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Abstract :   
 
Thus far, no long-term in situ observation of planktonic biomass have been undertaken to optimize the 
black-lip pearl oyster aquaculture in the remote Tuamotu atolls. The feasibility of using data from the OLI 
sensor onboard Landsat-8 satellite to determine chlorophyll a concentrations (Chla) in a deep atoll, Ahe, 
was then assessed over the 2013–2021 period using 153 images. Validations with in situ observations 
were satisfactory, while seasonal and spatial patterns in Chla were evidenced within the lagoon. Then, a 
bioenergetic modelling exercise was undertaken to estimate oyster life-history traits when exposed to the 
retrieved Chla. The outputs provide spatio-temporal variations in pelagic larval duration (11.1 to 
30.6 days), time to reach commercial size (18.8 to 45.3 months) and reproductive outputs (0.5 to 1.7 event 
year−1). This first study shows the potential of using remote sensing to monitor the trophic status of deep 
pearl farming lagoons and help aquaculture management. 
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Highlights 

► Using remotely sensed products for a deep atoll lagoon is relevant. ► Bottom reflectance was 
negligible at depth higher than 30 m. ► Temporal variability and spatial distribution of chlorophyll a 
concentrations were highlighted. ► Life-history traits of the black lip pearl oyster were quantified. 
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Introduction 
Atolls are ring-shaped coral reefs enclosing a lagoon, located principally throughout the Indo-

Pacific under tropical or sub-tropical climates (Kinsey and Hopley, 1991). Atoll lagoons are 

highly productive ecosystems compared to the ultra-oligotrophic surrounding waters and 

often support significant ecosystem services such as tourism and aquaculture (Andréfouët et 

al., 2012b). In French Polynesia and in the Tuamotu-Gambier archipelago in particular, black 

pearl aquaculture is based on the culture of one suspension-feeder bivalve, the black lip pearl 

oyster, Pinctada margaritifera, and this activity is the second source of incomes for French 

Polynesia territory. However, fluctuations in the production of pearls over the last 20 years 

have originated from environmental variations that are difficult to evaluate in real-time in 

these remote atoll ecosystems (Andréfouët et al., 2022b). 

Pearl oysters are able to process seston particles efficiently as small as 3 µm (Pouvreau et al., 

1999), so that, in atoll lagoons, nanophytoplankton and mixotrophic and heterotrophic cells, 

form the bulk of their diet (Loret et al., 2000). However, most of the autotrophic biomass (ca. 

80%) is formed by picophytoplankton (<2 µm, cyanobacteria and picoeukaryotes), too small 

particles to be consumed efficiently by oysters (Fournier et al., 2012a). In fact, 

picophytoplankton is consumed by the mixotrophic and heterotrophic cells which act as 

trophic mediators between picophytoplankton and oysters (Loret al., 2000). Thus, even if the 

plankton biomass is mainly composed of picophytoplankton, chlorophyll a concentration 

(Chla) was confirmed to be an appropriate proxy of food availability for pearl oysters 

(Sangare et al., 2020). Life-history traits of the pearl oyster such as growth, reproduction and 

recruitment (including spat collection for the pearl oyster farms) depend strongly on the food 

availability and water temperature (Fournier et al., 2012b; Thomas et al., 2012; Sangare et al., 

2020) which differ in gradients between as well as within atoll lagoons. As a result, both 

juvenile and adult growth differences are reported between atoll lagoons (Pouvreau and Plasil, 

2001) and within an atoll lagoon (Sangare et al., 2020). Adult reproduction also varies at the 

seasonal scale (Fournier et al., 2012b). Finally, bivalve larvae biomass and spat collection 

vary in space and time within an atoll (Thomas et al., 2012). Hence, it is considered that a 

sustainable black pearl production industry requires a good knowledge of Chla and water 

temperature to take appropriate management decisions. 

Pearl culture has been established in many French Polynesia atolls, but not all of them have 

been studied in detail. Oceanographic campaigns were performed in late 90s to sample 10 

atolls to study their trophic status once (i.e., one or two days of measurements) during two 

seasons (Dufour and Harmelin-Vivien, 1997). The atoll geomorphology (depth, openness to 

the ocean) and exposure to prevailing waves and winds control water residence time which 

greatly influences the lagoon trophic status and food web organization. As the geomorphology 

may differ from one atoll to another, this leads to a wide range of lagoon ecological 

functioning (Pagès et al., 2001, Dufour et al. 2001). Chla ranges typically between 0.18 and 

1.24 µg.L
-1

 between atoll lagoons (Pagès et al., 2001). As Tuamotu-Gambier atolls are spread 

over large areas (approximately 4,840 km²), these ecosystems are difficult to survey on a 

long-term basis and studies of spatio-temporal variability within atolls are scarce. Historically, 

the atolls of Takapoto (and to a lesser extent Tikehau) in the 90s and Ahe (and Takaroa) since 

2007 have been the most studied, especially in the planktonic compartment. Delesalle et al. 

(2001) reported spatial heterogeneity in phytoplankton biomass during several seasons in 

Takapoto atoll and Charpy (1996) described the temporal variability on a monthly scale in 

Takapoto atoll. More recently, the spatial and temporal variabilities were characterized in Ahe 

atoll (Thomas et al., 2010, Lefebvre et al., 2012, Sangare et al., 2020, Rodier et al., 2021). The 

spatio-temporal variations in Chla
 
are driven by the water residence time which varies daily 

due to differences in swell, wind and tide conditions (Andréfouët et al., 2001), but also varies 
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spatially within atoll lagoon depending on water circulation, and wind conditions (Thomas 

2010, Dumas et al., 2012, Fournier et al., 2012b). Chla is also affected by wet and dry seasons 

and water temperature (Lefebvre et al., 2012; Thomas et al., 2012). However, quantifying the 

extent of these spatio-temporal variations in phytoplankton biomass and their effects on pearl 

oyster performances are not possible without long-term survey of the phytoplankton 

compartment, but also without a relatively high frequency sampling as the conditions may 

vary quickly, in a matter of days, according to the environmental conditions. 

Satellite remote sensing has been proven to be a valuable method for assessing water quality 

and for supporting aquaculture management (Palmer et al., 2020). The choice of a remote 

sensing method is the result of trade-offs between spectral, spatial, temporal resolution of 

sensors depending on the question raised (McCarthy et al., 2017). Among available sensors 

passing over the study area, two optical satellites  are of interest for oligotrophic clear waters 

in atoll lagoons in an aquaculture context, namely the OLI (Operational Land Imager) sensor 

onboard Landsat-8 satellite (L8) allowing acquisitions at high spatial resolution (30 m/pixel) 

every 16 days and the OLCI (Ocean and Land Colour Instrument) sensor onboard Sentinel-

3A/B satellite (S3A/B) allowing the acquisition of scenes at medium spatial resolution (300 

m/pixel) every ~2 days at Tuamotu latitudes. Due to their spectral and radiometric resolutions 

OLI and OLCI are perfectly suitable to measure the Chla from the reflectance of water. The 

high spatial resolution of L8 allows for better mapping of spatial variations within small 

structures such as lakes (e.g. Ruis-Verdù et al., 2016) and hence potentially atoll lagoons as 

well. Although L8 images have been used in many studies to quantify Chla such as in Lake 

Titicaca (Ruis-Verdù et al., 2016) or coastal waters of the US Virgin Islands (Kerrigan and 

Ali, 2020), none of them have focused on Pacific Ocean atoll lagoons yet to our knowledge.  

Based on a quantitative evaluation between remote sensing reflectance (Rrs) from Landsat-8  

and in situ data, Wei et al. (2018) confirmed that L8 measurements are appropriate for coral 

reef application but pointed out that in these optically clear-water ecosystems, bottom 

reflectance has to be considered when studying the properties of the water column (Boss and 

Zaneveld, 2003). Two solutions emerge: either the removal of the bottom contribution to the 

signal measured by the satellite but this remains challenging (McCarthy et al., 2017) or more 

simply the elimination of the problematic shallow areas by masking them. A depth of circa 20 

m has been evidenced by several authors to be the threshold for the detection of the bottom 

reflectance in such waters (e.g. Kutser et al., 2020). However, this depends on the type of 

bottom-albedo as bright substrates, such as coral sand and mud will influence more strongly 

the total signal with an enhanced contribution to the upwelling signal compared to coral, algae 

or bare rock substrates (Maritorena et al. 1994, Ackelson et al, 2018). This means that only 

atolls with a significant deep lagoon surface area such as Ahe (average depth of 41 m 

Andréfouët et al., 2020) are worth investigating to check if Chla can be accurately remotely 

sensed.  

The use of satellite remote sensing for marine aquaculture applications has been fruitful for 

site selection (Mc Carthy et al., 2017). To this end, remotely sensed Chla and water 

temperature data were efficiently coupled with individual bioenergetic models to produce 

spatio-temporal growth trajectories of cultured bivalves (e.g. Brigolin et al., 2017). In some 

cases, Dynamic Energy Budget models (or DEB; Thomas et al., 2011b, Palmer et al., 2020) 

were used. The DEB theory is a generic approach that assumes common metabolic 

organization and energy allocation rules between species whatever their life stages are, via a 

set of parameters, some of which can be species-specific (Sousa et al., 2008). DEB models are 

useful to understand the acquisition of energy (proportional to the surface area of the 

organism) and the allocation of this energy towards growth and its maintenance on the one 

hand, and reproduction and the acquisition of maturity and its maintenance on the other hand. 
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A DEB model has recently been developed for all Pinctada margaritifera life stages (Sangare 

et al., 2020). This model uses water temperature and Chla (as a proxy for food availability) as 

forcing variables. This development is particularly interesting for modelling both the larval 

processes (development and recruitment) and the growth of juveniles and reproduction of 

adults, three life stages that are all critical for the pearl oyster aquaculture industry 

(Andréfouët et al., 2012b; Sangare et al., 2020).  

Data on the spatio-temporal dynamics of phytoplankton in Tuamotu atoll lagoons are patchy 

and hinder a better understanding of their ecological functioning but also of their aquaculture 

productivity. The aim of the present study was therefore to assess the feasibility and 

advantages of a remote sensing approach coupled to a bioenergetic modelling approach to 

improve knowledge of deep atoll lagoons functioning and discuss the implications for pearl 

oyster aquaculture. The deep lagoon of Ahe atoll was used as a case study. Firstly, seven 

years and half of reflectance image archives of the OLI (Operational Land Imager) sensor 

onboard Landsat-8 satellite (L8) were used at the scale of Ahe lagoon in order to produce 

spatial and temporal trends in phytoplankton biomass as represented by chlorophyll a 

concentrations (Chla
a
). An in situ survey allowed to assess some observed temporal and 

spatial patterns using the temporally closest observations from a Landsat overpass. A 

particular attention was paid to the effects of bottom reflectance through a more detailed study 

of the effects of bathymetry on the computed chlorophyll a values. The L8-OLI remotely 

sensed Chla products were also compared with remotely sensed Ocean-Colour data from the 

European Space Agency (ESA) Climate Change Initiative project (OC-CCI) V5.0 products at 

one km and one day resolution. Secondly, spatio-temporal fluctuations in trophic resource 

(Chla) and water temperature were used to force a DEB model to predict how several life-

history traits of the pearl oyster (adult growth and reproduction, pelagic larval duration) will 

vary depending on Ahe atoll environmental conditions. MODIS-Aqua sea surface temperature 

(SST) products were used to provide water temperature for DEB modelling.  

2. Material and methods 

2.1. Study site  

Ahe Atoll (14.5° S, 146.3° W) is located in the northwestern part of the French Polynesia 

Tuamotu Archipelago, 500 km northeast of the island of Tahiti in the Pacific Ocean. The 

dimensions of the atoll are 23.5 km long and a maximum of 12.2 km wide (Fig. 1). The 

bathymetry of the lagoon was charted completely using a mono-beam depth sounder as 

described in Andréfouët et al. (2020). The 145 km
2
 lagoon has an average depth of 40.6 m 

and a maximum depth of 71 m. The shallowest parts (<30m) are restricted to the edges of the 

reef rim, lagoon pinnacles and also includes the south-western part of the lagoon. In total, this 

represents ca 21% of the total surface (~30 km²). The lagoon is connected to the surrounding 

ocean by a deep pass in the west and by numerous shallow channels (or hoa) in the south and 

west but the water exchange with the ocean is considered moderate due to a low exposure to 

oceanic waves (Andréfouët et al. 2012a). Therefore, Ahe lagoon is then defined as 

hydrodynamically semi-enclosed. The climate is humid tropical with a rainy season ranging 

from November to April. The water temperature in the lagoon varies typically between 26 and 

30 °C (Thomas et al., 2010; Sangare et al., 2020). Ahe has been a pilot site for the pearl 

farming research program since 2007 (Andréfouët et al., 2012b) as it hosts significant pearl 

farming activity, although it has declined in the past years.  
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Fig. 1. Map of Ahe atoll, its location in Tuamotu Archipelago and lagoon bathymetry. 

Location of survey sites where chlorophyll a concentrations (Chla) were estimated using in 

situ sampling and remotely sensed data. Black triangle: temporal survey; Points: spatial 

survey (the transect sites are consecutively numbered from T1 in the south-west corner to T14 

in the pass, T11 being the most north-western site); Squared area: temporal survey using ESA 

Ocean colour CCI Chla products V5 at 1 km/pixel and NASA Ocean Colour MODIS SST 

products at 4 km/pixel. 

 

2.2. Ocean-colour remotely sensed data 

Three kinds of data sets were used from satellite sensors. Near-surface chlorophyll a 

concentrations (Chla) were retrieved from Landsat-8 Operational Land Imager using a 

chlorophyll algorithm after correcting for atmospheric effects. The two other datasets were 

retrieved directly from spatial agencies as final products without specific processing: Chla 

from Ocean-Colour data initiative of the European Space Agency (ESA) and Sea-Surface 

Temperature from MODIS Aqua of the National Aeronautics and Space Administration 

(NASA).  

2.2.1. Chlorophyll a concentrations processed from Landsat-8 Operational Land Imager 

The present study is based on the Level-1 daily Landsat-8 (L8) data of the multispectral OLI 

(Operational Land Imager) sensor. Landsat-8 OLI sensor consists of nine spectral bands (band 

1 - coastal aerosol; band 2 - blue, band 3- green, band 4 - red; band 5 - Near Infrared NIR; 

band 6 – SWIR1; band 7 - SWIR2; band 8 - panchromatic; and band 9 – cirrus) with a 30-

meter resolution. Data are available on USGS gateway (https://earthexplorer.usgs.gov/) and 

were acquired from 05/26/2013 to 04/14/2021. The satellite collects images of the Ahe atoll 

with a 16-day repeat cycle, referenced to the Worldwide Reference System-2. Approximate 

scene size is 170 km north-south by 183 km east-west. Using USGS platform visualization 

tool, a rapid and easy identification of suitable scenes for time-series pixel level analysis was 

https://earthexplorer.usgs.gov/
https://www.usgs.gov/faqs/what-worldwide-reference-system-wrs
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performed based on cloud cover and wind effect on the ocean and lagoon surface. Only 

images representing a sufficient amount of valid pixel over Ahe were kept and analyzed, 

which represented a total of 153 scenes (and therefore days).  

Retrieval of remote sensing reflectance (Rrs) products from satellite imagery requires 

atmospheric correction (AC) (IOCCG, 2010). In attempting to assess the Chla in lagoon, 

elimination of atmospheric effects and water surface scattering from the upward radiance is an 

essential step in order to observe backscattered photons which contain only information about 

the subsurface condition (Gordon, 1978). In the present study, a generic processor called 

ACOLITE (Atmospheric COrrections of satellite, V.20210802.0; Vanhellemont and Ruddick, 

2018; Vanhellemont, 2019) was used for atmospheric correction and pre-processing of atoll 

water prior to deriving near-surface chlorophyll a concentrations (Chla) in Ahe atoll. 

ACOLITE is based on radiative transfer theory. This tool supports high spatial resolution 

products such as L8-OLI and it is able to minimize sun-glint effects. Among the AC 

algorithms, Wei et al. (2018) provide a quantitative evaluation of Landsat-8 Rrs and concluded 

that the ACOLITE AC method is suitable for water masses such as found on coral reefs.  

In this study, the ACOLITE/SWIR approach was used for aerosol determination 

(Vanhellemont and Ruddick, 2018) considering the assumption of zero water-leaving radiance 

(  ) is valid (also known as “black pixels”). The ACOLITE AC assumes that due to 

exceedingly high pure-water absorption in the shortwave infrared (SWIR) of the spectral 

domain at 1.6 and 2.2 µm the signal remaining in these bands after Rayleigh correction is 

induced by aerosol scattering. By default, ACOLITE was set based on the Dark Spectrum 

Fitting (DSF) method (Vanhellemont, 2019) which consists in measuring the radiance of the 

darkest pixel in order to estimate the impact of atmospheric effects by estimating water vapor, 

clouds and aerosols on a per-pixel basis. A cirrus cloud masking procedure, and a sun glint 

contamination correction were performed in ACOLITE using default parameters. In practice, 

to remove first the non-water pixels (e.g. clouds, wave breaking, or land pixels), and to 

correct glint effects from water pixels, a threshold (<0.05) on the reflectance in the 1.6 µm 

SWIR band was performed. The sun glint correction was based on the Harmel et al. (2018) 

procedure for which an estimate of the glint reflectance was made in a range of SWIR bands 

and extrapolated to the shorter wavelength channels (VNIR) using a model reflectance shape. 

Negative pixels were also masked.  

Near-surface chlorophyll a concentrations (Chla in mg m
-3

 or equivalently in µg L
-1

) were 

calculated using the chlorophyll algorithm currently used by NASA (see 

https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/). This algorithm consists in merging the 

standard OCx band ratio algorithm (O’Reilly et al., 1998), which is called OC3 for Landsat 

OLI sensor, and the colour index (CI) developed by Hu et al. (2012). The NASA operational 

OC3 algorithm is a four-order polynomial relationship derived from Rrs and in situ 

measurements of Chla, and a three order-band algorithm using the maximum band ratio of 

blue bands (443/482 nm) and green band (561 nm). Global validation exercise using large in 

situ NASA bio-Optical Marine Algorithm Dataset (NOMAD v2, 

https://seabass.gsfc.nasa.gov/wiki/NOMAD) has shown a better performance of CI compared 

to the OC3 algorithm with a significant reduction of the uncertainties and biases associated 

with residual glint, stray light, AC errors, and white or spectrally-linear bias error in Rrs for 

Chla ≤ 0.15 µg L
-1

 (oligotrophic waters). With the intention to ensure a smooth transition 

between water types, the used algorithm follows the NASA procedure which diverges slightly 

from Hu et al. (2012). Indeed, the CI algorithm is restricted to relatively clear waters at Chla 

≤ 0.15 µg L
-1

 while the OC3 is restricted at higher chlorophyll concentration waters (Chla > 

0.20 µg L
-1

). In between these values (0.15 µg L
-1

 < Chla ≤ 0.20 µg L
-1

), the CI and OC3 

algorithms were blended using a weighted approach (see Hu et al., 2012 for further details). 

https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
https://seabass.gsfc.nasa.gov/wiki/NOMAD
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We named this switching algorithm the OC3CI algorithm. To our knowledge, the OC3CI 

algorithm has never been applied to map Chla in atoll lagoon waters. As Chla typically 

ranged from 0.18 to 1.24 µg L
-1

, OC3CI algorithm is particularly appropriate to retrieve near-

surface chlorophyll a concentrations in these waters.  

2.2.2 ESA OC-CCI chlorophyll a concentrations (Chla) and MODIS-Aqua Sea-Surface 

Temperature (SST) products 

Two standard level 3 products were also handled for comparison with our L8 images 

processing. 

First, remotely sensed Ocean-Colour data from the European Space Agency (ESA) Climate 

Change Initiative project (OC-CCI) V5.0 were used for establishing comparison with Chla 

obtained from L8-OLI level 1 products. The OC-CCI product merges and corrects the biases 

of data from four independent Ocean Colour sensors (i.e. SeaWifS, MODIS, MERIS, and 

VIIRS) and related algorithms and atmospheric corrections (http://www.esa-oceancolour-

cci.org). The level 3 mapped Chla were retrieved at 1-km and a maximum 1-day resolution 

(but on average 3-days resolution) for the period ranging from January 2007 to May 2021 

(last access in September 2021). This period encompassed both our L8 time-series and some 

historical data sets over the 2007-2009 and 2013 periods, hence before the L8 launch in 2013. 

A total of 1856 mean values were then retrieved of which 5 were discarded as they were 

atypical and isolated in time, i.e. close to 0, or higher than 1 µg L
-1

. Another seven 

consecutive values were deleted from 01-06-2012 to 13-06-2012, because Chla reached a 

suspicious 1.1 µg L
-1 

to 4.6 µg L
-1

, although we acknowledge they could be the consequence 

of an atypical huge phytoplankton bloom as well.  

Second, MODIS-Aqua Sea-Surface Temperature (SST) products delivered from the NASA 

Ocean Colour website (http://oceancolor.gsfc.nasa.gov) were used in this study for monitoring 

seasonal changes in Ahe atoll temperature for the period 01/01/2007 to 03/22/2021 providing 

a comparable time series to the OC-CCI one. Level 3-SST mapped products were temporally 

binned into 8-day climatology and with a 4 km spatial resolution. The night-time SST 

observations derived from the 11-micron spectral band were computed following the long-

wave infrared (LWIR) algorithm which is a modified version of the nonlinear SST algorithm 

of Walton et al. (1998). A total of 584 mean values were then retrieved. Pixels with depth 

higher than 30 m were selected, yielding only two usable lagoon pixels for MODIS-Aqua. 

The pixel with the lower density of pinnacles was chosen as these coral structures at sub-

surface may affect the remotely sensed data. Note that we aim to use SST to assess the 

general trend variations across our time-series and to use representative values for DEB 

modelling, and not to characterize precisely the lagoon temperature throughout the lagoon as 

in Van Wynsberge et al. (2020),. A common bounding box was then selected for both 

products (146°18.42 W 14°28.2 S and 146°16.2 W 14°30.36 S) corresponding to 1 pixel for 

SST product and 16 pixels for OC-CCI product (Fig. 1). 

2.3. Survey sites in the lagoon, in situ available data sets for match-ups and 

further data processings 

Three survey sites (Fig. 1) with depth close to 30 m were monitored for temporal dynamics 

(Fig. 1, 29.9, 34.7 and 28.5 m for S1, S2 and S3 respectively) as they were shown to be 

environmentally contrasted (Thomas et al., 2010; Sangare et al., 2020; Rodier et al., 2021). 

Two of these sites (S1 & S3) were monitored over 6 months from March to August 2017 for 

in vivo Chla  (daily at four 3-week periods), water temperature (daily) and pearl oyster growth 

(at four dates; Sangare et al., 2020). Additionally, a spatial transect (Fig. 1) was performed at 

http://www.esa-oceancolour-cci.org/
http://www.esa-oceancolour-cci.org/
http://oceancolor.gsfc.nasa.gov/
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two different dates (28 nov. and 2 dec. 2017) for which extracted Chla measurements were 

assessed following Rodier et al. (2021). Some other extracted Chla were retrieved from the 

table 4 of Thomas et al. (2010) for the periods May 2007, August 2007, March 2008 and 

August 2008 and from the table 2 of Lefebvre et al. (2012) for the periods May 2008, October 

2008, February 2009, and August 2009. Two additional studies from Pagano et al., (2017) and 

Rodier et al., (2021) provided one value each in May 2013 and December 2017, respectively.  

Remotely sensed Chla products from L8 OLI were averaged over a circle with a radius of 

100m (36 pixels) around each survey site. The same approach was used for the 14 sites of the 

transect using the closest scene available (12/31/2017), i.e. a month later than the sampling. 

Dynamics of remotely sensed Chla and SST were smoothed using a cubic smooth spline 

(function smooth.pline of the R version 4.0.3) and were interpolated every day for easing 

interpretation of the figures in the result section.  

The effect of bottom reflectance on remotely sensed Chla was assessed in two ways. First, at 

each date, means of Chla values were calculated using pixels at all depths (the whole lagoon), 

and for the ones up to 10m, 20m, 30m, 40m and 50m, giving a total of six means which were 

normalized (centered and reduced) giving a Z-Score comparable between dates. Means and 

standard deviations of the Z-scores for all dates at the six depth intervals were then calculated. 

The goal was to partial out the temporal effect and to highlight a potential relationship 

between bathymetry and Chla assuming that a decreasing trend may reveal a potential effect 

of bottom reflectance. Second, a comparison of remotely sensed and extracted Chla from the 

spatial transect was performed against bathymetry to highlight the threshold depth at which 

the Chla signal may be positively biased.  

2.4. Bioenergetic modelling 

The Dynamic Energy Budget (DEB) theory (Kooijman, 2010) was used to simulate life-

history traits of the black pearl oyster (Pinctada margaritifera) following the parametrization 

put forth by Sangare et al. (2020). The model has two forcing variables: 1) temperature which 

influences all rates through a temperature correction (TC) function and 2) food abundance as 

proxied by Chla which impacts assimilation according to a scaled Holling’s type II functional 

response (f) using a calibrated parameter (the half saturation coefficient Xk). Xk was 

calibrated on the shell length dynamics of two size classes of pearl oyster at two sites (sites S1 

and S3, Fig.1) during six months in 2017 (data retrieved from Fig. 8 in Sangare et al., 2020). 

Fitting of the Xk value was achieved by minimizing the sum of squared residuals between 

predictions and observations. 

Three life-history traits were of interest as they are critical for black lip pearl oyster 

aquaculture (Sangare et al. 2020). These are the pelagic larval duration (PLD), the 

juvenile/adult growth, and the adult reproduction. These three traits were simulated for the 

three sites along the seven and half years using linearly interpolated remotely sensed Chla
 
and 

SST products as forcing variables.  

The PLD trait was estimated from the duration between gamete release and settlement of 

juveniles, simulations starting at the beginning of every month along the seven and half years 

(N=85). Settlement of juveniles occurs when the maturity threshold is reached which 

corresponds to a size of approximately 1.3 mm. Second, the growth trait was estimated as the 

time needed for recently settled juveniles to reach the grafting size (9 cm shell length). 

Juveniles were seeded at the start of every month, but as the food abundance differed between 

the sites, the total number of simulated periods by sites was different (N=58 for S1, N=52 for 

S2, N=39 for S3). Third, the reproduction trait was the cumulative daily reproductive effort 

and potential spawning events for a 13 cm-shell length adult, a size in the upper range of 



9 
 

cultured individuals (Pouvreau and Prasil, 2001). Spawning occurs when the gameto-somatic 

index reaches 0.29, and the reproduction buffer is then emptied by 0.85. Spawning is 

opportunistic regardless of environmental conditions see Sangare et al. (2020) for details.   

All simulations were performed under Matlab 2010b and outputs were stored on a daily step.  

3. Results 

3.1 Sea-surface temperature (SST) 

MODIS-Aqua remotely sensed SST products at 4 km resolution were retrieved for a central 

lagoon pixel (Fig. 1). SST displayed seasonal variations ranging from 25.6 to 31.1 °C (mean ± 

sd 28.3°C ± 1.1 °C) and typically peaked in January-February and floored in September (Fig. 

2A). Some inter-annual differences occurred with concomitant differences in minima and 

maxima of ca 1.5°C. Two years, 2008 and 2011, displayed lower maxima, ca 28.5 and 28°C 

respectively. Performance of the satellite product was evaluated using in situ temperature 

observations monitored for six months in 2017 (Fig. 2B). A small deviation from the 

observations occurred but the seasonal trends were coherent and the linear relationship was 

significant (y=1.01x-0.61, N=17, adj R²=0.86; F=92.32; P<0.001). The difference in 

temperature between the two survey sites (S1 and S3; Fig. 1) was very low (on average 0.08 

°C, Fig. 2B).  

 

 

Fig. 2. A) Sea-Surface Temperature (SST) from MODIS-Aqua over 15 years, with MODIS 

observations (grey circles), and interpolated line (cubic smoothing spline). B) Validation of 

MODIS observations against two in situ observations temperature data sets (S1 and S3 in 

Fig. 1, brown and green circles respectively) for the year 2017 (data retrieved from Sangare 

et al., 2020). The line is the smoothed curve from panel A. The insert shows remotely sensed 

SST versus in situ temperature values.  
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3.2. Spatial distribution of remotely sensed Chla and bathymetry effect 

The use of L8-OLI remotely sensed chlorophyll a concentrations (Chla) allowed to perform 

an analysis on the effect of bathymetry to assess a potential bottom reflectance effect (Fig. 

3A). The relationship between Z-scores of Chla and bathymetry decreased sharply when 

shallow depths were progressively excluded and stabilized when only depths higher than 30m 

were considered. A match-up exercise displayed a very good agreement between remotely 

sensed and in situ Chla (spatial transect Fig.1) in particular for sites with a depth higher than 

20m (Fig. 3B). A high discrepancy occurred for site T2 where bathymetry was 14.6 m 

whereas site T12 displayed a good agreement for the same depth. These two independent 

analyses enable to consider that a potential effect of the bottom would be negligible for depths 

higher than 20 m. Hereafter, we choose a conservative 30m threshold, which still allowed to 

process 70% of the lagoon.  

The spatial distribution of Chla from L8-OLI, for waters deeper than 30 m revealed that 

higher Chla values were found (>0.4 µg L
-1

) in the south-western part and on the edge of the 

eastern as well as in the northern parts (Fig. 4). Lower Chla values occurred in the central 

zone. A plume of inflowing oceanic water through the pass contrasted with the rest of the 

lagoon, with very low level of Chla values. 

 

 

Fig. 3. Remotely sensed chlorophyll a concentrations (Chla) from L8-OLI, with A) effect of 

bathymetry on centered and reduced Chla values per date (Z-scores) as a function of 

bathymetry (see materials and methods section for details). B) Transect along 14 sites 

performed in 2017 (see Fig. 1 for details). Extracted Chla (mean and sd; black circles) and 

remotely sensed Chla (mean and sd; grey circles). The bathymetry of sites is displayed with 

the grey line. 
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Fig. 4. Spatial distribution of chlorophyll a concentrations (Chla) from L8-OLI for waters 

deeper than 30m on the date of 04/29/2019 (see Fig. 1 for bathymetry details). Note the plume 

of oceanic oligotrophic water (blue color) entering the lagoon through the pass. 

 

3.3. Temporal Chla dynamics at the three survey sites 

Chla
 
in the three temporal survey sites (Fig. 1) displayed different temporal patterns. At S1 

(Fig. 5A), values ranged from 0.13 to 0.89 µg L
-1

 (mean ± sd, 0.46 ± 0.17 µg L
-1

, N=93) and 

exhibited clear seasonal patterns in relation to water temperature (Pearson correlation 

coefficient r=0.34, t=3.4, df=90, P=0.001). Two peaks a year could be observed. At S2 (Fig. 

5B), values were slightly lower (mean ± sd, 0.31 ± 0.14 µg L
-1

), ranging from 0.11 to 0.60 µg 

L
-1

. The seasonal pattern was blurred in 2015 and 2016 but a significant correlation with 

temperature was still found (r=0.27, t=2.6, df=87, P=0.01). Patterns in S3 (Fig. 5C) were 

clearly different from the two previous ones with fluctuations unrelated to temperature 

(r=0.05, df=82, P=0.63) and lower values (mean ± sd, 0.24 ± 0.13 µg L
-1

 ; 
 
min-max 0.05-0.62 

µg L
-1

).  

The match-up between remotely sensed Chla
 
and observed values was qualitatively good as 

ranges of values were consistent (Fig. 5 A, B, C). However, the relationship was not 

significant (P>0.05) possibly due both to the low number of match-ups (N=11) and two 

outlier values (Fig. 5 D). 



12 
 

 

Fig. 5: A, B, C, remotely sensed chlorophyll a concentrations (Chla) from L8-OLI in the three 

survey sites S1 brown line, S2 orange, S3 green (filled circles are satellite observations and 

line is the cubic smoothing spline interpolation). Temperature dynamics from Fig. 2 were 

added to the three plots for ease of comparison (grey line). Open circles in A and C are Chla 

estimated by in vivo fluorescence measured in 2017 from Sangare et al. (2020). Black circles 

in B and C are Chla estimated after extraction from Rodier et al. (2021). D: Relationship 

between L8-OLI Chla values and in vivo fluorescence (match-ups only) was not significant 

(P>0.005) (Y=X identity line is shown). 

 

3.4 Comparison of ESA OC-CCI and L8-OLI products 

The aim of using ESA OC-CCI Chla V5 product was twofold. First, this allowed to compare 

remotely sensed data with field observations available prior to 2013. Second, this enabled to 

cross validate with L8-OLI outputs on the same bounding box than for ESA OC-CCI (Fig. 1) 

for the period 2013-2021. Remotely sensed Chla estimated by ESA OC-CCI product ranged 

between 0.11 and 0.91 µg L
-1

 with a mean ± sd of 0.31 ± 0.11 µg L
-1

 (N=1844; Fig. 6A). A 

strong seasonal variability in Chla
 
was detected with either one peak per year before 2012 or 

two peaks per year after 2012. The observations of extracted Chla from past studies matched 
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well with the remotely sensed data (Fig. 6A). Unlike for survey sites 1 and 2 (Fig. 5 A, B), the 

dynamics of SST and Chla (Fig 6A) were opposite and negatively correlated at the lagoon 

scale (r=-0.29, t=-4.37, df=207, P<0.001). Remotely sensed Chla values by L8-OLI followed 

the same trend than from ESA OC-CCI for the period 2013 to 2021 (Fig. 6B). The 

relationship between the two methods was linear and highly significant and the slope was 

close to 1 (Fig. 6C).  

 

 

Fig. 6. Comparison of the temporal dynamics of chlorophyll a concentrations (Chla) between 

the two remotely sensed data sets. A) ESA Ocean Color-CCI at 1 km for a squared central 

area of the Ahe lagoon from 2007 to 2020 (Fig. 1). Temperature dynamics from Fig. 2 were 

added for ease of comparison (grey line). B) L8-OLI for the same bounding box than ESA 

from 2013 to 2021. C) The significant linear relationship between ESA OC-CCI product and 

L8-OLI Chla (y=0.99x + 0.00, N=63, adj R²=0.91; F=610.7; P<0.001). Grey points are 

remotely sensed observations, black line is the cubic smoothing spline interpolation, black 

points are historical in situ observations. 
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3.5. Modelling of life-history traits of the pearl oyster 

The first step was to calibrate the half saturation coefficient Xk of the scaled functional 

response of the Pinctada margaritifera DEB model using shell length values over six months 

retrieved from Sangare et al. (2020) at S1 and S3. The best Xk value was 0.34 µg L
-1

 leading 

to a good fit with observed values (Fig. 7A). Then, three traits of the pearl oyster were 

estimated using two forcing variables of the DEB model i.e. the remotely sensed values of 

Chla
 
at the three sites and the MODIS SST from a central lagoon pixel (Fig. 1 and 2).  

In the model, SST controls the metabolic rates through the temperature correction function 

(TC) and the assimilation rate is dependent on Chla via the scaled functional response (f). 

Determining the range of values taken by TC and f allows measuring their separate effects on 

life-history traits. TC averaged 1.72 with a coefficient of variation (CV=sd/mean) of 6.7%. 

Mean (and CV) of f values were 0.55 (19.2%), 0.45 (25.5%) and 0.39 (30.7%) for S1, S2 and 

S3 respectively. Therefore, f values in S3 were 29% lower and 160% more variable than in 

S1. Also, TC was less variable than f values.  

Pelagic larval duration (PLD) displayed seasonal variations at the three sites but with different 

means and ranges (Fig. 7B). All survey sites combined, 50% of the values ranged between 

14.3 and 20.4 days. PLD in S1 showed the lowest values (from 11.1 to 22.4 days). PLD in S2 

and S3 ranged higher than S1 (from 12.2 to 30.6 days). Differences between the sites were 

more pronounced for juvenile and adult traits which varied by approximately a factor two to 

three between S1 and S3 in particular (Fig. 7C). The mean times needed for recently settled 

juveniles to reach the grafting size (9 cm shell length) were 21.3, 28.3 and 40.6 months at S1, 

S2 and S3 respectively. The minimum value of this growth trait was 18.8 months in S1 and 

the maximum one was 45.3 months in S3. Temporal fluctuations of the different traits were 

mostly smoothed but still persisted. They were less the result of seasonality than of inter-

annual differences in the forcing variables (SST and Chla). Each of the survey sites displayed 

a different temporal pattern over the seven and half years underlying spatio-temporal 

interactions in TC and f. Growth in S1 stayed rather stable, whereas it increased in S2, and 

decreased after a steady phase in S3. Cumulative reproduction investment displayed the same 

patterns. Reproductive investment of a 13 cm-shell length adult was regular as the cumulative 

output fit a straight line and spawning events occurred at periodic interval in S1 (Fig. 7D; 13 

spawning events i.e. 1.7 year
-1

). The same pattern occurred in S2 but with a lower food 

availability leading to 9 spawning events (1.2 year
-1

) which were less regular. Some 

discrepancies were highlighted in S3 and characterized by a more variable reproductive 

investment which is reflected by irregular and less frequent spawning events (4 spawning 

events i.e. 0.5 year
-1

).  
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Fig. 7. DEB outputs for the three survey sites (S1 brown line, S2 orange, S3 green). A) DEB 

validation on Sangare et al. (2020) pearl oyster shell length values using a calibrated value of 

Xk = 0.34 µg L
-1

 in two sites (S1 and S3, filled circle are observations, lines are the 

simulations). B) Pelagic larval duration (PLD) estimated every month for the seven years. C) 

Time needed for a recently settled juvenile to reach grafting size (9 cm). D) Cumulative 

reproduction investment and potential spawning (arrows) of a 13 cm shell length adult.  

 

4. Discussion 

4.1. Relevance of remotely sensed products for a deep atoll lagoon 

In the present study, two remotely sensed products were assessed to retrieve either sea surface 

temperature (SST) or chlorophyll a concentrations (Chla). First, MODIS-Aqua SST product 

performed well in reproducing the variations over a six-month period monitored in 2017 by 

Sangare et al. (2020). Using another SST product (the Multi scale ultra-high resolution; 

MUR), Van Wynsberge et al. (2020) showed that SST was well estimated in Raroia atoll, 

another deep atoll. Sensors with higher spatial resolution (i.e. 30 m aboard Landsat-8) would 

have provided higher spatial resolution but at the expense of a lower temporal frequency 

(minimal revisiting time of 16 days for L8). However, the weak spatial SST differences (0.3 
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°C) between S1 and S3 lead us to prefer a better temporal resolution especially as, in this 

range of uncertainty, life-history traits simulated by DEB models were little affected (Van 

Wynsberge et al., 2020).  

Although Ahe atoll has concentrated most of the research programs for 15 years, the 

validation of satellite products used to retrieve Chla by historical in situ observations was not 

an easy task as the data are patchy and come from various sources using different 

quantification methods (Extracted Chla: Thomas et al., 2010, Lefebvre et al, 2012, Pagano et 

al., 2017; Rodier et al., 2021; in vivo Chla fluorescence recorded by in situ probes Sangare et 

al., 2020). This problem is inherent to remote coral reef and lagoon ecosystems and their 

higher investigation costs for continuous in situ monitoring.  

Here, the validation of Chla retrieved with satellite products was satisfactory overall. A first 

temporal validation was carried out on two of the three survey sites using in vivo fluorescence 

data obtained by Sangare et al. (2020) from probes deployed over a 6-month period. Although 

the relationship was non-significant due to two outliers and the small amount of L8 images 

available for that period (N=11), the amplitudes and trends of observed Chla were reproduced 

adequately. The discrepancies may also be explained by the probes themselves, as the 

fluorescence sensors are subject to biofouling but also to fluorescence quenching due to high 

light at day time (Monaco et al., 2021). In order to use older extracted Chla collected between 

2007 and 2009 (from Thomas et al., 2010 and Lefebvre et al., 2012) before the launch of 

Landsat- 8, a comparison of the ESA OC-CCI and Landsat-8 OLI chlorophyll products was 

undertaken over the period 2013-2021. The two products gave similar values and trends, and 

this is a reassuring result given that they used different sensors, processing algorithms and 

atmospheric corrections. Also, the inter-annual and seasonal Chla trends observed in situ 

during the period 2007-2009 fitted well with the ESA OC-CCI product.  

However, it is the spatial validation exercise that provides the most interesting validation of 

remote sensing methods. We remind that the closest scene available to retrieve remote sensed 

Chla of the spatial transect was one month later that the in situ sampling. Fortunately, Chla 

were low and quite stable at this period (end of autumn, Fig.5), and therefore we assumed the 

two data sets were comparable. On the one hand, this exercise makes it possible to validate 

the product over a range of values (about 0.1 to 0.4 µg L
-1

) comparable to the range of 

average temporal variations and, on the other hand, it allows to empirically determine the 

depth at which the bottom reflectance no longer has an impact on the data (depth up to 20 m). 

This agreed with the findings of Ackleson et al. (2018) who theoretically showed that the 

maximum depth at which benthic cover could be detected in coral reefs was 11.4, 18.4 and 

21.6 m for benthic algae, coral, and uncolonized sand bottom types respectively.  

Results from the present study allows to state that the combined used of L8-OLI sensor 

coupled to ACOLITE atmospheric correction and the OC3CI Chla algorithm are appropriate 

for the study of spatio-temporal variations of Chla in deep atoll lagoons and for depth higher 

than 30 m. Applicability to other deep atolls is high: some 13 atolls out of 26 studied in Pagès 

and Andréfouët (2001) shows a mean depth higher than 28 m. Another motivation to use high 

spatial resolution sensor similar to L8-OLI’s, is the presence of coral pinnacles in atoll 

lagoons and the fact that all lagoons are not wide enough to be studied at a kilometric spatial 

resolution available with most other Ocean Colour products. The problem of pinnacles would 

be even more striking in many atoll lagoons compared to Ahe, such as Raroia, Takapoto or 

Manihiki, three other deep pearl farming atolls with numerous pinnacles (Andréfouët et al., 

2020).  
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4.2. Insight in phytoplankton biomass temporal dynamics 

For the first time, a long-term and homogeneous series of chlorophyll a concentrations at high 

spatial resolution (Chla a proxy of phytoplankton biomass) and water temperature is available 

for an atoll lagoon. These new data confirm spatial patterns identified during short 

expeditions, but more importantly, they highlight a seasonality that was not previously 

evidenced in Ahe atoll. The first spatial and temporal data set on Chla in Ahe atoll were 

collected by Thomas et al (2010) over 4 periods of 15 to 30 days each between April 2007 

and March 2008. At this observation scale, these authors showed that the day to day 

variability was higher than the seasonal one, and that this could be linked to the wind driven 

mixing effect of the water column. Lefebvre et al. (2012) showed in the same atoll a more 

pronounced seasonality of Chla in relation to temperature the following year (over the period 

May 2008-August 2009), but their sampling schemes were not adapted to discuss the day to 

day variability. The data retrieved thanks to the ESA OC-CCI products shed light on these 

trends as they show a marked difference between these two periods (2007/2008 and 

2008/2009). Thomas et al. (2010) potentially missed a Chla peak in June 2007 and Chla 

variations were more pronounced the following year. While variations on small temporal 

scales were also evidenced by the ESA OC-CCI product (Fig. 5), which would require further 

specific studies, this series clearly shows intra- and inter-annual patterns.  

Seasonal variations in phytoplankton biomass have already been reported in similar atoll or 

coral reef ecosystems. Buestel and Pouvreau (2000) showed a weak seasonality of Chla in a 

closed atoll (Takapoto) in the period 1990-1991, while Charpy (1996) showed a more marked 

seasonality in the same atoll for the following year 1992. In a study on the island mass effect 

in coastal Rangiroa atoll waters (i.e. outside the lagoon), Vollbrecht et al. (2021) showed a 

seasonality of Chla and a positive relationship with temperature over the period 2003-2019. 

They interpreted this increase in biomass in the atoll coastal environment as the result of an 

advection of dissolved and particulate materials from the lagoon through the pass. Net 

exchanges of plankton from the lagoon to the open ocean had also been shown on Ahe atoll 

through the atoll rims (Pagano et al., 2017). Vollbrecht et al (2021)’s result could be 

interpreted as an indirect proof of seasonality of Chla within the Rangiroa lagoon, although 

this could be also related to the seasonal wave regimes (Dutheil et al. 2020), which also 

controls export through the passes. Elsewhere, this seasonality of Chla has also been shown 

on open coral ecosystems in the Red Sea by satellite products with one or two biomass peaks 

per year (Racault et al., 2015).  

The seasonality of Chla may have two main sources: seasonal variations in water temperature 

and availability of resources needed for phytoplankton growth and/or seasonal variations in 

water mass exchanges between the lagoon and the adjacent waters. In Ahe lagoon, 

phytoplankton is limited by the availability of dissolved nitrogen and primary production is 

supported mainly (ca 2/3) by regeneration processes of dissolved organic nitrogen 

endogenous to the atoll lagoon (Rodier et al., 2021). The results of the present study showed a 

relationship of Chla with water temperature in survey sites S1 and S2. It is most likely that 

higher temperature increases the nitrogen regeneration processes via grazing by zooplankton 

or the microbial loop, process which increases the resource availability for phytoplankton 

growth (Seceh et al., 2021). But, other sources of exogenous nitrogen are also part of the 

picture, such as atmospheric deposition through rainfall (Ren et al., 2017), atmospheric 

nitrogen fixation, or bird colonies among others (Rodier et al., 2021). A temporal variability 

in the inputs of these exogenous sources could also control the seasonal patterns in Chla. For 

example, the rainy season usually starts in November for 6 months and precedes the increase 

in phytoplankton biomass. On the other hand, Ahe is considered as semi-enclosed atoll with 

water exchanges through the pass and with water imports mainly through spillways (named 
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hoa) driven by waves (Fig. 1; Andréfouët et al. 2022a). Studies by Andréfouët et al. (2001) 

and Chevalier et al. (2017) showed a significant and positive relationship between the 

residence time of water masses in lagoons (or the age of water masses) and Chla at the lagoon 

scale. Very recently, an extensive study of the influence of waves on the age of water masses 

in Ahe over a long period (between 2000 and 2018) indicates very clearly, a seasonality of 

water mass age at the annual scale but also significant inter-annual differences before and 

after the period 2011-2012 (Andréfouët et al., 2022a). This could partly explain the temporal 

dynamics of phytoplankton with a marked seasonality before 2012 followed after 2012 by two 

biomass peaks per year, which would deserve further study.  

4.3. The role of the lagoon hydrodynamics  

From a spatial point of view, the identified pattern, i.e. an increase in Chla towards the south-

west of the lagoon (Fig. 4), was well-known and seems to be a permanent feature. Thomas et 

al. (2010) and Lefebvre et al. (2012) evidenced this pattern over the period 2007-2009 at 

different seasons and Rodier et al. (2021) identified it again some 10 years later (Nov.-Dec. 

2017). The lagoon hydrodynamics is mainly dominated by a wind driven overturning 

circulation (Dumas et al., 2012). Under typical trade winds, two main barometric water 

circulations emerge: a dominant anticlockwise cell in the north occupying 2/3 of the lagoon, 

and a clockwise cell for the southern part. In addition, a central cell in front of the pass (west), 

is more or less present depending of the wind intensity and direction, and depends mostly on 

tidal flushing (Dumas et al., 2012). The e-flushing time, the time needed to decrease a 

concentration of a particle by a factor 2.178 (e
1
), is typically higher in the south cell compared 

to the central area (80 days versus 50 days) possibly leading to higher phytoplankton biomass, 

a process also shown at the lagoon scale (Andréfouët et al., 2001). These hydrodynamic 

features and the higher cultured pearl oyster standing stocks and human density in the south 

(with possible anthropogenic-driven nutrient enrichment) were the most probable 

explanations of a higher Chla in this area (Lefebvre et al., 2012, Rodier et al., 2021). 

However, the present study offers new perspectives in the spatio-temporal patterns of the 

phytoplankton biomass. The three survey sites were located on purpose in different circulation 

zones and present different variability of e-flushing times depending on wind intensity and 

direction: S1 belongs the south circulation cell, S2 is at the confluence of the north and south 

cells and S3 is in the northern cell (Dumas et al., 2012). The survey of these sites showed that 

they did not follow the same temporal trends whereas Lefebvre et al. (2012) stated that there 

were no spatio-temporal interactions at the lagoon scale. Although seasonality was present in 

each of the survey sites, the correlation with temperature was weaker for S2 than for S1 and 

was insignificant for S3. A positive correlation between Chla and temperature at the lagoon 

scale had previously been shown (Thomas et al., 2012; Lefebvre et al., 2012) but our study 

reveals that it is clearly dependent on the studied sites. This may be a consequence of the 

lagoon's wind driven internal circulation and associated residence times (Dumas et al., 2012) 

in equilibrium with spatialized processes of phytoplankton growth (Rodier et al., 2021). 

Eventually, only 3D hydrodynamic modelling studies coupled with biogeochemical models 

will be able to decipher physical and biogeochemical processes in time and space (Seceh et 

al., 2021) and remotely sensed data would help to validate them.  

4.4. Quantification of life-history traits of the black pearl oyster in natural 

conditions 

The most complete and recent parameterisation of the DEB model for this species (Sangare et 

al., 2020) was used, with the exception of the half-saturation coefficient of the scaled 

functional response (Xk), which was re-adjusted to 0.34 µg L
-1

 (rather than 0.2 µg L
-1

 in 
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Sangare et al., 2020) in order to fit the observed data. The value of Xk depends on the quality 

of the food, the food proxy used and its method of quantification and is classically free fitted 

when modelling one species in contrasting environments (Alunno-Bruscia et al., 2011). For 

example, Monaco et al (2021) had to readjust this parameter Xk to a value of 0.36 µg L
-1

 for 

black lip pearl oysters located in Takaroa Atoll and using in vivo fluorescence measurements. 

Thomas et al. (2011a) calibrated Xk at 0.3 µg L
-1

 for larval stages of Pinctada margaritifera 

reared in in situ mesocosms at Ahe, but for a significantly different overall DEB 

parameterisation. It should be kept in mind that total Chla is assumed to be a correct proxy for 

the food available to pearl oysters, but far from ideal since only 20% of this total 

phytoplankton biomass (nanophytoplankton part) is really consumable by these organisms 

(Loret et al., 2000; Fournier et al., 2012a). It is therefore necessary to make the assumption of 

a constant ratio between picoplanktonic and nanophytoplanktonic biomasses, which is not 

always valid at all spatial and temporal scales in Ahe lagoon (Lefebvre et al., 2012). These 

limitations may partly explain the differences between studies. In our case, it is rather due to 

differences in the quantification methods of Chla (remotely sensed vs in vivo fluorescence) as 

we use the same growth data as Sangare et al. (2020). However, our estimate of Xk is within 

the expected values from the literature.  

Pearl oyster aquaculture takes place entirely in  lagoons and is therefore highly dependent on 

natural environmental variability (food availability and water temperature) impacting larval 

capture, juvenile/adult growth (which will be grafted for pearl production), and adults 

reproduction (Andréfouët et al., 2022b). Thus, here, pelagic life duration (PLD), juvenile 

growth and adult reproduction were quantified using spatial and temporal series of 

chlorophyll a concentrations (Chla used as a proxy of food availability) and sea surface 

temperature (SST) obtained from satellite products as forcing variables of a DEB model 

calibrated for this species (Sangare et al., 2020). This strategy should allow to obtain realistic 

values of these traits under natural conditions where temperature and food availability 

fluctuate more or less closely. It should be noted that the temperature correction (TC) of the 

metabolic rates in the model was less variable (CV=6.7%) than the scaled functional response 

(f) in the different sites (CV=19 to 31 %). Food availability (i.e. Chla) then has a greater 

impact on life history trait values more than SST if we consider the effects of these forcing 

variables separately. However, since SST and Chla co-varied positively in S1 and S2 but not 

in S3, the cumulative effect of TC and f increased the difference in life-history trait values 

between the sites.  

Pelagic larval duration (PLDs) is a critical life-history trait for understanding the time an 

individual spends in the water column and thus the potential for its spatial dispersal before 

settlement on a benthic substrate (Thomas et al., 2016). Sangare et al. (2019) observed PLDs 

between 18 and 31 days in experiments where food availability was fixed at different levels 

and for a mean temperature of 28.1 °C. A quantification of this PLD by simulation based on 

representative values of Chla and temperature throughout the Tuamotu-Gambier spatial range 

reached between 10 and 50 days (Sangare et al., 2020). However, these authors underline the 

strong interest of obtaining realistic spatio-temporal data of Chla and temperature to confirm 

the local life-history traits of the oyster. In our study, we showed that the main driver of PLD 

values was temporal variability rather than spatial variability between the three studied sites. 

Our PLD estimates thus varied from 11 to 30 days, i.e. in the low range of the estimates 

provided by Sangare et al. (2020). It should be noted that our quantification of PLD trait is in 

an Eulerian mode (for a given site), whereas in reality the larvae are subject to hydrodynamics 

and disperse spatially, and thus can possibly encounter different conditions. Our estimates are 

therefore to be used as a range of possible values over time but not at given sites. In an 

approach coupling a 3D hydrodynamic model and a DEB model, Thomas et al. (2016) 



20 
 

showed that the PLD lasted from 12 to more than 28 days for the years 2007 and 2008. These 

authors also showed that the temporal variability of potential spat collection was much greater 

than the spatial variability. Our results are consistent with these data.  

Spatial variability is much more pronounced for the other two life-history traits, namely the 

time to reach the commercial size and reproductive investment, while the temporal component 

is smoothed and representative of inter-annual variations due to the integrative physiological 

responses of the organisms. However, spatial and temporal components sometimes interact as 

these traits showed the greatest variability over time in S3 where SST and Chla did not 

correlate. In a study based on theoretical simulations crossing constant values of temperature 

and food availability, Sangare et al. (2020) obtained values between 15 and 40 months to 

reach commercial sizes at 9 cm, which more or less corresponds to the range of values we 

modelled over time. However, these authors point out that the fluctuations in the forcing 

variables have the greatest impact on the modelled traits. By oscillating either temperature or 

food availability, they obtained values between 25 and 27 months to reach commercial size 

and 2 to 5 spawning events per year for 13 cm shell length adults. We predict 0.5 to 1.7 

spawning events per year under natural conditions. Few in situ data are available for 

comparison. Pouvreau and Prasil (2001) estimated from in situ growth data in several atolls 

and Von Bertalanffy-type models that 21 to 26 months were required to produce 10 cm shell 

length pearl oysters. Going from 9 cm to 10 cm requires an average of 3.1, 4.6, and 7 

additional months for survey sites S1, S2 and S3 respectively in our simulations. While 

growth in sites S1 and S2 are in the high (19.8+3=22.8 months) and low (25.6+4.6=30.2) 

ranges respectively of the data collected by Pouvreau and Prasil (2001), growth in site S3 was 

particularly low (35.1+7=42.1 months). Therefore, the choice of sites has a very strong impact 

on oyster growth, but this is also true for the investment in reproduction, which can vary by as 

much as twofold between our environmentally contrasted sites. Our results show strong 

spatial and temporal effects for this trait in connection with the spatio-temporal variability of 

Chla since spawning events are closely synchronized with food availability (Fournier et al., 

2012b). Thomas et al. (2012) showed that the spat collection of pearl oysters could be lower 

and more time-varying at a site located in the north water circulation cell (according to Dumas 

et al, 2012 see above), whereas it was stronger and less variable at a site located in the 

southern cell. Similarly, these authors show a higher abundance of bivalve larvae (including 

but not limited to Pinctada margaritifera) in the water column during warmer periods 

(February-May) when phytoplankton biomasses are usually higher and adult reproduction is 

stronger. The larvae count results of Thomas et al. (2012) represent the cumulative effect of 

spawning and PLD and indirectly support the spatial and temporal patterns we found.  

5. Conclusion 
Our study shows the feasibility of using satellite high spatial resolution sensors to produce 

realistic chlorophyll a concentrations (Chla) series in atoll lagoons deeper than 30 m. These 

data while subject to their own limitations and biases, provide useful new insights to the long-

term functioning of these remote and economically critical ecosystems. Spatial and temporal 

variabilities are evidenced and significant, with a seasonal signal in particular, which had been 

poorly characterized by short field campaigns so far. The coupling between satellite data and 

DEB modelling has also been successful in quantifying the value of pearl oyster life-history 

traits under natural conditions and in highlighting spatio-temporal patterns. Immediate 

applications of these outputs would be to enhance the identification of high production areas 

for juvenile/adult oysters and better model larval dispersal (Thomas et al., 2016). These will 

definitely help the spatial management of pearl farming activities at the lagoon level although 

the method is currently limited to farming areas at depths higher than 30m. To overcome this 

limitation, it would be necessary to map the reflectance of the benthic cover, and then to 



21 
 

remove the contribution of this bottom reflectance to the total signal. In itself, this is not a 

trivial task. 

Several methodological perspectives are also emerging to further develop this work. More 

detailed studies of the analysis of temporal and spatial variabilities of chlorophyll in relation 

to climatic conditions (temperature, wind) and hydrodynamic forcing should be undertaken. 

From a technical remote sensing point of view, the coupling between different satellite 

products with high spatial resolution (L8-OLI) and high temporal resolution (ESA OC-CCI) 

will have to be strengthened, keeping in mind that some other products (e.g. Sentinel-3A/B-

OLCI, 300m/pixel with a revisit time of ~ 2 days) could be incorporated in the process 

(Pahlevan et al., 2022). An interesting prospect would be to produce spatio-temporal patterns 

of phytoplankton groups using the Physat method (Alvain et al., 2005; Navarro et al., 2017) in 

order to better understand the functioning of these ecosystems but also to better quantify the 

resource available for pearl oysters. Finally, these data should be very useful for validating 

time-series outputs of 3D biogeochemical model currently under development (Seceh et al., 

2021).  
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