
ficients of the sea surface, the nonlinearity is due to the 
cxponential term. Krogstad in Krogsiad et al. {1994) 
noticed that, by expanding the exponential of (6) and 
by taking a modulated Gausiûan distribution for the dis­
placement field correlation fonction, each order of the 
expansion can be seen as a higher order harmonie spec­
trum (smaller and smaller as the ordcr increases). An­
other degradation causcd by the wave motion is the az­
imuth smearing which induces an azimuth resolution de­
crcase and is related to the orbital acceleration and the 
orbital velocity sprcad within a resolution cell. This de­
gradation is explicitly contained in the terrn e-k;.(p,,(O)) 

in (6). For further information on the SAR imaging pro­
cess a good bibliography may be found in Hasselmann 
and Hasselmann (1991). 

2.2 Higher order spectra definitions and properties. 

The third order moment, for a 2D signal X(i), is defined 
(Nikias and Raghuveer, 1987; Giannakis and Swami, 

1988; Nikias and Mendel, 1993; Nikias and Petropulu, 
1993) by: 

M{ (n1, n2) = E{X(i).X(i + n1).X(i + n2)} (7) 

with n 1 = (n!, nt)- This definition implies the same six 
symmetry relations as for one dimensional signais: 

Mf (n1, n2) = Mf (n,, ni)= M{ (n2 - n1, -ni)= 

M{ (-ni, n2 - n1) = M{ (n1 - n,, -n2) 

= M{ (-n2, n1 - n,) (3) 

Two equivalent bispectrum definitions can be fornm­
lated. First, the bispecirum is the four dimensional 
Fourier Transform of the third order moment: 

+= += 
B(k k) - ~ ~ Mx(n n )e-j(k, n,+k,.n,) 

1, 2 - L L 3 1, 2 

»1=-00 »:;=-= (9) 

(I:!
1
~_ 00 is a 2D summation). Secondly, it may be ex­

pressed by the mathematical expectation of the Fourier 
coefficient triple product, 

where X(k) = DFT(X(i)). The Fourier Transform 
changes the third order moment symmetry relations into 
eleven bispectral symmetry relations very similar to one 
dimension signal bispectral symmetry relations (Nikias 
and Mendel, 1993; Nikias and Petropulu, 1993, Chapter 
1), the third order 1noment support and the bispcctrum 
support are depicted in fig.! and fig.2. 

B(k1,k2) = B'(-k1 ,-k2 ) = B(k2,k1) = 
B(-k1 - k,, k2) = B(-k1 - k2, k1) = (11) 

H(k1, -k1 - k2) = B(k,, -k1 - k,) 

As mentioned in the introduction, the third order mo­
ment is phase sensitive an<l especially sensitive to phase 
coupling. If we assume a signal which can be wriUen as 

X(i) = cos(k1.i + <p1) + cos(k,.i + <p2) 

+ cos((k1 + k,).i +'Pl+ <p2) 

+ cos(ks.i + 'Ps) + cos(k4.i + <p4) 

+ cos((k3 + k4).i + <ps) + N(i) 

( 12) 

where N(i) is a gaussian noise and IPi are random phases 
disiributed over [0,21lj, thcn only the quadratically phase 
coupled signal part (k1, k2, k1 + k2 ) appears in the third 
order moment, and consequently is dctected by the bis-
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Fig. 1. Third order moment support 

pectrum: 

X l 
M 3 (n1,n2) = 4[cos(k,.n, - (k1 +k2).n2) 

+ cos (k2.n2 - (k1 + k,).ni)) 

+ cos (k1.n1 - (k1 + k,).n,) 
13

) 

+ cos (k1,n2 - (k1 + k,).ni) + cos (k,.n, + k,.n2\ 

+ cos (!: 1 .n. 1 + k2 .n2) + cos (k,:n, + k2,ni)] 

Howcvcr it must be noted that to e8timate the third or­
der moment for detecting phase coupling, several signal 
triab are needed) a point on which we will elaborate in 
the next section. A similar calculation can he made in 
the Fourier domain. The DFT coefficient of (12) is 

)((k) = ~- (ei''S(k - k,) + e-'"J(k + k1 ) 

+ ci<,J(k - k2 ) + e-i,'J(k + k2) 

+ eil,,+,,)J(k - k1 - k2) + e-.i(,,+,,lJ(k + k1 + k,) 

+ ei''J(k - k3) + e-1 ''S(k + k3) + ci,•J(k - k1) (14) 

+ e-i,••J(k + k4) + ei~'o(k - ks - k4) 

+ c-i,,J(k + k3 + k1)) 

,vhere O(k) denotes the Dirac function. By applying 
( 10), the bispectrum is non null if the phase of the triple 
product is null. For intitancc ci'P 1 .cJlf 2 .c-j(ip 1 +4'z) have 

a non null mean value because the phase is null, and 
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Fig. 2. Bispedrum support 
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then the bispcctrum is non null for (k 1 , k2), Meanwhile 
eJ'P 3 .ei'P 4 .e-J"P'/; have a null mean because t,p3 + t,p4 - i.ps 
is uniformly distributed over [O, 2rr] (and then B(ks, k4) 
is 111111). Another important remark is that the three 
sinusoids arc a symmetric triplet, because the sinusoids 
of pulsation k1 can be secn as generated by the differ­
ence of waves k2 1 k1 + k2. The quadratically phase cou­
pling notion is relevant for quadratic nonlinearity de­
tection. As a mattcr of fact, if we consider the Second 
Orcier Volterra Mode! depicted in fig. 3, sinusoids at the 

Hl(k) 

Ocean surface 
SAR 

+ 
Spectrum Spectrum 

H2(k) f----l Squarer 

Fig, 3. Second Order Volterra Mode] 

squarer output arc quadratically phase coupled with the 
input ones, and so the linear path output sinusoids and 
the quadratic path output ones are quadratically phase 
coupled (except for Hi(k) and H2 (k) phase shifts, and 
for this reason it would be better to say "phase coher­
ent"). This kind of nonlinear model has been widely 
studied in Schetzen (1980), and applied for nonlincar 
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wave interactions in plasma (Kim and Powers, 1988 
1 

1979). But for each pair (k 1 , k2 ), energy at the fre~ 
quency k1 + k2 , in the mode] in fig. 3 is the sum of the 
energy provided by the linear path and by the quadratic 
interaction of sinusoids of wavenumber k1 and k2, In 
order to estimate the energy passing through each part 
(and so to give a level of nonlinearity), a useful quantity 
is the bicoherencc defined as: 

(15) 

where S(k) is the spectrum. In fact, if: 

X ( i) = A1. cos(k1 .i + <p1) + A,. cos(k, .i + ,p,) 

+ A3 . cos((k1 + k2).i + ,p1 + ,p,) {16) 
+ B. cos((k1 + k,).i + ,p3) + N(i) 

where lfili=l,2,3 are random phases, and since the third 
order moment is only sensitive to phase coupling, thcn 
the bicohcrcnce is equal to: 

P(k k ) - A3 

1, 2 - ✓(A3)2 + B2 {17) 

So the bicoherence gives an idea of the interaction be­
tween two waves in the observed signal. In this case, if 
the signal is "linearii (i.e. produced by a linear combina­
tion of oscillators independent in magnitude and phase), 
then the bicoherence is null. Contrary to a common 
idea) the bicoherence can be greater than 1.0 {Raghu­
veer, 1990). In the more general case, if the signal is 
assumed to be obtained by a linear combination of a 
stochastic variable at different lags ( and not by a har­
monie decomposition) the bicoherence is not equal to 0 
but is fiat. For instance, nonsymmetric noise driving a 
linear system has a bicohcrence equal to '/3h2 ('/a and 
{2 are respectively the third and second order moments 
of the noise) over ail the bifrequency domain. In the case 
of (16), because the bicoherence flatness is an indication 
of system lincarity, the bicoherence standard deviation 
is a good nonlinearity estimator I as will be shown ·in 
the last section. However several signal trials, with in­
clepen<lent phases, are needed to detect phase coupling. 
But generally only one realisation is available and, as we 
will sec in section 3, the solution is to <livide the signal 
into subsignals assuming the phase independence of the 
Fourier coefficients, for each realisation. 
The Second Order Volterra Model described above can 
be seen as a special case of nonlinear filters. If we con­
sider a general nonlinear transfer fonction where the 
output depends on a finite number of input samples, 
such as: 

Y(i) = F(X(i - p-), ... ,X(i), ... , X(i+ p+)) (18) 

where p-, p+ are 2D arrays of nonnegative integers and 
assuming there exists a Taylor expansion of F, then; 

Y(i) = F(0, ... , 0, ... , 0) + 
+ f-, ôF(X(i - p-), , X(i), ... , X(i + p+)) 

~- ôX(i+ k) 
k=p 

X(i + k) 
p+ p+ 

+ I: I: 
k=p- k 1=p-

82 F(X(i - p-), ... , X(i), ... , X(i + p4~f) 
ôX(i + k).ôX(i + k') 

.. X(i + k).X(i + k') + 

where all partial derivative values are taken at the ori­
gin. Thus, such a modcl is a general nonlinear filter 
approximation up to the second order. ln this approx­
imation, nonlinearities of order higher than two will be 
included in the linear part due to the blindncss of the 
third order moment to higher order phase coupling (Ni­
kias and Mendel, 1993). One of the main problems in­
volved with Higher Order Statistics remains the estima­
tion of these statistics. In the next section, we present in 
the next section some 2D signa] bispectrum estimators 
and two conventional ones in particular. 

3 2D signal bispectrum estimation 

Bispectral estimators arc divided into two classes in 
the same way as spectral estimators are) a convcntional 
Fourier-type dass and a parametric one (Nikias and 
Raghuveer, 1987; Nikias and Mendel, 1993; Nikias and 
Petropulu, 1993, Chapter 4). The conventional class 
is made up of two classical estimators ( direct and in­
direct methods) based upon both definitions of section 
2. The direct method consists in averaging the DFT 
coefficients over all availablc signal trials, and possibly 
a frequency smoothing which decreascs the estimation 
variance. This estimation mcthod has been initially de­
velopcd for 2D signal in Chandran and Elgar (1990) 
(without frequency averaging). If it is assumed that the 
bispectrum is estimated over an (N0 ) 4 grid and the odd 
averaging window size is fixed to Mn, (Mn= 2.Jn + 1), 
then the signal data length must be adjusted to L = 
Mn.No, eithcr by decreasing the signal length or by zero 
padding. So for the nth centred signal realisation of fi­
nitc length N 2 : 

+J. +J. 
Ê"(k1, k,) = L L F(k1.Mn+iJ)F(k2.Mn+j,). 

]1=-Jn.fa=-J,. 
(20) 
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Sorne direct submethods, not detailed in this paper, are 
also described in Nikias and Raghuveer (1987); Nikias 
and Mendel (1993); Nikias and Petropulu (1993), pp 
l:!2-117. 
The indirect method (Higher Order Correlogram) is sim­
ply the finite Fourier 'l'ransform of the windowed third 
order moment: 

ÎJ"(k 1 ,k2) = 
(22) 

With: 

M{"(n,,n,) = L Xn(i)Xn(i+n1)Xn(i+n2) 
iES(M) (23) 

And 

S(M) = [sup(O, -n;, -n;), inf(N, N - n~, N - n;)]X 

[sup(O, -nt, -n;), inf(N, N - nt, N - n;)] (24) 

The four dirnen~ional window is the product by itself of 
a two dimensional window (Parien 1 Optimal ... ) used 
for ID signal bispectrum estimation, W 2D ( n 1 , n 2 ) = 
ww(n 1).W1D(n2 ), (Nikias and Raghuveer, 1987; Ni­
kias and Mendel, 1993; Nikias and Petropulu, 1993, pp 
124-132). Furthermore, in all estimations presented be­
low only a simple 4D rcctangular window was used. 
Finally1 for both rnethods, the bispectrum estimation is 
computcd by averaging ail the bispectrum estimations 
of the different triab, 

. 1 M • 
B(k,,k,) = M LB"(k,,k,) (25) 

n:::l 

where M denotes the nurnber of realisations. The para­
mctric class uses a linear system identification from third 
order moment lags and then computes the bispectrum 
by triple product. However, the bispectrum estimation 
hy triple product does not always seem possible {Er­
<lem and Tekalp 1 1992). Sorne parametric estimators 
work for bispectrum estimation and phase couphng de­
tection. For instance an AH model identification us­
ing Yulc-Walker equations generalised to Higher Ortler 
Statistics is described in Raghuveer and Nikias (1985). 
Also, the ARMA model estimation is presented in Gian­
nakis and Swami (1988); Giannakis and Mendel (1990), 
and an extension to 2D signal is presented in Le Caillec 
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et al. (1995). But pararnetric estimators remain very 
bad quantifiers and their use in nonlinearity detection 
is troublesome. For these reasons, results presented in 
the following section are based only upon conventional 
estimators. The spectrum estimation needed for the bi­
coherence estimation is also based on classical spectrum 
estimators. Consequently the bicoherence is estimated 
using either indirect method and correlogram or direct 
method and periodogram. An important problem, spe­
cific to the 2D signal bispectrum, is the visualisation of 
information contained in a 4D structure. For this rea­
son we have introduced bicoherence tables as describcd 
in the following section. 

4 Bicoherencc tables (BTs) 

In ordcr to summarise in 2D structures the information 
contained in the bicoherence, we have defined the three 
following Bicoherence Tables (BTs). 
-Range Azimuth (RA) table: 

TnA(k';,k!) = LL(P(k';,k!,k;,k;)-c)' (26) 
x; x; 

-Range Range (RR) table: 

rRR(k!,k;) = LL(P(k';,kt,k;,k;)-c)' (27) 
k! k~ 

- Azimuth Azirnuth (AA) table: 

TAA(k';,k;) = LL(P(k';,k!,k;,k;)-c)' (28) 

kt kt 

where C would be the linear filter bicoherence value, 
which wou]d have been equal to Oin our signal decompo­
sition assumption if we had dealt with an infinite num­
ber of trials. Because this number is finite the bicoher­
ence is not equal to 0 when therc is no phase coupling, 
but has a mean of about 0.20 for sixteen realisations 
( the numbcr which has been used in our simulations). 
ln order to take into account this relevant problem, C 
has been fixed to 0.20 and ail bicoherence values under 
this mean have not been used for BT computation. This 
issue of the numbcr of realisations is discussed again in 
the conclusion. What is the "physicaP' interpretation 
of these BTs ? The RA table gives the amount of in­
teraction of wave k1 with the other spectrum waves. 
The RR and AA tables give the interaction between the 
waves located on the axis kx = k! (resp ky = kt) with 
the waves located along the axis k, = k; (resp ky = k;). 
Thesc tables give the amount of interaction along the co­
ordinates axis and can be seen as lD signal bicoherence. 
Il must be noted that these BTs do not have the same 
symmetry relations as the bispectrum ( a plane in the 
bispectrum coordinates is not necessarily transformed 
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Fig. 4. Phase coupling detection {both methods) 

into a parallel plane by symmetry), but some basic re­
lations are always valid. These BTs are a first stcp to 
locating nonlinearities, but a finer analysis can only be 
made with the bicohcrence. In order to understand how 
these BTs work, some examples are related in the next 
section. 

5 Results and Discussion 

Initially, the bispectrum was estimated over a [64] 4 grid 
{size due to memory limitations) for both methods. ln 
order to calculate a more accurate estimation for sea 
surface bispectrum, we computcd it over the same num­
ber of frequency samples, but using a normalised frc­
quency range equal to [-0.25, 0.25] instead of [-0.5, 0.5] 
(the normalised frequency is usually defined as the real 
frequency divided by the sampling frequency). For the 
indirect mcthod 1 the bispectrum computation on such 
a support would have needed, a third order moment 
estimation over [128] 4 lags which is impossible due to 
memory limitations. So for sea surfaces (simulated or 
not), only the direct rnethod is available for the time 
being. For the tests pcrformed on simulated images, six­
teen [128]X[l28] independent trials were generated. For 
ERS-1 images, sixtcen [128]X[l28] subsets were taken 
from the [256]X[512] imagettc (with consequently some 
overlapping), and were assumed to be indcpcndent iûg­
nal trials (point which we will discuss in the conclu­
sion). In order to avoid incoherent values, only the 
points where JS(k,).S(k,).S(k1 + k2) was greater than 
10% of the maximum value of this squared root triple 
product were taken into account to compute the bico­
herence. 

5.1 Simulated 2D Second Orcier Volterra Models 

In this first subsection, three examples are providcd. 
The first one is only made up of waves with phase cou­
pling. The next two examplcs are the output of a Second 
Orcier Volterra model, without filtering in the second ex­
ample and partial filtering in the third one. 

First example: Phase couplt:d sinusoids 
The first signal is made up of four waves, the third wavc 

being phase coupled with the first Iwo and the fourth 
being without phase coupling, i.e. by taking the nota­
tions of(l6) A1=A2 =A3 =l, R = 2, k1 = (rr/2,0), k2 = 
(0, rr/4). DTs are presented {fig. 4) for the whole bis­
pectrum estimation (both methods providing the same 
results), and we can find non null values, for the plane in­
cluding the point {rr/2, 0, 0, rr/4), i.e. the points (0, rr/4), 
( rr /2,0), (rr /2,rr /4) in the RA table ( consequently the per­
fect symmetry between the three sinusoids is retrieved). 
Non null values are also found al point (rr/2, 0) (resp 
(rr/4, 0)) and their bispeclral symmetric points in the 
RR table (resp the AA table). For this signal, in or­
der to estimate the bispectrmn variance, the bispectrum 
was estimated from ten <lifferent sets of sixteen indepen­
dent realisations. For the non nuU bispectrum compo­
nents, wc obtain 0.251 ± 0.065 (the theorctical value is 
2/8 = 0.25). The result is satisfactory but other tests 
with noisy data remain to be made. In order to well 
explain how bicoherencc, and BTs work we simulated 
some nonlinear interactions on a more complicated i:!Îg­
nal. 

Second P.xample: Complete 11 nonlinear 11 signal 
In this example, we considered a signal with a finite 
bandwidth spectrum. 

(k = 0 if k \t M = ±[Bf, Bf]X[Bl', B','] (29) 

where (k is real and nonnegative ( as in ( 1)). We chose 
in this case a Pierson-Moskowitz spectrum, multiplied 
by Hasselmann's spreading fonction introduced in Has­
selmann et al. (1985), in order to simulate a sea surface 
{Mastin et al., 1987). The angle between the wind pa­
rarneter direction (U10) and the range axis is equal to 
45° and the wind speed equals 15 ms- 1 . The range 
resolution was set cqual to 16 m and the azimuth reso­
lution to 20 m ( as for ERS-!). The result of the simu­
lated spectrnm is reportcd in fig. 6) and the simulated 
image ( deduced from the squarcd root spectrum with 
random phases) is shown in fig. 5. A nonlinear signal 
was generated from this original signal by squaring it 
and by multiplying the squared signal by a coefficient 
et (o- = 6.10<~) in order to kccp the same or<ler of mag­
nitude for the original and the squared spectra (it is 
equivalent in fig. 3 to rcducing IJ1 (k) and H 2 (k) to all­
pass filtcrs). The final nonlinear image {fig. 7) rcsults 
from the sum of the original signal and the multiplied 
squared signal. Ils spedrum (fig. 8) is split into three 
parts, a medium wavelcngth spcctrum provi<led by the 
original signal (in our case about 200 metcrs) 

(k E M = ±[Bf, Bf]X[B;, B!{] (:JO) 

a long wavelengths spectrum obtaine<l by "destrnctive" 
interactions between the waves, 

G/ EL= [Bf - Rf, Bf - Bf]X[B; - B'i, B':( - Bi] 
(31) 



Fig. 5. Original signal 
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Fig. 6. Original signal spectrum 

and a short wavelerigths spectrum obtained by "con­
structive" interactions 

as shown in fig. 8. For short wavelengths, the magnitude 
expression is equal to 

çsc = ~ ~ ( (k eJ('Pn+'Pk-n) (33) k 
2 

L n· -n· 

n 

and the spectrum: 

2 

5(k) .(.6.k) 2 = E{(t((t)*} = : L E{((n,(k - n) 2
} 

n (34) 

(L in Lhe following of this section denotes the 2D sum-
n 

mati on over the spectrum band wid th), and for the long 
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Fig. 7. Final signal 

Fig. 8. Final signal spectrum 

wavelengths 

(35) 

and 

2 

5(k).(.6.k) 2 = E{(td(Gd)*} =: LE{((n,(k+n) 2
} 

n (36) 

Consequently, (î/ and (kc are complex values. Because 
by quadratic filtering, the same energy is spread over the 
long and short waves , and also because the short wave­
length spectrum bandwidth is smaller than the long fre­
quency spectrum bandwidth, the short frequency mag­
nitude is lower than the long frequency magnitude, as 
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can be seen in fig. 8. The nonlinear image bispectrum 
shows several phenomena which can be divided into two 
classes: the primary phase coherency phenomena and 
the secondary ones. 
The Primary Phase Coherency Phenomena 
{PPCP) are only those phenomena implying a phase 
coupling between two waves and a third wave being gen­
erated by the interaction of the first two wavcs. Such a 
phenomenon occurs for: 

B(L, M) B(M, M) B(S, M) 

Where L denotes a wave included in the long wave spec­
trurn (31), Sis a wave included in the short wave spec­
trum (32) and M is an original wavc spectrum (30). 
For instance, in the first case, the bispectrum is equal 
to: 

B(k1, k,) .(t.k )3 = i E{ (k, .ej ~,, .(k, .é~•, .((:~ +k, )'} 

= iE{((k, (k,) 2) (37) 

and then, assuming that C = 0, for an ideal infinite 
number of trials: 

P(k1,k2) = E{(k,-(k,) 

L E{((n.(k,+n) 2} 
(38) 

n 

In this case we must notice that 

TRA (k,) = L P 2 (k,, k2) = ] (39) 
k, 

and the coefficient a does not intcrfere in the bicoher­
ence calculation. 
The Secondary Phase Coherency Phenomena 
(SPCP) occur between waves not bound by a quadratic 
interaction. These phenomena can be found for: 

B(S, S), B(L, S), B(L, L) 

In each of these three cases, the waves have not inter­
acted or have not bcen generated by interactions of the 
other two waves, but by considering: 

2 

G'. (c,:;)' = : L L (n (n, (k,-n (k,-n' ej~ (40) 
n n' 

with 

( 41) 

Assuming that n = n' then i.p = i.pk 1-n - 'Pk 2-n. But 
(k, - n) E M and (k2 - n) E M, so these waves have 
destructively interacted at the frequency k1 - k2 and 

consequently the phase of a term of the sum is equal to 
'Pk,-n - 'Pk,-n (see (35)). Then 

and, assuming an ideal case (an infinite numbcr of real­

isations) then P 2 (k 1 - k2 , k1 ) = ~ with 

A= LLE{((n.(k,-n-(k~n) 2 )E{((n'·(k,-n' -Ù~n' f} 
n n' (43) 

B = L L L(E{((n (k, -n) 2
} E{((n'-(k,-n,)2). 

E{(n"-(k,-k,+n") 2
) ( 44) 

Unfortunately this bicoherence expression does not give 
a simple result in the BTs. This kind of phase coupling 
occurs in the first and second cases B(S, S), B(L, S), 
and does not imply original spectrum wave. Thus, if the 
original spectrum has been totally removed, nonlinearity 
detection would be still possible by these phenomena. 
The third SPCP is similar, and by considering : 

2 

(.~.((Z;)' =: LL(n(n,(k,+n-(k,+n' ej~ (45) 
n n' 

with 

(46) 

assmrng that n = n', then t,p = t,pk 1 +n - i.pk 2+n. But 
k1 + n E M, k2 + n E M, so these waves have destruc­
tively interacted at k2 - k1 so 

IJ(k2 - k,, ki).(t.k) 3 = R{(tt-k, .(t~((ttl'l = 
0!3 2 

S L E{((n.(k,+n (k,+n) } (47) 
n 

Thus, if the original spectrum has been totally removed, 
nonlinearity detection would be still possible by these 
phenomcna. The third SPCP is similar and by consid­
ering : 

2 

G1-((tir =: LL(,,Ç,,(k,+n(k,+n'·efr (48) 
n n 1 

with 

( 49) 
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Assming that n = n', then 'P = 'Pk, +n - 'Pk2+n . But 
k1 + n E M, k2 + n E M, so these waves have destruc­
tively interacted at k2 - k1 so 

B(k2 - k1 , k1)-(L'ik) 3 = E{Gi-k, -G~(Gi)*} = 
0:3 

S LE{((n-(k,+n-(k2+n)
2

} (50) 
n 

n n' n" 

As the previous phenomenon, this one does not imply 
the original wave spectrum, and would occur even if 
waves from the original spectrum were missing. In order 
to verify our theory we computed the three BTs for the 
nonlinear signal. On the RA table (fig. 9) al! spectrum 
frequencies give a non nul! bicoherence , for the reason 
that they have al! interacted in the nonlinear process. 
This table must not be confused with the spectrum as is 
seen in the following subsection. ln the AA and RR ta­
bles (fig. 10-11), primary and secondary phase coupling 
phenomena are clearly separated, the secondary ones 
being the strongest. ln order to compare "linear" and 
"nonlinear" signais, we computed the BTs for a signal 
having the same spectrum as the nonlinear signal (ran­
dom phases have been added to the squared signal for 
each realisation). The RA table for the "linear" signal 
(fig. 12) is much smaller than the "nonlinear" one (fig. 
9) and the separation between bath signais can easily be 
made. The next section is devoted to the study of BT 
behaviour in the case of partial filtering of the original 
or of the squared signal. 

Third example: Filtered "nonlinear" signal 
The first example is to verify the SPCP existence. So 
we totally removed the original spectrum and only the 
phase coupling between short and long waves is possi­
ble. The RA table has the same order of magnitude as 
the complete "nonlinear" signal RA table (fig. 9, fig. 
12 and fig. 13 are represented with the same grey level 
scale) , thus proving that these phenomena exist and are 
very strong. The RR and AA tables (not shown in this 
paper) are composed only of SPCP present in fig. 10-11. 
ln order to verify that the RA table and the spectrum 
can contain very different patterns, H2 (k) (see fig. 3) 
was designed in order to have a very narrow pass-band 
(consequently few waves interact). The spectrum (fig. 

Fig. 13. Range-Azimuth Table of the "nonlinear" signal 
without original spectrum 

14) is composed of three parts, the large original spec­
trum and two narrow and weaker spectra generated by 
interactions. The RA table (fig. 14) contains three equal 
parts , having the same order of magnitude (because the 
BTs measure the amount of nonlinearity which is equal 
for waves created by interaction or having interacted) 
and the same bandwidth (the waves which have not in­
teracted being removed). In the SAR imaging process, 
nonlinearities are assumed to be oriented along the az­
imuth axis. To simulate such behaviour, the squared 
signal was filtered with a 2D directional fil ter ( an all­
pass filter along one axis and a low-pass filter, with a 
very low eut-off frequency kco, along the other axis). 
The spectrum is shown in fig. 15. If the waves travel 
along the nonlinear axis (90° from the horizontal axis), 
then the linear axis table (RR in this case) con tains a 
strong peak around the continuous component whereas 
the nonlinear axis table is almost nul! (fig. 16). This 
pattern is easily explained because the bicoherence is 
high for (kx, ky) E [-0.5, 0.5]X[-kco, kc 0 ]. It is then 
logical that the summation of the squared bicoherence 
over ky (kx fixed) is higher than for a summation over 
kx. When the waves travel far from the nonlinear axis 
then BTs are almost nul! ( only estimation errors provide 
non nul! values). From this example we may conclude 
that when there are a linear axis and a nonlinear one, 
the stronger bicoherence values are located near the con­
tinuous component of the linear axis table. 
The BTs constitute a useful tool to analyse the non­
linearity contained in a 2D signal. Their application is 
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not easy, but they allow the information contained in 
the 4D bicoherence to be summarised. The main bi­
coherence disadvantage is its strong dependence on the 
number of realisations, and its estimation can provide a 
rather high amount ofnonlinearity even when there is no 
phase coupling in the signal. In the second subsection, 
BTs obtained on SAR images are analysed. 

5.2 ERS-1 SAR images 

The validity of the quadratic approximation has been al­
ready tested for several nonlinear models. For instance 
a monochromatic signal of pulsation w passing through 
an exponential system generates " spurious" components 
at 0, 2.w, 3.w, • • •, and the magnitudes of these com­
ponents are asymptotically equal, even if component w 

remains the strongest after the continuous component 
(Garello and Le Caillec, 1996). The nonlinear mapping 
SAR process has also been decomposed into a Second 
Orcier Volterra Mode! and first results are related in (Le 
Caillec et al., 1996). These results show, for realistic 
significant wave heights of the sea surface, rather good 
agreement between the spectrum and the BTs of a com­
plete nonlinear SAR process and the spectrum and the 
BTs of the quadratic approximation of this process. We 
present here the results for five typical images , the char­
acteristics of which can be found in table 1 (Day, hour 
latitude longitude estimated dominant wavelength in 
meters DW, estim:ted azimuth eut-off in meters ACO , 

Nbr 1 2 3 4 5 

Day 6 Oct. 93 8 Oct·. 93 5 Oct. 9;: 2 Oct. 93 30 Sep. 92 

Hour 23:39:36 13:15:26 0:41:02 0:43:50 23:35:27 

Lat. 24.72 3.09 18.34 48.51 50.62 

Long. 341.18 316.85 326.81 320.32 336.80 

DW 345 294 101 94 227 

ACO 221 142 232 317.5 413 

Max. 17.7 62.7 77.8 75.3 6.4 

Table 1. Image data 
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Fig. 15. Directionally filtered signal spectrum 

BT maximum value Max.) 
Image 1 (fig. 18) This image contains a dominant wave 
travelling in the azimuth direction. The RA table and 
the spectrum are similar and the BT maximum value 
is rather low ( see table 1). The AA table shows a 
pattern made up of two sets of symmetric peaks, lo­
cated respectively at (0, M) and (M, M) . The pattern , 
except for secondary phase coupling phenomena, is a 
similar pattern to the one in fig 10-11. By considering 
all JS(k1).S(k2).S(k1 + k2) greater than 2%, the sec­
ondary phase coupling phenomena does not appear but 
lines along 21r / k!• 2 

'.::: 400m ( and its symmetric lines) 
appear in the AA table and 21r / kt· 2 

'.::: 0m ( and its sym­
metric lines) appear in the RR table (see fig 18). But 
these lines are due only to the fact that the highest 
frequency components are located about these wave­
lengths and that we deal with a finite number of re­
alisations. However, a more accurate study of the bi­
coherence shows high bicoherence values for spectrum 
components about 350 m. The nonlinear interactions 
would occur for wave components about 170 m. These 
components have been removed by the azimuth eut-off. 
For this reason, nonlineari ty detection for "construc­
tive" interactions remains difficult. However, because 
of the lack of destructive interactions and SPCP, we 
can conclude that this image does not contain classi­
cal quadratic interactions produced by a Second Orcier 
Volterra Model. The lack of nonlinearity can be par­
tially explained by the fact that the short waves, which 
would have been generated by interactions, have been 
removed by the azimuth eut-off and the long waves by 
a high pass filter inherent to quadratic interactions (Le 
Caillec et al., 1996). 
Image 2 (fig. 19) ln this image, there are no great dif­
ferences between the RA table and the spectrum either . 
Only some small parts are darker, and especially a peak 
around 500m in the azimuth direction (by taking into 
account all the triple product values greater than 2% 
this peak becomes stronger than the one about 300m). 
A study of the bicoherence shows unusually high nonlin­
earity rates, especially between the waves about 500m, 
proving the existence of a nonlinear phenomenon for 
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/ 

Fig. 16. Directionally filtered RR (left) and AA (right) 
tables 

these waves. 
Image 3 (fig. 20) The relevant information is that the 
RA table and the spectrum are different. ln particu­
lar, the waves travelling in the azimuth direction have a 
greater bicoherence whereas those travelling in the range 
show few interactions , even for a bicoherence computa­
tion over the whole support. Consequently, only one of 
the two dominant wave sets has interacted, which is the 
one that propagates in the azimuth direction. The other 
relevant information is: 
-Firstly, the components which have interacted Jess are 

11 2 · · ) h those with 2rr/kx' = 0 (1.e. along the range axis , w e-
reas those having the same projection onto the azimuth 
axis (k 1 = k 2 ) have the strongest interactions. This ob-

x X h' h servation agrees with the classical velocity bunc mg t e-
ory which states that a linear phenomenon is provided 
when waves travel in the range direction. 
-Secondly, the AA table is stronger than the RR one , 
especially for long waves, proving that the azimuth axis 
is more relevant than the other in the nonlinear process. 
Image 4 (fig. 21) The conclusions are similar to those 
of the previous image, but the computed difference of 
the amount of nonlinearity between the two wave sets 
is smaller , perhaps because the wave magnitude in the 
azimuth direction is lower. . 
Image 5 (fig. 22) Few nonlinear interactions are de­
tected , but these BTs show similar patterns as those 
contained for the BTs of fig. 22. However waves with 
such a long crest line are not observed in the open sea. 
The mapping mechanism of this image is not easy to 
understand and seems to be nonlinear. The lack of non­
linearity detection is perhaps due to blurring of higher 
order nonlinearities. 
In order to summarise the information collected from 
these images we can conclude that, even if the dominant 
wavelength is near the range axis , quadratic nonlinear­
ities can occur (images 3,4). Whereas when the waves 
propagate in the azimuth direction, the image does not 
contain any apparent quadratic nonlinearity (image 1-
2) , thus proving that the quadratic approximation is 
not suitable in this case for the complete nonlinear SAR 

Fig. 11. Image 1 AA table (left) and RR table ( right) 

process. Also , it has been established that the strongest 
interactions occur for waves having the same azimuth 
wavenumber projection, whilst the components near the 
range axis interact the least. The frequencies with the 
highest amount of phase coupling have a wavelength be­
tween 200-300 meters. The SAR mapping (leading to 
the SAR spectrum of (6)) decomposition on a Second 
Orcier Volterra Mode! given in Le Caillec et al. (1996) , 
shows that the quadratic interactions are both low-pass 
and high-pass filtered. The low pass filtering is the well­
known azimuth eut-off which acts on nonlinear and lin­
ear components, but the quadratic waves are also high­
pass filtered, because by expending the exponential i_n 
(5) the quadratic interactions are multiplied ?Y kx. This 
implies that these interactions (but also h1gher ord~r 
nonlinear interactions) are removed near the range axis 
as observed for image 3-4. Consequently, quadratic in­
teractions can only be found in an azimuth frequency 
band around 300m ( as noticed for image 3-4). More­
over " destructive" quadratic interactions can be located 
in this band only if the original spectrum is close to the 
range axis. The waves (kx, ky) and (- kx , ky) , assuming 
that kx is fairly small, have significant frequency com­
ponents and their "destructive" interactions are locat~d 
at (-2.kx, 0) , and these interactions are co~seq~e~tly m 
the frequency band where quadratic nonlmeanties are 
not filtered. "Constructive" interactions have too high 
wavelengths to be detected. However due to the weak­
ness of the nonlinear components in this case , the as­
sumption of a linear system when the waves travel in 
the range direction is a good approximation. In. other 
cases , where the original sea surface spectrum 1s not 
close to the range axis, both constructive and destruc­
tive interactions are removed (respectively by the high 
pass filtering inherent to the quadratic interactions and 
by the azimuth smearing). For this reason , images whe~e 
the dominant waves are in the azimuth direct10n contam 
few quadratic interactions . However two remarks must 
be formulated: 
-The first one is that, if the significant wave height (and 
consequently the displacement) becomes too high , the 
original spectrum can be removed (by the azimuth 
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Fig. 18. Image 1, spectrum ( upper left), RA table ( upper right) , RR table (lower left) , AA table (lower right) 
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Fig. 19. Image 2, spectrum (upper left) , RA table (upper right), RR table (lower left) , AA table (lower right) 



211 

Fig. 20. Im age 3, spectrurn (upper left) , RA table (upper right) , RR table (lower left), AA table (lower right) 
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Fig. 21. Image 4 , spectrum (upper left) , RA table (upper right) , RR table (lower left) , AA table (lower right) 
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smearing) and the destructive interaction frequcncy com­
ponents can exceed th ose of the original filtered sea sur­
face spectrum. The resulting SAR spcctrum is located 
near the range axis (Bruning found such results in Brun­
ing et al. (1990)). 
-Sccondly, our method seems to fail in an apparently 
nonlinear case (image 5), without any convincing ex­
planation. Consequently the mechanism leading to the 
Fourier coefficient expression of (5) and to the spectrum 
of (6) agrccs with results found both on real and simu­
lated SAR images, but a mechanism such as that of fig 
22, remains to be analysed. 

6 Conclusion 

In this paper, wc have presented a way to detect non­
linearities or at least their quadratic approximation for 
2D signab and more specifically for SAR images of the 
ocean surface. For that purpose we have shown that 
HOS methods were very powerful tools and we have de­
veloped one of the possible bispectrum (or bicoherence) 
estimations in order to analyse the images. We have 
particularly put the emphasis on the quantification of 
the amount of nonlinearity present at given frequencies 
on the images and introduced the bicoherence standard 
deviation and bicoherence tables in ordcr to vi:malise 
and synthesisc the information contained in a 4D form. 
This latter tool is very wcll adapted for the detection 
and localisation of nonlincarities as was shown in our 
simulation using a 2D Second Order Volterra Mode!. 
Besicles) the tables of bicoherence are particularly inter­
esting if used in the context of SAR images, i.e. for 2D 
signals that are naturally divided along two preferrccl 
axes (range and azimuth). We were then able to de­
tect the amount of nonlinearity provided by the cou­
pling of frequencies in cither the range or the azimuth 
directions or between these two directions. For instance, 
the Range-Azimuth table provides a fast localisation of 
the nonlinearity interactions and a possible estimation 
oftheir strength when cornpared to the image spectrum. 
We demonstrated on the simulations that it was not only 
possible to detect frequencies creatcd by nonlinear inter­
actions between two waves prescnt on the input spec­
trum ( and rcfcrred to Primary Phase Cohcrence Phe­
nomena) PPCP) 1 but furthermore, that we were able 
to dctect the existence of a second level of phase cou­
pling (referred as Secondary Phase Coherence Phenom­
ena, SPCP) between waves having no nonlinear interac­
tions in the original (input) spectrum. Jndeed we noted 
the appearance of frequencies generated at the first level 
(PPCPL i.e. by waves existing in the input spectrum, 
and presenting a strong amount of phase coupling giving 
rise t.o another lcvel {SPCP) of nonlinearities betwcen 
them. 
The SPCP are very relevant duc to the fact that they 
allow a possible discrimination betwcen the two cases 
where i) the bicohcrence estimation yields a non zero 
result due to the finite number of realisations used and 
ii) a nonlinear phenomenon is present but weak. 
This is the first time that such a phenomenon is pre­
<licte<l and observed on simulations. In Le Cai\lec et al. 
(1996) we have shown that on rcal SAR images these 
nonlinearities are constraine<l by different filtcring ef­
fects ( azimuth eut-off, ... ) 1 implying that the mccha-

nisms devcloped for setting equation (6) is correct. Nev­
ertheless cquation (6) does not contain information on 
the localisation and on the strength of the nonlineari­
ties which can be only obtained by using Highcr Order 
Spcctra. We have especially shown that nonlinearities 
occur mainly when the waves travcl in the range direc­
tion, but they generate rather weak components, and 
that the interactions are filtered for other wave propa­
gation directions. Higher Order Spectra (and the IlTs 
which are the more complete version for 2D signals) are 
powerful tools for dealing with nonlinear signais and sys­
tems1 but they have two main limitations. 
- Firstly, the limited and generally small number of real­
isations can induce false nonlinearity detection or avoid 
it if the "nonlinear,, component bicoherence amount is 
tao weak and consequently blurred into a misestimated 
amount of bicoherence. By using the statistics of a mod­
ified bicohcrence ( and more especially the tail of \be dis­
tribution), we can detcct phase coupling with few or non 
independent realisations (Garcllo and Le Caillec 1996). 
The independence of the subsets of the ERS-l 1images 
bas been verificd by a similar method ( Garello and Le 
Caillec, 1996). 
-Secondly) classical phase coupling detection can fail for 
non passive systems. For instance, if the signal of (12) 
is shifted in frequency by ôk, then classical phase cou­
pling detection using the bispectrum does not work for 
the triplet k, + Sk, k2 + Sk, k1 + k2 + Sk. A solution, 
using the Third Order Wigner-Ville Transform, to de­
tect shifted phase coupling, is provided in Le Caillec and 
Garello (1996). As previously mentioned, evcn if ail re­
sults are not easy to explain, SAR simulations which arc 
presently underway will help understand \he working of 
the SAR image process and of its second order approxi­
mation. Morcover, it will be possible in our future work 
to include the trispectrum in order to take into account 
cubic nonlinearities. Even if using the bispectrurn can­
not always provide definitive answers, due toits capacity 
to separate the coherent backscattering (wave modula­
tion) from the incoherent one (speckle noiseL it rcmains 
a prospective tool for rcmoving noise. 
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