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Supplementary Figures and Tables 

 
Supplementary Figure S1. Total microtektite counts (dots) for the 15 size classes used in the 
original counting campaigns (Tables S1-S3), and least-squares fit with a lognormal size 
distribution (line). Shaded areas represent the total contributions to the 0.05–0.2 mm, 0.2–
0.45, and 0.49–0.9 mm size classes used for modeling. 

 
Supplementary Figure S2. Ratio between the tracer concentration at the sediment-water 
interface and at the bottom of the mixed layer, as a function of t bv v/ , for selected values of the 
inverse Péclet number sG  (solid lines). The normalized escape time expectation of Figure 3b in 
the Article is shown for comparison (dashed lines). The values of sG  correspond to a mixed 
layer with thickness L=10  cm, burial velocity bv = 2  cm/kyr, and bulk diffusion coefficients 

s .D =0 1 , 1, 3, 10, 30, 100, and 300 cm2/kyr, respectively. Notice the logarithmic scale on the 
vertical axis. 

 

 

0.01 0.1 1
0.0

1.0

2.0

Mean size (mm)

C
ou

nt
s

g

10−1

C
(0

)/
C

(L
)

100 101 102
100

101

102

103

104

105 Gs=0.005 0.05 0.15 0.5 1.5 5

15

vt/vb



3 
 

Supplementary Table S1. Microtektite counts from the first sampling campaign, divided into 15 size classes. 

Core 
depth 
(cm) 

Mass 
(g) 

0.05–
0.10 
(cnt) 

0.10–
0.15 
(cnt) 

0.15–
0.20 
(cnt) 

0.20–
0.25 
(cnt) 

0.25–
0.30 
(cnt) 

0.30–
0.35 
(cnt) 

0.35–
0.40 
(cnt) 

0.40–
0.45 
(cnt) 

0.45–
0.50 
(cnt) 

0.50–
0.55 
(cnt) 

0.55–
0.60 
(cnt) 

0.60–
0.65 
(cnt) 

0.65–
0.70 
(cnt) 

0.70–
0.80 
(cnt) 

0.80–
0.90 
(cnt) 

3709.0 3.700 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 
3710.0 3.460 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3713.0 3.020 1 2 0 0 1 0 0 1 0 0 0 0 0 0 0 
3714.0 2.460 4 3 1 0 3 1 0 0 0 0 0 0 0 0 0 
3716.0 2.970 1 2 1 0 1 0 0 0 0 0 0 0 0 0 0 
3721.0 2.790 4 8 3 4 5 1 0 0 1 1 0 0 1 0 0 
3722.0 2.880 0 0 2 1 1 1 1 0 0 0 0 0 0 0 0 
3724.0 2.646 0 1 2 0 2 0 1 1 0 0 0 0 0 0 0 
3725.0 2.474 0 0 1 3 1 1 0 1 0 0 0 0 0 0 0 
3729.0 2.947 11 12 9 3 2 0 0 0 0 0 1 0 0 0 0 
3730.0 3.350 15 12 7 3 1 0 2 0 0 0 1 0 0 1 0 
3733.0 3.765 22 2 1 3 1 0 0 1 0 0 0 1 0 1 0 
3734.0 3.092 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
3735.0 2.838 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Supplementary Table S2. Microtektite counts from the second sampling campaign, divided into 15 size classes. 

Core 
depth 
(cm) 

Mass 
(g) 

0.05–
0.10 
(cnt) 

0.10–
0.15 
(cnt) 

0.15–
0.20 
(cnt) 

0.20–
0.25 
(cnt) 

0.25–
0.30 
(cnt) 

0.30–
0.35 
(cnt) 

0.35–
0.40 
(cnt) 

0.40–
0.45 
(cnt) 

0.45–
0.50 
(cnt) 

0.50–
0.55 
(cnt) 

0.55–
0.60 
(cnt) 

0.60–
0.65 
(cnt) 

0.65–
0.70 
(cnt) 

0.70–
0.80 
(cnt) 

0.80–
0.90 
(cnt) 

3697.0 4.500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3700.0 4.260 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
3702.0 5.150 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
3706.0 4.110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3707.0 4.820 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
3709.0 4.280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3710.0 5.410 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3712.0 4.430 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 
3713.0 4.870 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 
3714.0 4.700 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 
3715.0 5.300 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
3716.0 5.500 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 
3717.0 5.760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3719.0 4.960 0 0 0 1 5 2 0 0 0 0 1 0 0 0 0 
3720.0 5.700 0 0 0 1 2 1 1 1 0 0 0 1 1 0 0 
3721.0 6.450 0 0 3 1 3 7 2 1 0 0 0 0 0 0 0 
3722.0 4.940 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 
3723.0 4.270 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 
3724.0 6.300 0 0 0 1 3 2 3 0 0 0 1 0 0 0 0 
3725.0 5.630 0 0 1 0 5 4 0 3 1 0 0 0 0 0 0 
3726.0 5.540 0 0 1 2 4 1 5 4 0 1 0 0 1 0 0 
3727.0 6.560 0 0 2 3 1 7 0 1 1 0 1 1 0 0 0 
3729.0 4.750 0 0 1 2 0 1 3 0 0 0 0 0 0 0 0 
3730.0 5.620 0 0 0 0 2 2 1 1 0 0 0 0 0 0 0 
3731.0 8.690 0 0 0 5 3 1 3 4 0 1 0 0 0 0 0 
3733.0 5.720 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 
3734.0 7.130 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 
3735.0 7.290 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
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Supplementary Table S3. Microtektite counts from the third sampling campaign, divided into 15 size classes. 

Core 
depth 
(cm) 

Mass 
(g) 

0.05–
0.10 
(cnt) 

0.10–
0.15 
(cnt) 

0.15–
0.20 
(cnt) 

0.20–
0.25 
(cnt) 

0.25–
0.30 
(cnt) 

0.30–
0.35 
(cnt) 

0.35–
0.40 
(cnt) 

0.40–
0.45 
(cnt) 

0.45–
0.50 
(cnt) 

0.50–
0.55 
(cnt) 

0.55–
0.60 
(cnt) 

0.60–
0.65 
(cnt) 

0.65–
0.70 
(cnt) 

0.70–
0.80 
(cnt) 

0.80–
0.90 
(cnt) 

3691.5 2.020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3693.5 6.055 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3695.5 3.530 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
3697.0 3.860 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 
3700.0 5.126 0 0 0 3 1 8 4 0 0 0 1 0 0 1 0 
3706.0 5.780 0 0 0 2 0 3 0 1 0 0 0 0 0 0 0 
3707.0 2.347 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 
3709.0 3.815 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 
3710.0 3.470 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 
3712.0 4.982 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 
3713.0 3.900 0 0 0 0 1 1 1 2 1 0 0 0 0 0 0 
3714.0 3.280 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 
3715.0 3.790 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 
3716.0 7.020 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 
3717.0 2.790 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 
3719.0 2.037 0 0 0 0 2 0 1 0 2 0 0 0 0 0 0 
3720.0 3.730 0 0 0 0 0 0 1 3 0 1 0 0 0 0 0 
3721.0 2.999 0 0 0 1 0 4 2 0 0 0 0 0 0 0 1 
3722.0 3.350 0 0 0 0 2 2 0 1 1 1 0 0 0 0 0 
3723.0 1.880 0 0 0 1 0 0 3 1 0 0 2 0 0 0 0 
3724.0 5.937 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 
3725.0 3.436 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
3726.0 2.908 0 0 0 2 0 1 0 1 0 0 0 0 0 0 0 
3727.0 6.500 0 0 0 1 3 2 1 0 0 0 0 0 0 0 0 
3729.0 2.989 0 1 1 0 1 4 1 2 0 0 0 0 0 0 0 
3730.0 3.847 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 
3731.0 2.520 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
3733.0 8.710 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
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Supplementary Table S3. Continued. 

Core 
depth 
(cm) 

Mass 
(g) 

0.05–
0.10 
(cnt) 

0.10–
0.15 
(cnt) 

0.15–
0.20 
(cnt) 

0.20–
0.25 
(cnt) 

0.25–
0.30 
(cnt) 

0.30–
0.35 
(cnt) 

0.35–
0.40 
(cnt) 

0.40–
0.45 
(cnt) 

0.45–
0.50 
(cnt) 

0.50–
0.55 
(cnt) 

0.55–
0.60 
(cnt) 

0.60–
0.65 
(cnt) 

0.65–
0.70 
(cnt) 

0.70–
0.80 
(cnt) 

0.80–
0.90 
(cnt) 

3734.0 4.353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3735.0 2.758 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3736.0 6.917 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3737.0 4.350 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3738.0 4.476 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3739.0 2.748 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3740.0 7.067 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
3741.0 1.750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3742.0 3.625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3743.0 2.288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3744.0 3.010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3745.0 4.858 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3746.0 5.630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Supplementary Methods 

Microtektite counting in core MD90-0961 

Core MD90-0961 (5°03.71’ N, 73°52.57’ E) was collected during the SEYMAMA research 
cruise of the R/V Marion Dufresne in 1990. The 45-m long core was retrieved on the eastern 
margin of the Chagos-Maldive-Laccadive Ridge, which extends over ~3000 km along the 73° 
meridian, at a water depth of 2450 m. The core is composed of calcareous nannofossil ooze 
with abundant foraminifera. 

Typical microtektite concentrations amount to few counts per sample (~3 g). Therefore, 
standard sampling procedures based on few samples, which yield tektite profiles affected by 
large statistical noise (e.g., Glass and Koeberl, 2006), do not support the investigation of size 
segregation effects. Therefore, a particular effort has been undertaken to obtain sufficient 
counting statistics in three counting campaigns. For each sample, ~3 g of dry sediment was 
sieved at 120 mesh (125 μm) and subsequently treated with hydrochloric acid to remove 
carbonates. Microtektites where identified in the treated material and photographed under 
the optical microscope. Microtektite images were used to estimate individual sizes, which 
ranged between ~0.05 and ~0.9 mm. Counting results from the three campaigns, grouped 
into 15 size classes, are summarized in Tables S1–S3. Finally, a composite profile has been 
created by grouping the original data into 3 size classes with similar total counts: 0.05–0.2 
mm, 0.2–0.45 mm, and 0.45–0.9 mm (Table S4). 

The size distribution tg  of microtektites has been estimated by fitting total counts in the 
original size classes of Tables S1–S3 with a lognormal distribution (Fig. A1). The properties 
of the fitted tg  outside the 0.05–0.9 mm size range of counted microtektites are irrelevant, 
since tg  is used only within this range. 

 
Figure A1. Total microtektite counts (dots) for the 15 size classes used in the original counting 
campaigns (Tables S1-S3), and least-squares fit with a lognormal size distribution (line). Shaded 
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areas represent the total contributions to the 0.05–0.2 mm, 0.2–0.45, and 0.49–0.9 mm size 
classes used for modeling. 
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The general diffusion-advection model 

Consider a stationary sedimentary column characterized by a constant depth-dependent 
volume fraction s ,  defined as the fraction of total volume occupied by solids. Mixing of solids 
in the upper surface mixed layer (SML) is characterized by the self-diffusion coefficient s( ),D z
where z  is the depth below the sediment-water interface, and by the advection velocity 

s b a,v v v= + which consists of two components: the burial velocity bv  due to continuous sedi-
mentation, and the advection velocity av  associated with non-local transport mechanisms in 
the SML. The associated downward flux of solids is given by 

s
s b a s s( )J v v D

z
C= + −
C

 (1) 

with boundary condition s s s( )J F−= 10  at the sediment-water interface, where s  is the 
density of sediment particles and sF  the incoming flux of sediment, including the material 
resuspended by bioturbation, as mass per unit of surface and time. Below the maximum 
bioturbation depth ,L  sD =0  and a ,v =0  so that s b sJ v=  coincides with the burial flux. 
Because of mass conservation, sJ  does not depend on depth, so that b s s/v J=  for .z L>  If 
this definition of bv  is extended to the SML and substituted into eq. (1), the governing law 

s
s a sv D

z
C=
C

 (2) 

is obtained for the advective flux associated with the bulk transfer of sediment particles from 
more porous to less porous layers. This flux is also known as ‘interphase mixing’, as opposed to 
the ‘intraphase mixing’, which equalizes compositional differences. 

Consider now a conservative solid tracer with volume fraction t s .  Its volume and 
mass-normalized concentrations are given by v t s/C =  and t t s s/ ,C = respectively, with 

s  being the density of sediment particles and t  that of the tracer particles. The tracer flux in 
sediment is also governed by eq. (1); however, for convenience, an additional advective velo-
city tv  is introduced to describe the relative motion of tracer particles with respect to the bulk 
sediment, e.g., because of size segregation or selective ingestion by benthic organisms. In this 
case, the tracer flux gradient yields the diffusion-advection equation 

t t
t b a t t( )D v v v

t z z
⎡ ⎤C CC= − + −⎢ ⎥
⎢ ⎥C C C⎣ ⎦

, (3) 

in which tD  is the tracer diffusivity. If av  is given by eq. (2), bv  by s b s,J v= and t s/C = , 
eq. (3) yields the general diffusion-advection equation 

s
s s t t s s s t( ) ( )C CD D D C J v C

t z z z
⎡ ⎤CC C C= + − − −⎢ ⎥
⎢ ⎥C C C C⎣ ⎦

. (4) 

In the case of a tracer undergoing the same mixing processes as the bulk sediment, eq. (4) 
reduces to the classic diffusion-advection equation 
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s s t s
C CD J C
t z z

⎡ ⎤C C C= −⎢ ⎥
⎢ ⎥C C C⎣ ⎦

. (5) 

The tracer mass flux F  at the sediment-water interface yields the boundary condition 

s
s s s t s t s t( ) ( ) ( )

z

CF t J v C D D C D
z z =

⎡ ⎤C C= + + − −⎢ ⎥
⎢ ⎥C C⎣ ⎦ 0

. (6) 

Concentration profiles 

Tracer concentration profiles below the SML are determined by the time evolution of 
the tracer concentration at ,z L=  which is governed by the diffusion-advection equation. 
The time-depth relation is described by the time 

b
b

d( )
( )

z

L

ut z
v u

=�⎮�
 (7) 

required for burial from the bottom of the SML to a given depth .z  The inverse function  of 
bt  describes the depth ( )z t=  reached by a tracer particle after a time t  from its first 

appearance below SML. Given the evolution ( , )C L t  of the tracer’s mass concentration at 
z L=  resulting from an incoming flux ( ),F t  the concentration profile at a given time T  
is given by 

b( ; ) ( , ( ))zC z T C L T t z= − . (8) 

In case of a tracer input event that is limited in time, and when T  is much larger than the 
event duration, bt  can be replaced by the Taylor approximation 

b b
b b b

d d( ) ( )
( ) ( ) ( )

z z

L z

z zu ut z t z
v u v z u v z

−= + H +
+

� �
⎮ ⎮� �

0

0

0
0

0 0
 (9) 

of eq. (7), with ( )z T=0  being the depth where the tracer is expected to appear. Then, 

b

( )( ; ) ,
( ( ))z
T zC z T C L

v T
⎛ ⎞− ⎟⎜H ⎟⎜ ⎟⎟⎜⎝ ⎠

. (10) 

Impulse response and age distribution 

An impulsive tracer input at the time t T=−  before present is described by the incoming 
mass flux ( ) ( ),F t t T=« −  where «  is the tracer fluence, that is, the total mass deposited per 
unit area. In the limit case of a purely advective SML s t( )D D= =0  with no size segregation 

t( ),v =0  the tracer pulse will reach a given depth z L>  after a time b( ),Lt T t z= +  where 

b a

d
( ) ( )

L

L
uT

v u v u
=

+
�
⎮�0

 (11) 

is the advective escape time from the SML. Diffusive mixing in the SML causes a smearing of 
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the input impulse, so that the real escape time Lt  is a random variable with different realiza-
tions for individual tracer particles. In this case, LT  is the deterministic component of the 
escape time. The time evolution of the tracer concentration at the bottom of the SML is 
described by the impulse response function 

( ) ( , )t C L t=I  (12) 

obtained from the solution ( , )C z t  of the diffusion-advection equation with boundary con-
dition ( ) ( ).F t t=  A purely advective SML yields ( ) ( ),Lt t T= −I while in all other cases 

( )tI  is a function with domain t@0  (because the time argument of C  in eq. (12) must be 
positive) and unit integral over this domain (because of mass conservation). 

In the framework of a microscopic description of tracer diffusion, individual tracer particles 
perform a biased 1D random walk with reflecting boundary at z=0  (tracer particles cannot 
leave the sediment). In this case, I  is the probability density function that describes the first-
passage time Lt  of the particle across .z L=  Once the particle has reached the bottom of the 
SML, it becomes definitively trapped in a sediment layer that is buried according to the age 
model described above. Arguments of I  smaller than the time LT  required to cross the SML 
by advection represent the finite probability of diffusion being faster than advection. The limit 
case of Lt =0  corresponds to a particle that is instantaneously transported across the SML. 

Using the above definition of I  and eq. (10), one obtains the concentration profile 

b
( ; )

( )z
z zC z T
v z
⎛ ⎞− ⎟⎜H« ⎟⎜ ⎟⎜ ⎟⎝ ⎠

0

0
I  (13) 

generated by an impulsive input of age T  and fluence ,«  where ( )z T=0  is the maximum 
depth reached by the tracer. 

Solutions of the diffusion-advection equation for the homogeneous SML 

Sediment mixing in a homogeneous SML of thickness L  is described by a special case of 
eq. (4) with constant s  and t ,D which yields 

t b t( )C C CD v v
t zz

C C C= − −
C CC

2

2 , (14) 

with boundary condition 

s s b t t( ) ( )
z

CF t v v C D
z =

⎡ ⎤C= − −⎢ ⎥
⎢ ⎥C⎣ ⎦ 0

. (15) 

A special case of eq. (14–15) with tv =0  was solved by Guinasso and Schink (1975). The tracer 
velocity tv  relative to the sediment is not assimilable with the burial velocity, since bv  is con-
tinuous across the lower boundary of the SML, while tv , like tD , is constant within the SML 
and zero below. The discontinuity of tv  at z L=  requires a different solution approach. If 
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solutions are limited to the [ , ]L0  interval where diffusion and selective advection of tracer 
particles occur, a boundary condition of the form 

t t
z L

Cv C D
z =

⎡ ⎤C= +⎢ ⎥
⎢ ⎥C⎣ ⎦

0  (16) 

needs to be added at the bottom of the SML. This condition ensures that the tracer flux is 
continuous across .z L=  

In the case of a tracer behaving as regular sediment particles t s( ,D D=  t ),v =0 the variable 
transformations x z L= /  and bt v t L
= /  reduce eq. (14) to a nondimensionalized diffusion-
advection equation of the form 

s
C C CG

xt x

C C C= −

CC C

2

2 , (17) 

which depends on a single parameter s s bPeG D Lv−= =1 /  corresponding to the inverse Péclet 
number (Guinasso and Schink, 1975). The Péclet number Pe is defined as the ratio between 
advective and diffusive transport over the typical length scale L  of the mixed layer. A similar 
nondimensionalization is obtained for tv >0  upon replacing bv  in the definition of sG  with 
the net velocity b tv v−| |  of tracer particles with respect to .z=0  In this case, the variable 
substitutions x z L= /  and b tt v v t L
= −| | /  for t bv vF  give 

C C CG
xt x


C C C=
CC C

2

2  , (18) 

with t b t/G D L v v= −| |.  The negative sign of C C/C x  in eq. (18) applies to the case of net 
downward t b( )v v<  advection, while the positive sign applies to the upward t b( )v v>  advec-
tion case. The boundary conditions at the sediment-water interface and at the bottom of the 
mixed layer are given by 

s s b t

( )
x

C F tC G
x v v=

⎡ ⎤C± − =⎢ ⎥
⎢ ⎥C −⎣ ⎦ 0 | |

 (19) 

and 

x

CwC G
x =

⎡ ⎤C+ =⎢ ⎥
⎢ ⎥C⎣ ⎦ 1

0 , (20) 

respectively, with b tw v v −= − 11| / |  being the normalized amplitude of the burial velocity di-
scontinuity across x=1 caused by t .v  

The t bv v=  case must be treated separately, since t
=0  is not a valid variable substitution. 
In this case, the variable transformations x z L= /  and bt v t L
= /  yield the diffusion equation 

C CG
t x

C C=
C C

2

2  (21) 

with t b/G D Lv=  and boundary conditions 
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s s b

( ) ,
x x

C F t CG G
x v x= =

C C− = =
C C0 1

0 . (22) 

Solution for an impulsive input flux 

The calculation of the impulse response produced by eq. (18–22) begins by replacing the 
tracer flux pulse with the initial condition ( , ) ( ),C x L x−= 10  where the factor L−1 arises from 
the variable substitution for depth1. This initial condition represents the tracer concentration 
immediately after the tracer pulse has formed in an infinitely thin layer at the top of the 
sedimentary column. From this time on, ( )F t =0  in eq. (20) and eq. (22). Let ( , )x t
  be the 
solution of the nondimensionalized diffusion-advection equation with ( , ) ( ),x x=0  as in 
Guinasso and Schink (1975). If t b ,v v< the substitution 

( , ) exp ( , )x tx t c x t
G




 


⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
2

4
  (23) 

transforms eq. (18) into the diffusion equation 

c cG
t x

C C=
C C

2

2 , (24) 

with initial and boundary conditions 

,

,

,

c t
c c x
x G
c w c x
x G


= =
C = =
C
C +=− =
C

0
1 0

2
1 2 1

2

. (25) 

A general solution of eq. (24) is obtained with the method of separation of variables assuming 
( ) ( )c X x T t
= , which gives 

T X
GT X
′ ′′
= . (26) 

Eq. (26) holds for all x  and t  if the left- and right-hand sides are equal to a constant. Calling 
this constant ,− 2  one obtains the ordinary differential equations 

T GT

X X

′+ =

′′+ =

2

2

0

0
 (27) 

 
1 The initial condition is expressed as ( , ) ( )C z z=0  in original coordinates, with the definition of 

the Dirac impulse as the limit z0 0Ø  of ( )z f z z−1
0 0/ , where f  is a regular function with unit 

integral. The variable substitution x z L= /  transforms the initial condition into ( , )x =0  
( )z f Lx z−1

0 0/  with the limit ( , ) ( )x L x−= 10  for z0 0Ø . 
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with general solution 

( )
( ) cos sin

G tT t Se
X x A x B x



 −=
= +

2

 (28) 

for t
@0  and ,x0 00 1  where ,S  ,A  and B  are arbitrary constants. The spatial boundary 
conditions in eq. (25) impose B A G= 2/  and 

cot wG
w G
⎡ ⎤+= −⎢ ⎥
⎢ ⎥+ ⎣ ⎦

1 1 2
1 4

. (29) 

Eq. (29) has one real solution k  every continuous interval ]( ) , [k k−1  of cot  with k=
, ,k=1 2, which must be found numerically. These are the eigenvalues to the eigenfunctions 

k kX T  with cos sink k k kX x x G= + 2/  and exp( ).k kT G t
= − 2  The general solution of the 
diffusion equation is a linear combination of these eigenfunctions, that is 

( , ) ( ) kG t
k k

k
c x t a X x e


∞
−


=
=r

2

1
. (30) 

The coefficients ka  must satisfy the initial condition 

( , ) ( ) ( )k k
k

c x a X x x
∞

=
= =r

1
0  (31) 

at t
=0  for .x0 00 1  The eigenfunctions fulfill the orthogonality relations 

( ) ( )dk l kl kX x X x x=∫
1

0
 (32) 

with kl =1 for k l=  and 0 else, and 

cot
cot
k k

k
k k k k

Gw w
G G G

−+= + + +
+2 2 2 2 3 2

21 1 1
2 8 2 4 1

. (33) 

Multiplication of eq. (31) with lX , integration over ,x0 00 1  and use of the selection pro-
perty of the Dirac impulse yields .l la −= 1  The solution of the diffusion-advection equation 
for t bv v<  is thus finally given by 

( / )( , ) cos sin kx G G G t
k k k

kk
x t x x e

G

∞

− +
 −

=

⎡ ⎤
⎢ ⎥= +⎢ ⎥⎣ ⎦

r
22 1 41

1

1
2

 / . (34) 

In the limit case of ,G ∞Ø  one has ,k k=  ,=1 1 2/  and ,k> =1 0  so that ( , )x t
 =  
( )x t Ge


−− 2 412 /  is a pure exponential function. 

The t bv v>  case can be solved in a similar manner, using the substitution 

( , ) exp ( , )x tx t c x t
G




 


⎛ ⎞− − ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
2

4
  (35) 

with temporal and spatial boundary conditions 
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,

,

,

c t
c c x
x G
c w c x
x G


= =
C =− =
C
C −= =
C

0
1 0

2
1 2 1

2

. (36) 

Application of the spatial boundary conditions on ( ) ( )c X x T t
=  with X  and T  defined in 
eq. (28) yields B A G=− 2/  and 

cot wG
w G

⎡ ⎤−= +⎢ ⎥
⎢ ⎥− ⎣ ⎦

1 2 1
1 4

. (37) 

Eq. (37) defines one eigenvalue k  for every continuous interval ( ) ,k k−1] [  of cot  with 
, ,k=1 2, which must be found numerically. The eigenvalues are always real for .k>1  The 

first eigenvalue is real if G@1 2/  and ( )/( ),w G G@ − −4 1 4 2  and imaginary otherwise. The 
imaginary eigenvalue i= 1  defines the eigenfunction X T1 1 with 

cosh sinh

G tT Se
X A x iB x


+=
= +

2
1

1

1 1 1

, (38) 

which satisfies the spatial boundary conditions in eq. (36) if iB A G=−1 2/  and 

coth w G
w G

⎡ ⎤−⎢ ⎥= −⎢ ⎥− ⎣ ⎦
1 1

1

1 2 1
1 4

. (39) 

Using the same approach for the calculation of the integrals of kX 2  as for t b ,v v<  the solution 
of the diffusion-advection equation for t bv v>  becomes 

/ ( / )( , ) cos sin kx G G G t
k k k

kk
x t x x e

G

∞

− − +
 −

=

⎡ ⎤
⎢ ⎥= −⎢ ⎥⎣ ⎦

r
22 1 41

1

1
2

  (40) 

with 

cot
cot
k

k
k k k k

Gw w
G G G

+−= + + −
+2 2 2 2 3 2

21 1 1
2 8 2 4 1

 (41) 

if G@1 2/  and ( )/( ),w G G@ − −4 1 4 2 or 

/ ( / )

/ ( / )

( , ) cosh sinh

cos sin k

x G G G t

k

x G G G t
k k k

kk

x t x x e
G

x x e
G







− − −
 −

∞
− − +−

=

⎡ ⎤
⎢ ⎥= − +⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥−⎢ ⎥⎣ ⎦

r

2
1

2

2 1 41
1 1 1

2 1 41

2

1
2

1
2



 (42) 

with 

coth
coth

w w G
G G G

− −= − − +
−

1 1
1 2 2 2 2 3 2

1 1 1 1

1 1 1 2
2 8 2 4 1

 (43) 

in the other cases. 
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The last case to discuss is that of t b,v v= which describes a purely diffusive process. The 
definition of a unitless depth x z L= /  and time bt v t L
= /  yields 

G
t x

C C=
C C

2

2
 

, (44) 

with t b/ ,G D Lv=  subjected to the initial and boundary conditions 

,

,

,

t

x
x

x
x G


= =
C = =
C
C =− =
C

0

0 0

1 1







. (45) 

Application of the spatial boundary conditions on ( ) ( )X x T t
=  with X  and T  defined in 
eq. (28) yields B=0  and real eigenvalues k  satisfying cot .k kG=  The corresponding 
solution is 

( , ) coskG t
k k

k
x t e x


∞
−
 −

=
=r

21

1
  (46) 

with 

k
k

G
G

= +
+ 2 2

1
2 2 1( )

. (47) 

The impulse response 

As mentioned in Section 1, the motion of individual particles is described by a Wiener 
process with constant drift starting at ( , ) ( , )t z = 0 0  and ending at ( , ) ( , ),Lt z t L=  where Lt  is 
the escape time. The boundary conditions impose a reflecting barrier at z=0  and a partially 
absorbing, or elastic, barrier at z L=  (Dominé, 1996). The age T  of tracer particles found at 
a depth z L@  below the mixed layer is related to Lt  by b .LT t z L v= + −( )/  The probability 
density function of the nondimensionalized escape time b tLt v v t L
 =| - | /  is determined by 
the survival probability 

( ) ( / , )d ( , )d
L

t z L t z x t x
L


 
 
= =∫ ∫
1

0 0

1   , (48) 

defined as the probability that a tracer particle initially localized at x=0  by ( , ) ( )G x x=0  
remains in the SML for a time .t
  The probability that this particle escapes the mixed layer 
between t
  and dt t
 
+  is then given by ( )d ( ) ( )t t t t dt
 
 
 
 
= − +   , where   is the proba-
bility density function of the nondimensionalized escape time Lt
 . Using eq. (48), 

( ) ( , )dt x t x
t


 



C=−
C ∫

1

0
  . (49) 

Furthermore, it can be verified that 
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b t

b
( , ) ( )

v v
t t

v

 
−
=1 
| |

, (50) 

as expected from the equivalency between the diffusion-advection equation and its micro-
scopic description in terms of a biased random walk2. Application of eq. (49) to the solutions 
for   obtained above yields 

( / )( ) sinkG G tG k
k

k kk

Gt e e
G


∞
− +


=

+= r
22 2

1 41 2

1

1 4
4

 /  (51) 

for t b ,v v<  

( / )( ) sinkG G tG k
k

k kk

Gt e e
G


∞
− +
 −

=

+= r
22 2

1 41 2

1

1 4
4

 /  (52) 

for t bv v>  (with i 1  instead of 1  if the first eigenvalue is imaginary), and 

( ) sinkG tk
k

kk

Gt e

∞

−


=
=r

2

1
  (53) 

for t b ,v v= respectively. The simpler form taken by the eigenfunction expansion of   yields a 
more convenient formulation of ,  and therefore of the impulse response, given by 

b b( )
v vt t
L L

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
I , (54) 

with =1 for t b ,v v=  and t bv v= −1| / |  for t bv vF  (Fig. A2). The escape time distribution   
approaches an exponential function with decay time determined by the first eigenvalue 1  if 
G ∞Ø  (pure diffusion), and a Gaussian function with expectation t
=1 and vanishing 
standard deviation if G 0Ø  (pure advection). A certain similarity exists between   and the 
inverse Gaussian distribution 

( )( ) expL L vtt
DtDt

⎛ ⎞− ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠

2

3 22
G , (55) 

 
2 Because of mass conservation, integration of the tracer concentration ( ),C z t  generated by an 

impulsive flux t« ( )  with fluence «  must be equal to « . Below the mixed layer, depth and time 
are related by the burial velocity b ,v  so that 

b t b
( , )d ( , )d

LC L t t C L t t
v v v

∞ ∞ 
 
 «= =∫ ∫0 0| - |
. 

Using ( , ) ( / , ),C z t L z L t− 
= 1  which follows from the definition of , the above equation becomes 

b t

b
( , )d

v v
L t t

v
∞ 
 
= «∫ 0


| - |
. 

Given the equivalency between diffusion-advection and random walk models, «=1 defines the 
total probability 1 of the escape time, and thus the integral of ( ),t
 yielding eq. (50). 
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Figure A2. Impulse responses of a homogeneous SML for two values of the inverse Péclet 
number sG  (a, b), and selected ratios between the tracer segregation velocity tv  and the burial 
velocity b;v  bt L v=0 /  is the mean transit time of the bulk sediment. 

which describes the first passage time through z L=  of a drifting Wiener process tZ =  
tvt W+  with no barriers, where v  is the drift velocity, tW  the standard Brownian motion 

with variance ,t Dt=2  and D  the equivalent diffusion coefficient. This similarity, however, 
is only apparent, since G  is defined only for v@0  and its expectation diverges at ,v=0  due to 
the lack of a reflecting barrier that keeps the diffusing particle at a finite distance from the 
passage threshold. 

The eigenfunction expansion of   is an infinite series of terms with exponential time decay, 
which does not converge for t
=0  or .G =0  Rapid convergence, however, occurs for suffi-
ciently large values of t
  and .G  Moreover,   can be adequately approximated by truncating 
the series expansion to the first n  terms at any t
>0  and G >0  for a sufficiently large n . In 
this case, there is a threshold time ( , ) ( )t G n n G
 −= 1

0 , with ,~ n−1  below which ( )t
  beco-
mes negative (Fig. A3a). This threshold represents a practical lower limit for the numerical 
support of   (Fig. A3b). For small values of G , numerical instabilities occur even for t t
 
> 0 , 
due to the small net result of adding terms with alternating sign and very large amplitude (Fig. 
A3c,d). In these cases, arbitrary numerical precision (e.g., using Mathematica) is required for 
a correct evaluation of . 

The nondimensionalized escape time expectation is defined by 

lim ( ) dLt t t t
∞
 = ∫0
á ñ

Ø
, (56) 

where the limit avoids convergence problems at t
 0Ø . Integration of the exponential terms 
in eq. (51–53) gives 

( / )

b t

sin ( )
lim kG Gk kG

L
k kk k

G GLt e e
v v G

∞
− +

=

+ +
=

− +r
2

2 2
1 41 2

2 20 1

4 1 4
1 4

/á ñ
Ø

 (57) 

for t bv v< , 
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Figure A3. (a) Numerical evaluations of ( )t
  for .G =0 1 and t ,v =0  using the first n  terms 
of the eigenfunction expansion. Notice the change of sign occurring between n= 7  and 8 for 

.t
 0Ø  (b) Nondimensionalized time t
0  below which eigenfunction expansions of ( )t
  
truncated at n=50  and n=100  become negative, evaluated using 64 and 128 digit precision. 
Results obtained with a given digit precision depend only on n  and ,G  regardless of t .v  (c) 
First 30 eigenfunctions of ( )t
  (the individual series terms in eq. 51) for .G =0 0 0075 and 

t ,v =0  and two selected values of .t
  Notice the quasi-logarithmic scale used to represent 
alternating terms spanning 16 orders of magnitude. (d) Numerical evaluation of ( )t
  as sum 
of the eigenfunctions shown in (c), obtained in Mathematica using 16-digit precision (dashed 
line) and 32-digit precision (solid line). 

( )

t b

sin ( )
lim kG Gk kG

L
k kk k

G GLt e e
v v G

∞
− +−

=

+ +
=

− +r
2

2 2
1 41 2

2 20 1

4 1 4
1 4

//á ñ
Ø

 (58) 

for t bv v>  (with i 1  instead of 1  if the first eigenvalue is imaginary), and 

b

sin
lim kk Gk

L
k kk k

GLt e
v G

∞
−

=

+= r
22

20 1

1
á ñ

Ø
 (59) 

for t b .v v=  In absence of size segregation effects t( ),v =0  the expected escape time of tracer 
particles coincides with the transit time bL v/  through the mixed layer resulting from the 
burial velocity. Grain size segregation increases the escape time of large particles, reflecting 
their lessened burial velocity. Accordingly, Ltá ñ is a monotonic function of t ,v  which increases 
at a double exponential rate once tv  exceeds a certain threshold determined by sG  (Fig. A4). 
In quasi-advective regimes s( ),G 1  the increase of Ltá ñ is particularly rapid once tv  exceeds 

b,v because the net upward velocity is hardly overcome by diffusion. 
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Figure A4. Expected escape time Ltá ñ  of a tracer particle with segregation velocity t ,v norma-
lized by the tv =0  case, as a function of t b ,v v/  for selected values of the inverse Péclet number 

sG  of the bulk sediment. These values correspond to a mixed layer with thickness L=10  cm, 
burial velocity bv = 2  cm/kyr, and bulk diffusion coefficients s .D =0 1 , 1, 3, 10, 30, 100, and 
300 cm2/kyr, respectively. Notice the logarithmic scale on the vertical axis. 

Impulsive tracer profiles in the historical layer 

Consider a tracer with impulsive input ( )F t=«  at ,t =0  where «  is the fluence of this 
event, expressed as total deposited amount (e.g., particle counts or total mass) per unit of area. 
In a sediment with constant porosity, the resulting mass concentration below a SML with 
thickness L  is given at any time t>0  by 

s s b
( , )z

z LC z t E t
J v

⎛ ⎞« − ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (60) 

where E  is the probability density function of the escape time of tracer particles with given 
size from the mixed layer, b( )z L v− /  the additional time required for a sediment particle to 
be buried from just below the mixed layer to ,z L>  and s s bJ v=  the depth-independent sedi-
ment flux. The negative sign of z  in eq. (60) means that the tail of E  is directed upwards: 
tracer particles that required more time to escape the mixed layer entered the historical layer 
at a later time and are buried less deep. Using the nondimensionalized results derived above, 
eq. (60) becomes 

b

s s b
( , )z

v t z LC z t
J v

⎛ ⎞− +« ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 , (61) 

where ( )t
  is the probability density function of the nondimensionalized escape time t
 , 
given by eq. (51–53), and d dt t
= /  a time constant defined by the variable transformation 

,t t
Ø  that is: 

b t b

b t

,

, else

Lv v v

L v v

−

−

⎧⎪ =⎪⎪=⎨⎪⎪⎪⎩

1

1| - |
. (62) 
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Sediment compaction below the SML causes a compression of .zC  This effect is accounted 
by replacing the burial time b( )z L v− /  below the SML with the corresponding expression 

b( )t z  derived from the age model in eq. (7). Then, eq. (61) becomes: 

b

s s

( )
( , )z

t t z
C z t

J
⎛ ⎞−« ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠
 . (63) 

At large depths compaction over the limited range of zC  is negligible, so that bt  is conve-
niently approximated by the Taylor expansion b b b( ) ( ) ( )t z t z z z v= + −0 0 /  about a reference 
depth z0  within the range of .zC  In this case, eq. (63) becomes 

b b b

s s b b

( ) ( ) ( )
( , )

( ) ( )z
v z t z v z t z zC z t

J v z v z
⎛ ⎞− −« ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜⎝ ⎠

0 0 0 0

0 0
  (64) 

with b( )L v= 0/  and =1 for t bv v= , or t bv v= −1| / |  for t b .v vF  Introducing the com-
paction factor s s( )/ ( ) ,z= @0 0 1  defined as the ratio between sediment volume fraction at 
z0  and within the SML, eq. (64) finally becomes 

b b b
s s

( , ) ( )zC z t v t v t z z
L L

⎛ ⎞« ⎟⎜= − + − ⎟⎜ ⎟⎜⎝ ⎠0  (65) 

with s  and bv  being evaluated at .z z= 0  

Size segregation effects can be quantified by evaluating the difference z∆á ñ  between the 
expected depths of concentration profiles corresponding to the actual tracer and to a tracer 
with t ,v =0 respectively. In this case, 

b( )L
Lz t v z∆ = −0á ñ á ñ  (66) 

where Ltá ñ is the expected escape time given by eq. (57–59) (Fig. A4). Increasing segregation 
effects move the concentration profiles upwards and makes them broader, similarly to what 
occurs in the time domain (Fig. A2). This effect grows rapidly when tv  increases beyond bv , 
leading to homogeneous spreading of large tracer particles over the whole sedimentary 
column. 

Steady-state solution of the diffusion-advection equation 

Steady-state solutions of the diffusion-advection equation for a homogeneous SML are 
obtained by solving eq. (17–19) for a constant flux F  of tracer particles. In this case, C  does 
not depend on time, and the nondimensionalized diffusion-advection equation becomes 

C CG
xx

C C =
CC

2

2 0  (67) 

with boundary conditions 
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b t
,

,

C FC G x
x v v
CwC G x
x

C± − = =
C −
C+ = =
C

0

0 1

| |
. (68) 

The general solution of eq. (67) is 

cosh( / ) sinh( / )C C A x G x G⎡ ⎤= + ±⎣ ⎦0  (69) 

with the boundary conditions yielding 

b t

b t b sinh( / ) cosh( / )
t

FC
v v

vFA
v v v G G

=±
−

=−
− ±

0

1
1 1

| |

| |

. (70) 

The corresponding tracer concentrations at the sediment-water interface and at the bottom of 
the mixed layer, 

b t b

b

cosh( / ) sinh( / )
tvFC

v v v G G
FC
v

⎡ ⎤± ⎢ ⎥= −⎢ ⎥− ±⎣ ⎦

=

10 1
1 1

1

( )
| |

( )

, (71)  

define the concentration ratio 

t b b

( )
( ) cosh( / ) sinh( / )

tvCR
C v v v G G

⎡ ⎤
⎢ ⎥= = −⎢ ⎥− ±⎣ ⎦

0 1 11
1 1 1 1/

, (72) 

which is a measure for the concentration gradient generated by grain size segregation. This 
gradient is fully contained within the mixed layer, since tracer concentrations cannot change 
below the mixed layer. The case t bv v=  is singular and must be treated differently. Defining 

b ,G D Lv= /  as for the impulse response model, one obtains 

R
G

= + 11 . (73) 

The concentration gradient increases rapidly with increasing segregation, similarly to the 
escape time (Fig. A5). This can be qualitatively explained by mass conservation: in the statio-
nary case, the tracer flux is constant and equal at all depths, so that the lower sinking rate of 
large tracer particles inside the mixed layer must be compensated by a steeper concentration 
gradient. This leads to the selective accumulation of larger particles near the sediment-water 
interface. A notable example of this phenomenon is the accumulation of ferromanganese 
nodules on the ocean floor, with a steep concentration gradient in the top ~40 cm of the 
sedimentary column (Finney et al., 1984). 
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Figure A5. Ratio between the tracer concentration at the sediment-water interface and at the 
bottom of the mixed layer, as a function of t bv v/ , for selected values of the inverse Péclet 
number sG  (solid lines). The normalized escape time expectation of Fig. S3 is shown for 
comparison (dashed lines). The values of sG  correspond to a mixed layer with thickness L=10  
cm, burial velocity bv = 2  cm/kyr, and bulk diffusion coefficients s .D =0 1, 1, 3, 10, 30, 100, 
and 300 cm2/kyr, respectively. Notice the logarithmic scale on the vertical axis. 

Size segregation model 

Several studies report the tendency of larger particles initially deposited on the surface of 
bioturbated sediment to penetrate less rapidly into the sediment (e.g., Thomson et al., 1995). 
This effect has been attributed to the preferential ingestion of finer particles by deposit feeders 
(Shull and Yasuda, 2001), which, in a diffusive bioturbation model, leads to a grain size-
dependent diffusion coefficient. Experiments with sorted glass beads suggest a power law 
dependency of the form t ,qD s−B  where s  is the bead size and .qH0 52  (Wheatcroft et al., 
1992). The much stronger ingestion selectivity of deposit feeders ( .qH2 8  according to data 
from Shull and Yasuda, 2001) suggests that less selective mixing mechanisms must be 
responsible for the observed size dependence of diffusion. 

The diffusion of particles percolating through random media, of which sediments are an 
example, is controlled by microstructures, which are often fractal over a finite range of length 
scales. This gives raise to anomalous diffusion, which depends on the ratio between particle 
size and the length scale of pores. For instance, the diffusion coefficient in fractal soil structures 
has been modeled with ( / ) ,qD D r r −= 0 0  where r  is a length scale, D0  the effective Fickian 
diffusion coefficient at scales smaller than the smallest size r0  of fractal structures, and q  an 
exponent comprised between ~0.28 and ~0.66 (Anderson et al., 2000). The glass bead 
experiments of Wheatcroft et al. (1992) lie in this range. For comparison, the diffusion 
coefficient of Brownian diffusion is characterized by ,q=1  while q=0  is expected for infinite 
fractals. 

Because a power law dependence of the diffusivity on grain size is obtained from both 
biogenic and abiogenic mixing mechanisms, the tracer diffusion coefficient is modeled assu-
ming 
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t sD D=  (74) 

with q−=  and ,q< <0 1  where sD  is the solid self-diffusion coefficient of the bulk sedi-
ment, and s s= 0/  the ratio between the size s  of tracer particles, and the characteristic (mean 
or median) size s0  of sediment particles.  

The advective component of size segregation is proportional to the segregation velocity tv  
(positive upwards) of large tracer particles with respect to the bulk sediment. Advective segre-
gation, or granular convection, can be explained by the selective downward percolation of 
smaller grains through pores when particle assemblages are agitated or mixed. The resulting 
tendency of large particles to rise to the top is also known as Brazil nut phenomenon. The most 
prominent example in sedimentary environments is the persistence of ferromanganese 
nodules at the sediment surface (Piper and Flower, 1980). Granular convection is also affected 
by density, with the counterintuitive tendency of large, less dense particles to raise less rapidly. 
In analogy with laboratory experiments (Kudrolli, 2004), the grain size dependence of tv  is 
modelled by by the ramp function 

c
t

c c

,
,

v
⎧ 0⎪⎪B⎨⎪ − >⎪⎩

0
 (75) 

where c  is threshold value of the size ratio above which size separation occurs. Very different 
experimental settings yield similar values of c  around 3 (Kudrolli, 2004). In dry bed vibra-
ting experiments, the relative upward velocity of a large sphere is proportional to the vibration 
frequency in the low-frequency limit3. A similar behavior is obtained also for cohesive ma-
terials simulated by wet powders, whereby increasing cohesion forces are found to decrease the 
segregation effect. If episodic sediment disturbances produce, on average, a certain size segre-
gation effect, it can be assumed that these effects add in time, in analogy with the microscopic 
particle displacements underlying diffusive models of bioturbation-driven sediment mixing. 
In this case, tv  is proportional to the frequency of bioturbation events and thus to sD , regard-
less of micromechanical details, and eq. (75) can be rewritten as 

t s( )v D=  (76) 

with 

c

c c

,
( )

( ) ,

⎧ 0⎪⎪=⎨⎪ − >⎪⎩ 0

0
, (77) 

where 0  is a constant coefficient with the unit of an inverse length. 

 
3 Vanel et al. (1997) found that the rise time T  of a large sphere in a granular bed is proportional to 

c c[exp( / ) ]( )− −− ¬−¬2 2 11 , where  is the vibrating frequency, c  a critical value of , ¬  the 
unitless acceleration of vibrations, c¬  a critical value of ¬ , and H2 . The limit of this expression 
for 0Ø  is T −B 1 , so that the rising velocity is proportional to . 
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Effect of size segregation on age models 

Consider tracer particles whose age coincides with that of deposition, up to a constant 
offset. In the case of an impulsive deposition event, particles with identical age will be spread 
over a range of depths upon burial, due to the statistical nature of the time required to escape 
the SML. Using eq. (54) and eq. (63–65), the probability of finding a particle of deposition 
age T  at a depth z L@  is given by 

b b
b( ) ( ( ))

v v
T T t z

L L
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

  - , (78) 

with bv  being the burial velocity at z  and bt  the burial time defined by eq. (7). The expected 
age associated with eq. (78) is 

b
b

( ) LT t z t
v


+á ñ= á ñ , (79) 

where the expectation t
á ñ  of   is a function of t b/v v  and thus of tracer particle size (Fig. 
A4). Tracer particles whose size does not exceed the segregation threshold behave like the bulk 
sediment, which means that t ,v =0  ,=1  and .t
 =1á ñ  In this case, eq. (79) coincides with 
the age model b b( )T t z L v= + /  of the sediment. Above the critical size threshold 

b
c

s

vs
s D
= +

0 0
 (80) 

for which t b ,v vH  t
á ñ  increases very rapidly, leading to the occurrence of tracer particles that 
are much older than the sediment in which they are embedded. The size threshold is inversely 
related to s bD v0/  and is tendentially lower in cores with small sedimentation rates and 
strong bioturbation. 

The relation between age offset, particle size, and sedimentation rate is clearly demonstrated 
by the difference between foraminifera and bulk sediment radiocarbon ages in two cores with 
similar water depths and different sedimentation rates (Thomson et al., 1995; Brown et al., 
2001). In this example, the age offset of >150 μm foraminiferal calcite with respect to the bulk 
carbonate amounts to ~1.2 kyr in the slowly accumulating site b(v H3  cm/kyr) and ~0.7 kyr 
in the faster accumulating site b( .v H5 9  cm/kyr). 

Ferromanganese nodules 

Ferromanganese nodules grow around cm-sized sees, such as sediment aggregates, organic 
remains, and rock fragments, at typical rates of 1–10 mm/Myr (von Stackelberg, 1997). 
Nodules are concentrated on the sediment surface and in the surface mixed layer, where they 
must remain much longer than regular sediment particles in order to reach the observed sizes, 
and only few are buried at larger depths (Finney et al., 1984). Nodule concentration profiles 
are thus characterized by a strong concentration gradient in SML, alike the steady-state 
segregation discussed above. 



26 
 

Various theories invoking bioturbation have been proposed as a qualitative explanation for 
the long permanence of ferromanganese nodules at the sediment surface, despite being denser 
than the underlying sediment (Piper and Fowler, 1980). Laboratory replica of the Brazil nut 
effect with mixtures of large, dense, and small, less dense particles suggest that denser nodules 
can be supported by the mixed sediment, as long as the nodule load does not exceed the 
sediment strength. The predominance of larger sizes among buried nodules and at the base of 
the mixed layer (Finney et al., 1984) suggests that there is a critical threshold of ~8 cm above 
which probability of sinking below the SML increases again. This threshold might also arise 
from the depth dependence of bioturbation, with the bottom of larger nodules reaching 
depths where the diffusion coefficient has decreased significantly. In the following, a simple 
nodule growth model is derived from the size segregation laws introduced in Section 3 and the 
stationary diffusion-advection model of Section 2.4. 

Let ( )n s0  be the grain size distribution of seeds, with ( )dn s s0  being the number of seeds 
with sizes comprised between s  and d .s s+  Furthermore, let 0F  be the total flux of seeds at 
the sediment-water interface, in counts per unit of area and time, and ( , )N s z  the number of 
nodules per unit of volume and of size at the depth z  inside the SML, such that ( , )dN s z s  is 
the volume concentration of nodules having sizes comprised between s  and d .s s+  It is assu-
med that all seeds develop a ferromanganese deposit that grows at a constant rate . 
Accordingly, the nodule size increases as ( )s t s t= +0  from a seed with size .s0  The growth 
and accumulation of nodules in the SML depends critically on the evolution of the burial 
probability in time. In case of constant seed supply and growth, vertical concentration profiles 
correspond to the stationary profiles calculated in Section 2.4, and can be expressed by 

( , ) ( ) ( ),N s z n s r z=  where r  is the normalized profile function, and ( )n s  the nodule size 
distribution at the sediment-water interface. Mass conservation sets 

0 b
( ) ( )

( ) ( )
n s n sF n s L v r s n s

t s
C C= = − −
C C00 ( ) , (81) 

with ( )r r L R−= = 1  being the inverse of the concentration ratio of stationary profiles 
described in Section 2.4. The three terms on the right-hand side of eq. (81) represent, in 
sequence: (1) the incoming flux of fresh seeds with size ,s  (2) the shift of the grain size distri-
bution in time, due to particle growth, such that ( , d ) ( d , )n s t t n s t t+ = − , and (3) the out-
going flux at the bottom of the mixed layer. Rearrangement of terms in eq. (81) gives the 
ordinary differential equation 
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with general solution 
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where c  is a constant. In the limit case of negligible seed growth ( )0Ø  the grain size distribu-
tion of sees does not change, and the resulting condition n nB 0  is fulfilled only if c=0 4. After 
rearranging the integration limits, the solution becomes 

b( ) ( )exp ( )d d
s

s

x

F vn s n x r u u x
L L

⎡ ⎤
⎢ ⎥= −⎢ ⎥⎣ ⎦

�
⎮
� ∫0

0
0

. (84) 

Grain size distributions are best expressed on a logarithmic scale, using (ln ) ( )s sn s=n  and 
(ln ) ( )s sn s=0 0n , respectively. In this case, eq. (84) becomes 

b( ) ( )exp ( )d d
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Numerical evaluations of eq. (85) for lognormal seed size distributions and values of R  given 
by eq. (72–73) for the segregation velocity model of eq. (76–77) yield nodule grain size distri-
butions that approach a constant plateau above a minimum size that depends on the typical 
seed size (Fig. S6a). This plateau can be explained by the continuous nucleation and growth of 
nodules with negligible sinking probability: in this case, the size of nodules is essentially pro-
portional to their age. Real nodule size distributions are superiorly limited to 12–20 cm (Von 
Stackelberg, 1997). This limit can be explained by the fact that if nodules are prevented from 
sinking by bioturbation in the SML, their size cannot significantly exceed the SML thickness 
(Finney et al., 1984). Assuming that nodule support ceases as the center of mass sinks below 
the lower SML boundary, the maximum size is expected to be of the order of L2  or 10–30 
cm, considering the typical range of L  reported in the literature (Solan et al., 2019). The shape 
of the resulting nodule size distribution is strongly controlled by this maximum size, which 
might explain the range of distribution shapes observed in nodule fields with different sedi-
mentation rates. 

Seeds must have a minimum size to grow significantly and avoid burial. This is seen clearly 
by evaluating eq. (85) for lognormal size distributions of the incoming seeds, size segregation 
parameters obtained from the fit of tektite profiles in core MD90-0961, and sediment para-
meters representative for nodule fields. The mean bulk diffusion coefficient for sites with a 
water depth of ~4000 m is of the order of ~20 cm2/kyr (Soetaert et al., 1996), with a mean 

 
4 The 0Ø  limit 
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of eq. (83) must be proportional to .n0  The exponential function inside the integral is growing fast, 
so that only x-values very close to the upper integration limit contribute to the result. In this case, 

( ) ( )n x n sH0 0  and solution of the integral yields 

( )0( ) ( )Fn s c e n s
L
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 . 

This result is proportional to n0  only if c=0 . 
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mixing depth of ~6 cm (Solan et al., 2019), and sedimentation rates comprised between 0.3 
and 0.6 cm/kyr. In all cases, there is a finite number of seeds that grow enough to escape burial, 
which is roughly proportional to the fraction of incoming sees with sizes >2 mm (Fig. A6a). 
When this fraction raises above ~1%, the size distribution of the growing seeds contains a 
second contribution corresponding to ferromanganese nodules. The original seed distribution 
and the nodule distribution overlap at ~4 mm (Fig. A6b). The ~2 mm minimum seed size 
required to grow a nodule is comparable with the ~1 mm size of the smallest seeds observed 
inside recovered nodules (Von Stackelberg, 1997). A five-fold increase of the sedimentation 
rate suppresses the growth of nodules for all three incoming seed size distributions shown in 
Fig. 6b, in accordance with field observations. The same effect is obtained with a 43% decrease 
of the size segregation coupling parameter ,0  which couples the bulk diffusion coefficient 
with the segregation velocity. 

 
Figure A6. Steady-state distributions of seeds growing at a rate =5 mm/Myr in a SML with 
the following properties: sD =22 cm2/kyr, L= 6 cm, s =0 13 μm, and b .v =0 5  cm/kyr, typical 
for ferromanganese nodule fields, and the size segregation parameters c ,=3 .  m ,−= 1

0 0 075  
and .q=0 252  obtained from microtektite fits in core MD90-0961 (solid lines), represented on 
a linear (a) and a logarithmic (b) size scale. The three solid line curves correspond to incoming 
seeds with lognormal size distributions sharing the same logarithmic standard deviation of 0.4, 
and with logarithmic means of 0.3, 0.6, and 0.8 mm, respectively. The three dashed line curves 
correspond to the same incoming seeds, and a five-fold increase of the sedimentation rate

b( .v = 2 5 cm/kyr), or, equivalently, a 43% decrease of the size segregation coupling constant 
( . m ).−= 1

0 0 0428  

Fitting tektite profiles 

Fitting function 

Tektite concentration profiles, in counts per unit of sediment mass, resulting from the 
homogeneous SML model described above, are given by 

s s
( ) ( ); ,zC z z z G

L L
⎛ ⎞« ⎟⎜= − ⎟⎜ ⎟⎜⎝ ⎠0 , (86) 
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where «  is the tektite fluence, in counts per unit of area, s  the density of sediment 
particles, z0  a reference depth corresponding roughly with the lowermost depth of tektite 
occurrence, s  the volume fraction of solids at ,z0  @1 the ratio between s  at z0  and in the 
SML, L  the assumed thickness of the SML,   the probability density function of the non-
dimensionalized escape time (eq. 51–53), and =1 for t bv v=  or t bv v= −1| / |  for t b,v vF  
with tv  being the segregation velocity of tektites and bv  the burial velocity in the SML. 
Volume concentrations, in counts per unit of sediment volume, are obtained by multiplying 
eq. (86) with the bulk sediment density s s .  Examples of simulated tektite profiles obtained 
with eq. (86) are shown in Fig. A7. The shape of   depends on the inverse Péclet number G  
of the SML and on .w  As discussed above, the underlying choice of a homogeneous SML has 
no effects on the shape of ,  since models with a different depth dependence of the diffusion 
coefficient D  yield solutions that are precisely fitted by eq. (86) with proper choices of an 
equivalent SML thickness L  and an equivalent diffusivity .D  

For tektites of the same size class, the concentration profile of eq. (86) is controlled by the 
four aggregated parameters: (1) s s«/  for the profile amplitude, (2) L/  for the profile 
width, (3) z L0/  for the profile offset, and (4) bG D L v= /  for the profile shape. This 
means that some individual parameters need to be fixed using plausible values or additional 
measurements. For instance, s , s , and  are measurable physical properties of the sediment 
core, and bv  is fixed by the age model. This leaves the following optimizable parameters: (1) 
«  for the profile amplitude, (2) L  for the profile width, (3) z0  for the profile position, and 
(4) D  for the profile shape.  

 
Figure A7. Simulated concentration profiles generated by an impulsive tracer input with the 
following parameters: s=2.3 g/cm3, s=0.6, =1, bv =3.8 cm/kyr, L= 10 cm, D=30 
cm2/kyr, 0s =10 μm, c= 3, q = 0.5, 0= 0.2 m−1, «= 100 ct/cm2, and selected tracer particle 
sizes s  in mm. The corresponding segregation velocities range from tv =0  for .s00 03  mm to 

t .v =5 4  cm/kyr for .s=0 9  mm. (a) Tracer profiles within 50 cm from 0z : the event horizon, 
defined as the stratigraphic depth where the tracer would be found without bioturbation, is 
marked by an arrow. (a) Tracer profiles within 5 m from 0z . Notice how tracer particles with 

t bv v@  are homogeneously spread in the sediment column. 
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The remaining parameter  cannot be determined without additional constraints. Because 
 is a function of the segregation velocity tv , the required additional constraint is provided 

by the fit of concentration profiles corresponding to different segregation velocities and thus 
size classes, including smaller sizes for which tv =0  and therefore ,=1  using suitable models 
for the grain size dependence of D  and t .v  A grain size class with size limits ,s s1 2[ ] is then 
fitted by 

t
s s
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C z g s z z G w s
L L
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2

1

0 , (87) 

where t( )g s  is the empirical tektite size distribution, obtained for instance from total counts. 

Poisson regression 

The primary measured quantity in case of discrete tracer particles, such as tektites, is particle 
counts per unit of sediment mass. Model profiles must therefore be fitted using Poisson 
regression to correctly account for skewness of Poisson error distributions. For this purpose, 
consider a set of counts kln  for tracers belonging to size intervals min max,l l ls s=s [ ]  obtained 
from samples with masses km  taken at different depths. The empirical grain size distribution 
of the tracer is given by the total concentrations 

klk
l

kk

n
S

m
=r
r

 (88) 

of each grain size class .l  This discrete distribution is fitted using a model function t( )g s  with 
unit integral, such that 

t( )d ,
l

lS S g s s= ∫s0  (89) 

where S0  is a normalization constant obtained from the fit, with no further use. The counts 

kln  yields estimates kl kl kc n m= /  of the l-th size class concentration at various depths in the 
sediment column. These estimates need to be compared with modeled concentration profiles 
given by ( , ; )z k lC z s  in eq. (88), where s( , , , , , )z L D q= « 0 0  is the vector formed by the 
unknown parameters «  (the total fluence for all sizes), z0  (the reference depth), L  (the 
thickness of the surface mixed layer), sD  (the diffusion coefficient of sediment particles), q  
(the power exponent for the tracer diffusivity), and 0  (the coupling constant between diffu-
sivity and grain size segregation). 

The maximum likelihood (ML) model of the measured concentrations is obtained by maxi-
mizing the probability of obtaining the measured counts kln  from random realizations of 
Poisson processes with corresponding (unknown) rates ( , ; ).kl k z k lm C z= s  Accordingly, 
tektite counts are described by the Poisson distribution 
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The validity of this approach is limited only by the assumption that the bioturbation process 
is homogeneous at the sample scale, so that the randomness of the counts kln  is entirely 
controlled by Poisson statistics. Maximization of the joint probability of all realizations kln  is 
equivalent to the minimization of 

, ,
ln ( , ) ln ln !kl kl kl kl kl kl

k l k l
n n n− =− − −r r . (91) 

Since the last term in eq. (91) is independent of the model parameters, it is sufficient to 
minimize the negative log-likelihood 

,
( ) ( , ; ) ln ( , ; )k kl l kl k kl l

k l
m C z n m C z− = −r s sL  (92) 

with respect to the model parameters in . One problem with the use of eq. (92) is that non-
numerical outputs are generated when C  is exactly zero, that is, before the event onset. The 
inclusion of zero counts before the event onset, however, is essential for constraining the time 
range. Therefore, L  needs to be regularized by assigning a small, non-zero lower limit 0  for 
the Poisson rate, so that 

[ ] [ ]
,

( ) max , ( , ; ) ln max , ( , ; )k kl l kl k kl l
k l

m C z n m C z− = −r s s0 0L . (93) 

The minimum rate 0  can be interpreted as the probability of “spurious” counts, due for 
instance to misattribution, contamination, or other error sources. 

As discussed above, the definition of C  though the eigenfunction expansion of the escape 
time distribution   is computationally expensive, which means that the minimization of eq. 
(94) in the six dimensions spanned by the model parameters should be based on as few 
evaluations of C  as possible, avoiding the explicit use of derivatives. Suitable algorithms 
include stabilized forms of the two-point gradient descent method, as used in this paper. 

Bayesian uncertainty estimates and statistical tests 

The effects of counting uncertainties on model results can be estimated with Monte Carlo 
simulations. For this purpose, actual counts are replaced by simulated ones, based on empirical 
probability distributions. For the derivation of such distributions, consider first the case of N  
realizations ( , , , )Nn n n=n 1 2   of a Poisson variate n  with rate . The corresponding 
probability function is 
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for any integer .n@0  In Bayesian theory, the unknown rate >0  is itself a random variate for 
which a prior probability distribution prior( )p  is assumed. This distribution might reflect 
some physical constraints, but it is mostly unknown. In this case, the most unassuming choice 
of priorp  is a uniform distribution over ( , ).∞0  The corresponding unnormalized posterior 
distribution 

post prior( ) ( ) ( ) n n Np p p e+ + −B Bn n 1 2 | |  (95) 

of  for a given n  is proportional to the Gamma distribution 

( ; , )
( )

a
a bxba b e

a
− −¬ =

¬
1 , (96) 

with ,Na n n n= + + + +1 21   and .b N=  This result can be generalized to the case where 

priorp  is a Gamma distribution with parameters ( , ).a b0 0  The corresponding posterior distri-
bution is also a Gamma one, with parameters a a a′= +0  and .b b b′= +0  For this reason, the 
Gamma distribution is the conjugate prior of the Poisson distribution. The posterior para-
meters a′  and b′  become increasingly dominated by the data as the size of n  increases. Monte 
Carlo simulations require the generation of simulated counts according to the so-called poste-
rior predictive distribution 
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0
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Using the Gamma distribution as post( )p , eq. (97) yields the negative binomial distribution 
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for all integers n@0 . 

In the context of tektite profiles, there is one sample with count in  for each depth and each 
size class, whereby all counts are assumed to be independent from each other. Each count is 
the random realization of a Poisson variate with rate i . The posterior distribution of i  obtai-
ned from a uniform prior is a Gamma distribution with parameters i ia n′=  and .ib′=1  The 
corresponding posterior predictive distribution is thus ( ; , ).in n− 1 2 /  If ,in =0  the Gamma 
distribution is evaluated for the limit ia′;0 . Taking the limit of this -  for in =0  yields a 
probability of 1 for n=0  and 0 for .n>0  The simulated Monte Carlo simulations in  of in  
are therefore random variates generated by ( ; , ).in n− 1 2  /  

The significance of grain size segregation effects predicted by the bioturbation model is 
evaluated by testing the hypothesis H1 with free parameters s( , , , , , )z L D q= «1 0 0  against 
the following null hypotheses H0 : (1) diffusion is grain size-dependent ( ),q>0  but size segre-
gation does not occur ( ),=0 0  as in Wheatcroft (1992), and (2) diffusion and advection are 
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independent of size ( ,q=0  ).=0 0  The goodness of H1 with respect to H0  is quantified by 
the likelihood ratio 
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|
|

L

L
 (99) 

where , ,c c=c 1 2 ( )  is the vector of all concentrations, and 0  is the vector of free parameters 
in .H0  The smaller is ,±  the higher is the probability that H1 is a better model than H0 . 
Accordingly, the null hypothesis that the two models are equivalent descriptions of the data 
within the error range is rejected if ±  is small than a certain critical threshold. The Wilks 
theorem states that, as the sample size approaches infinity, the test statistics ln− ±2  approa-
ches asymptotically a random variate with a chi-squared distribution 2  with degrees of 
freedom  given by the difference in the dimensionality of 1  and 0 . The rejection limit of 
the test statistics at a confidence level p0  is thus obtained from the solution of ( , )F x p= 0  
with respect to x , where 
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 (100) 

is the cumulative distribution of ,2  with ¬  being the (incomplete) gamma function. The 
limit for rejecting the null hypothesis of no grain size segregation ( )=1  at a 95% level is 
3.8415, while the limit for rejecting the null hypothesis of no grain size effects ( )=2  at a 95% 
level is 5.9915. The same limits at a 99% confidence level are 6.6349 and 9.2103, respectively. 

Equivalency of diffusivity profiles 

First-principles considerations about the consumption of organic matter by benthic orga-
nisms, the depth distribution of such organisms and their burrowing traces, and the depth 
distribution of tracers (Fornes et al., 2001), suggest that the long-term average sediment 
mixing rate is a monotonically decreasing function of depth below the sediment-water 
interface. In simple terms, it can be assumed that the mixing rate, and thus the bulk diffusion 
coefficient sD  of diffusive models, is proportional to the total biomass, which is in turn 
proportional to the product of available organic matter and its consumption rate. A general 
expression for the depth dependence of sD  can be obtained by assuming s orgD bC=  to be 
proportional to the concentration orgC  of organic matter, whose consumption obeys a first-
order kinetic reaction with rate orgk . The steady-state diffusion-advection equation for 
constant organic carbon input and negligible burial velocity is then given by 

org
org org org

C
bC k C

z z
⎡ ⎤CC ⎢ ⎥− =⎢ ⎥C C⎣ ⎦

0  (101) 

with solution org ( )C z LB − 21 /  for ,z L0  where L  is the depth at which organic matter is 
completely consumed. More realistic models must take the quality of organic matter into 
consideration, with fresh organic material being consumed more readily than older stocks. In 
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this case, eq. (101) is replaced by multi-pool models consisting of a set of equations of the same 
type, one for each pool of organic matter with specific consumption rate. These models yield 
exponential-like profiles of total organic carbon. Because fresher organic matter is more readily 
consumed, its concentration is higher near the sediment-water interface, where it sustains a 
larger benthic organism community. Accordingly, the apparent bulk SML diffusivity obtained 
from younger tracers, such as chlorophyll-a and short-lived radioactive isotopes, is larger than 
that of older tracers (Fornes et al., 2001), and the apparent SML thickness is smaller (Fig. A8). 

 
Figure A8. Apparent diffusivity (a) and thickness (b) of homogeneous surface mixed layers 
deduced from stable tracers or long-lived radioisotopes with half-lives >22 years (210Pb, 137Cs, 
32Si, 239/240Pu, glass beads, tektites), short-lived radioisotopes (234Th, 235Th, 228Th, 7Be), and 
chlorophyll-a. Data from a worldwide compilation by Solan et al. (2019). 

In principle, organic matter degradation continues at very large depths, due to the slow 
bacterial degradation of the refractory component; however, the high energy requirements of 
locomotion in increasingly compacted sediment limits the occurrence of motile organisms 
that produce significant mixing to a surface layer with finite thickness max .L  The depth 
dependence of the diffusion coefficient is thus conveniently expressed by a pseudo-exponential 
function that becomes exactly zero below max .L  In mathematical terms, s( ) ( / ),D z D y z L= 0  
where D0  is the maximum diffusivity at the sediment-water interface, maxL L<  the typical 
length scale of the mixed layer, and y  a monotonically decreasing function with ( )y =0 1  and 

( )y x =0  for x x@ 0  with x =0 max .L L/  For instance, an exponential diffusivity profile is 
represented by ( )y x =  ( ) ,xx x e−¶ 0/  where ¶  is a function representing a smooth transition 
from 1 to 0 for x x0 0 . In case of negligible compaction inside the mixed layer, the diffusion-
advection equation for the concentration C  of tracer particles with diffusivity t sD D=  and 
segregation velocity t sv D=  (see Section 3) is given by 

t t b( )C C CD v v
t z z z

C C C C= + −
C C C C

 (102) 

with boundary condition 
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b t t( ) ( )
z

Cv v C D F t
z =

⎡ ⎤C− − =⎢ ⎥
⎢ ⎥C⎣ ⎦ 0

, (103) 

at the sediment-water interface, controlled by the incoming tracer flux .F  Unlike the case of 
the homogeneous SML discussed in Section 3, a second boundary condition is not needed, 
because t tD v= =0  at max ,z L=  so that the tracer flux just above maxL  is already equal to the 
flux bv C  in the historical layer. 

General solutions of eq. (102–103) are not known, so that their use for modeling real 
concentration profiles is impractical. However, a well-defined relationship exists between 
numerical solutions and the case of a homogeneous mixed layer, so that concentration profiles 
can be still modeled using the solutions obtained in Section 3. As a first step, the same variable 
substitutions x z L= /  and bt v t L
= /  are used to convert eq. (102) into the scaled form 

( )C CG y x LG y x C
x xt

⎡ ⎤C C C= + −⎢ ⎥
⎢ ⎥C CC ⎣ ⎦

0 0 1( ) ( ) , (104) 

with 0 t b( )G D Lv= 0 /  being the inverse Péclet number of regular sediment particles at the 
sediment-water interface. The corresponding boundary condition for calculating the impulse 
response is 

( ) ( )
x

CLG C G t
x




=

⎡ ⎤C− − =⎢ ⎥
⎢ ⎥C⎣ ⎦

0 0
0

1 . (105) 

Eq. (104–105) depend on two parameters, G0  and LG0 , which control the strength of 
scaled diffusion and segregation velocity, respectively. In case of tracer particles behaving like 
the bulk sediment ( =1 and ),=0  the resulting equations 

( )C CG y x C
x xt

⎡ ⎤C C C= −⎢ ⎥
⎢ ⎥C CC ⎣ ⎦

0  (106) 

and 

( )
x

CC G t
x




=

⎡ ⎤C− =⎢ ⎥
⎢ ⎥C⎣ ⎦

0
0

 (107) 

depend on a single parameter, G0 , and the shape of .y  Numerical solutions for a pseudo-
exponential diffusivity profile ( ) ( ) xy x x x e−=¶ −0  with x =0 15  and 

,
( ) cos( / ) ,

, else

x
x x x

⎧ <⎪⎪⎪⎪¶ = − <⎨⎪⎪⎪⎪⎩

0 0
1 1 2 2
2

2
 (108) 

differ from those of a homogeneous SML in the way they depend on G0  (Fig. A9). The 
impulse response of a homogeneous SML varies from a narrow, Gaussian-like peak around the 
mean escape time t
á ñ  for G0 1 to a one-sided exponential for ,G0 1  with a sharp left limit 
given by .t
 − =1 0á ñ  This limit corresponds to the instantaneous transport of tracer particles 
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to the bottom of the SML when diffusion dominates over advection. Exponential diffusivity 
profiles produce impulse responses that become increasingly wide as diffusion increases over 
advection, without approaching a sharp left limit as for a homogenous SML. This can be 
explained by the fact the depth at which the burial velocity becomes dominant is always equal 
to L  in the case of a homogeneous mixed layer, while it depends on G0  in the case of an 
exponential diffusivity profile. 

 
Figure A9. Nondimensionalized impulse responses for a homogeneous mixed layer (a) and a 
mixed layer with exponentially decaying diffusivity (b), for tv =0  and selected values of the 
inverse Péclet number 0.G  In both panels, bt v t L
= /  is the dimensionless time and t
á ñ  the 
corresponding expectation, with L  being the thickness of the mixed layer in (a), and the depth 
at which the diffusivity is .eH1 0 368/  times the value at the sediment-water interface in (b). 

Despite all differences, the impulse response exp( , )t t G
 
− 0 á ñ  generated by an exponential 
diffusivity profile with inverse Péclet number G0  is almost perfectly matched by a rescaled 
version 

exp( ) ,
t t

t G

 




⎛ ⎞− ⎟⎜ ⎟′ ⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

0
1

 
á ñ

 (109) 

of the impulse response of a homogeneous SML with a smaller inverse Péclet number ,G0
where < <0 1, and with the dimensionless time axis stretched by a factor  (Fig. A10a). The 
almost perfect match between the two mixed layer models means that impulsive tracer 
concentration profiles can be fitted equally well by both models. Since SMLs with constant 
and with exponential diffusivity profiles represents extreme cases of postulated bioturbation 
models, the comparisons in Fig. A10a show that it is intrinsically impossible to resolve the 
depth dependence of sediment mixing on the basis of stable tracer profiles. 

The relation between models based on constant and exponential diffusivity profiles can be 
understood by comparing the tracer concentration profiles obtained from the corresponding 
impulse responses. If follows from eq. (77) and =1 from the rescaling used to obtain eq. 
(105) that 
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b
exp b

s s
( , ) ( ( )),z

v
C z T T t z G

L L
⎛ ⎞« ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠0 -  (110) 

is the concentration profile of tracer particles deposited at time T  on a sediment with expo-
nential diffusivity profile with inverse Péclet number G0  at z=0 . 

 
Figure A10. (a) Nondimensionalized impulse responses for a SML with tv =0  and exponen-
tially decaying diffusivity (solid lines), compared to least-squares fits with rescaled impulse 
responses from a homogeneous SML, according to eq. (109) (dashed lines). The rescaling para-
meters are ( , )= (0.322, 6.653) for 0G =100, ( , )= (0.0360, 2.687) for 0G =0.3, and ( ,

)= (0.0986, 2.214) for 0G =0.05. (b) Exponential diffusivity profile (brown line) and diffu-
sivity profiles of equivalent homogeneous SMLs (shaded) for selected values of 0.G  

The other parameters in eq. (110) are the tracer fluence « , the time bt  required for a particle 
to be buried from the maximum bioturbation depth maxL  to ,z  and s s max( ) ( ).z L= /  For 
comparison, a homogeneous mixed layer of thickness L  and inverse Péclet number G0  
produces the equivalent profile 

b
b

s s
( , ) ( ( )),z

v
C z T T t z G

L L

⎛ ⎞« ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
0 - , (111) 

with =1 for t bv v=  or t bv v −= − 11| / |  for t b .v vF  Accordingly, a SML with exponential 
diffusivity profile s

z LD D e−= 0
/  is equivalent to a homogeneous SML with thickness L  and 

diffusivity D0 , with  and  being functions of bG D Lv=0 0/ . In the limit case G ;0 0  
where advection is dominant, the equivalent homogeneous SML has a thickness L2  and a 
diffusion coefficient D0 2/  (Fig. A10b). As G0  increases, the equivalent homogeneous SML 
becomes thicker, and its diffusivity decreases. There is no upper limit to this trend. The equi-
valency between exponential and homogeneous SMLs is expressed empirically by the diffu-
sivity ratio 

hom .. .
exp . .D G G

D
−⎡ ⎤= + +⎢ ⎥⎣ ⎦

0 57480 7544 1 3723
0 0

0

1 1 2 692 0 2722
2

 (112) 

and the ratio 
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hom
.

exp . ln .L G
L

⎡ ⎤= + +⎢ ⎥⎣ ⎦
0 611
02 1 544 1 1 182  (113) 

between length scales (Fig. A11), where the superscripts “hom” and “exp” refer to the homo-
geneous SML and the SML with exponential diffusivity profile, respectively.  

 
Figure A11. Diffusivity (a) and thickness (b) of a homogeneous mixed layer producing the 
same impulse response as a mixed layer with exponential diffusivity profile. Dots represent best-
fit parameters obtained by fitting numerical solutions of eq. (106–107) with the impulse 
response of a homogeneous mixed layer. Lines are given by eq. (112–113). 

These equations can be used to fit concentration profiles from a supposedly exponential 
diffusivity profile in two steps: in the first step, a fit is obtained with the analytical solution for 
a homogeneous SML, for which a suitable analytical approximation exists (e.g., eq. 86). The 
parameters of the exponential diffusivity model are then obtained by solving eq. (112–113) 
with respect to expD  and exp,L  using exp exp

b( )G D L v=0 0 / .  
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6. Table of symbols 

Symbol Unit Definition 
,a b  
  
−  

klc  
C  

vC  
zC  
sD  
tD  
0D  

E  
  

exp  
F  

sF  
0F  
tg  

G  
sG  

G0  
  

,H H0 1  
I  

sJ  
L  

maxL  
L  

klm  
n  

kln  
n0  
N  
p  
  
Pe  
q  
r  
R  
s  
s0  

ls  
lS  
  
t  

— 
1/kyr 
— 
ct/g 
(g or ct)/g 
(g or ct)/cm3  
(g or ct)/g 
cm2/kyr 
cm2/kyr 
cm2/kyr 
1/kyr 
— 
— 
(g or ct)/cm2 kyr 
g/cm2 kyr 
ct/cm2 kyr  
1/mm 
— 
— 
— 
— 
— 
1/kyr 
cm/kyr 
cm 
cm 
— 
g 
ct/cm3 

ct 
1/cm 
ct/mm 
— 
— 
— 
— 
— 
— 
mm 
mm 
mm 
ct/g 
— 
kyr 

Parameters of the Gamma distribution 
Age distribution of a tracer at given depth below the SML 
Negative binomial distribution 
Concentration of size class l tektites in sample k 
Mass concentration of a tracer 
Volume concentration of a tracer 
Mass concentration of a tracer below the SML (tracer profile) 
Self-diffusion coefficient of regular-sized sediment particles 
Diffusion coefficient of a tracer 

sD  at the sediment-water interface 
Probability density function of the escape time Lt  
Probability density function of Lt


  (nondimensionalized) 
  for a SML with exponential diffusivity profile 
Incoming tracer flux 
Incoming sediment flux 
Incoming flux of ferromanganese nodule seeds 
Modeled grain size distribution of tektites 
Generic Péclet number 
Inverse Péclet number for the bulk sediment 
Inverse Péclet number at the sediment-water interface 
Solution of the nondimensionalized diffusion-advection equation 
Testing hypotheses 
Impulse response in the time domain 
Volumetric flux of the bulk sediment 
Thickness of a homogeneous SML, bioturbation depth 
Maximum mixing depth in non-homogeneous SML 
Log-likelihood 
Mass of sample k used for tektite counts 
Volumetric concentration of ferromanganese nodules at z=0  
Tektite counts in sample k for grain size class l 
Size distribution of ferromanganese nodule seeds 
Volumetric concentration of ferromanganese nodules 
Probability 
Poisson distribution 
Péclet number (advection-to-diffusion ratio) 
Power law exponent for the grain size dependence of tD  
Normalized stationary tracer profile 
Ratio between tracer concentration at z=0  and given depth 
Particle size 
Typical sediment grain size (mean or median), or seed size 
l-th tektite grain size class 
Empirical grain size distribution for size class l 
Nondimensionalized survival probability 
Time 
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t
  
Lt  
Lt

  

T  
LT  
bt  
av  
bv  
sv  
tv  

w  
x  
y  
z  
z0  

kz  
 
 

0  
 

¬  
 
 
 
 
¶  

 
 

kl  
0  
±  

 
s  
t  
s  
t  
«  

2  
 

c  
 

— 
kyr 
— 
kyr 
kyr 
kyr 
cm/kyr 
cm/kyr 
cm/kyr 
cm/kyr 
— 
— 
— 
cm 
cm 
cm 
— 
1/cm 
1/cm 
mm/Myr 
— 
— 
cm 
— 
— 
— 
— 
— 
— 
— 
— 
— 
g/cm3 
g/cm3 
— 
— 
(g or ct)/cm2 
— 
— 
— 
— 

Nondimensionalized time 
Escape time from the SML 
Nondimensionalized escape time from the SML 
Age 
Advective escape time (deterministic part of )Lt  
Time required for burial to a given depth below the SML 
Advective transport velocity in the SML 
Burial velocity of regular sediment particles 
Velocity of particles relative to the sediment-water interface 
Upward velocity of a tracer relative to regular sediment particles 
Normalized absolute burial velocity discontinuity at z L=  
Nondimensional depth in sediment 
Function expressing the depth dependence of sD  
Depth below the sediment-water interface 
Reference depth, location of depth profile 
Depth of the k-th sample used for tektite counting 
Coefficient for the grain size dependence of tD  
Coupling coefficient between sD  and tv  
Coupling coefficient between sD  and  
Ferromanganese nodule grow rate 
Gamma distribution 
Dirac impulse function 
Burial depth, as inverse function of bt  
Correction factor for time scaling 
Parameter vector for tektite profile fits 
Smooth step function 
Rescaling factor for G0  to match different SML 
Eigenvalue or rate of a Poisson process 
Poisson rate for the tektite size class l in sample k 
Minimum Poisson rate associable with spurious counts 
Log-likelihood ratio 
Degrees of freedom in a model 
Density of sediment particles 
Density of a tracer 
Volume fraction of solids 
Volume fraction of a tracer 
Tracer fluence (referred to an impulsive input) 
Chi-squared distribution with  degrees of freedom 
Tracer-to-sediment size ratio 
Critical value of  above which segregation takes place 
Rescaling factor for t
  to match different SML 

 


