Characterisation of long-term evolution (1950–2016) and vulnerability of Mayotte's shoreline using aerial photographs and a multidisciplinary vulnerability index

Courteille Marine ^{1, 2, *}, Jeanson Matthieu ^{1, 3}, Collin Antoine ², James Dorothée ², Claverie Thomas ^{1, 4}, Charpentier Michel ⁵, Gairin Emma ⁶, Trouillefou Malika ⁷, Giraud-Renard Eléa ⁷, Dolique Franck ⁷, Lecchini David ⁶

¹ University Center of Mayotte CUFR, Mayotte, France

² EPHE-PSL University, Coastal GeoEcological Lab, 35800 Dinard, France

³ ESPACE-DEV, Univ Montpellier, IRD, Univ Antilles, Univ Guyane, Univ Réunion, Montpellier, France

- ⁴ MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- ⁵ Association Les Naturalistes, environnement et partimoine de Mayotte, Mayotte, France
- ⁶ CRIOBE, EPHE, Université PSL, UPVD, CNRS, UAR CRIOBE, BP1013, 98729 Moorea, French Polynesia

⁷ Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université des Antilles

- MNHN - CNRS 8067 - SU - IRD 207 - UCN, Guadeloupe & Martinique, France

* Corresponding author : Marine Courteille, email address : marine.courteille1@hotmail.com

Abstract :

The shoreline is often at the interface of a combination of physical, ecological, and socio-economic forcing agents. Monitoring the shoreline changes across time is crucial to understand the causes of its evolution and put in place management measures. The analysis of aerial photographs from 1950 to 2016 at Mayotte Island (Indian Ocean) showed that the shoreline urbanisation is still low (6%) compared to the worldwide trend. However, a faster increase happened recently (from 3% in 1989 to 6% in 2016) owing to a strong demographic growth and socio-economic development. A multidisciplinary index was developed to assess the vulnerability of four study sites – Bandrélé, M'tsamboro, N'gouja, and Sakouli – (representative sites of beaches with fringing reefs throughout Mayotte with varying levels of urbanisation). The vulnerability of Bandrélé was lower than that of the other sites due to the presence of a mangrove at the back of the beach which plays a key role of buffer between the land and sea. M'tsamboro was the site with the highest anthropogenic pressure and highest vulnerability. Overall, as most of the shoreline is still natural at Mayotte, a sound management advice would be to put in place conservation measures to preserve natural coastal habitats, such as beaches, mangroves, seagrass beds, and coral reefs. The multidisciplinary vulnerability index developed in this study can be a useful tool to help coastal managers in the decision-making and prioritisation of actions to undertake on the shore.

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site.

Graphical abstract

Highlights

▶ Urbanisation of Mayotte's shoreline increased mainly from 1989 to 2016. ▶ Urbanisation of Mayotte's shoreline is still low compared with the worldwide trend. ▶ Mangroves, coral reefs and seagrass beds reduce the vulnerability of nearby beaches. ▶ Urbanisation and anthropogenic pressures increase the vulnerability of beaches. ▶ Conservation of natural protective coastal ecosystems is crucial in Mayotte.

Keywords : Shoreline, Urbanisation, Erosion, Coastal management, Airborne imagery, Vulnerability, Mayotte

44 **1. Introduction**

45 The shoreline is at the core of many issues and activities in different fields: natural processes taking place along the shoreline, habitats for several organisms, socio-economic issues and recreation for humans 46 47 through ecosystem services (Turner and Schaafsma, 2015). The shoreline is often defined as the physical 48 interface of land and water (Dolan et al., 1980). However, this definition may not be sufficient for users and 49 managers, notably in light of the dynamic nature of the shoreline (Boak and Turner, 2005): more facets of 50 the shoreline must be considered. Several natural factors influence the shoreline's position on short- and long-terms, such as the changing water level (e.g., waves, tides, etc.), the cross- and long-shore movement 51 52 of sediments (Boak and Turner, 2005), as well as anthropogenic factors, such as embankments and other 53 infrastructures modifying the shoreline. Shoreline evolution is an important topic in this rapidly changing 54 world. Indeed, in addition to being a physical boundary, the shoreline is also an ecotone between terrestrial 55 and marine systems, with numerous coastal ecosystems such as mangroves, seagrass beds, reef flat, etc. 56 (Ray and Hayden, 1992). Moreover, about 40% of the world's population live within 100 km of the coast, 57 and 10% in coastal areas that are less than 10 meters above sea level (United Nations, 2017), making the 58 shoreline a key location for human activities. However, the shoreline is exposed to numerous physical 59 factors that can destabilise it. Background swell and waves, storm-induced sea surges, and other weather-60 related forces can cause coastal erosion. In addition to background weather variability, global climate change is driving an intensification in the frequency and strength of extreme weather events as well as 61 62 causing a rise in the sea level, predicted to reach 0.84 m (RCP8.5 scenario) by 2100 relative to 1986-2005 63 (IPCC, 2019). These are already having and will continue to have strong impacts on shoreline stability. Superposed to these natural changes, local and direct human actions can reinforce erosional processes and 64 65 shoreline instability (Cooper and Jackson, 2019). These local actions and their impact must be better 66 characterised: analyses of the variability in natural and local human factors and their links to shoreline 67 erosion/accretion trends and vulnerability are important for numerous coastal applications in several fields, 68 such as coastal environment conservation and coastal management (Boak and Turner, 2005), all the more in islands which, by definition, are limited by shores. Coastal erosion is a worldwide issue, and French overseas territories are particularly vulnerable because of their tropical settings with extreme weather and their specific socio-economic and cultural background. Several tools were already used (alone or combined) to assess shoreline evolution worldwide, including field observation with physical clues of past phenomena (e.g., Letortu et al., 2014; Madi Moussa et al., 2019), airborne imagery (e.g., Rault et al., 2020; Gairin et al., 2021), and spaceborne imagery (e.g., Besset et al., 2019; Gairin et al., 2021).

75 Assessing the vulnerability of the shore is also fundamental for coastal management. Vulnerability 76 is defined by the IPCC (2019) as "The propensity or predisposition to be adversely affected". It is also one 77 of the risk factors, together with hazard ("The potential occurrence of a natural or human-induced physical 78 event or trend that may cause loss of life, injury, or other health impacts, as well as damage and loss to 79 property, infrastructure, livelihoods, service provision, ecosystems and environmental resources"; IPCC, 80 2019) and exposure ("The presence of people; livelihoods; species or ecosystems; environmental functions, 81 services, and resources; infrastructure, or economic, social, or cultural assets in places and settings that 82 could be adversely affected"; IPCC, 2019). In the context of climate change, "risks result from dynamic 83 interactions between climate-related hazards with the exposure and vulnerability of the affected human or 84 ecological system to the hazards" (IPCC, 2019). In this study we focus on the vulnerability of the shore to 85 climate-related hazards, such as sea level rise or storms. Vulnerability can be divided itself in two 86 components: susceptibility to harm and adaptability (i.e., the capacity of humans and ecosystems to cope 87 and adapt). According to the definition above-mentioned, exposure can also be considered as a factor of 88 vulnerability. A few studies already used a combination of factors in order to assess the vulnerability of the 89 shore through a vulnerability index: physical, dynamic, or geomorphological factors (e.g., Peña-Alonso et 90 al., 2017; Mathew et al., 2020), biological or ecological factors (e.g., Williams et al., 2001; Hereher, 2016), 91 anthropogenic or socio-economic factors (e.g., Hereher, 2016; Mathew et al., 2020), climatological factors 92 (Gornitz et al., 1994). In the latter case, climatological factors assess the potential hazard. The study from 93 Gornitz et al. (1994) therefore does not only assess vulnerability, but the risk as a whole. The methods used 94 ranged from analysing old and recent maps to using airborne and spaceborne imagery, databases, numerical

95 models, and direct observations on the ground (e.g., Dune Vulnerability Index from García-Mora et al., 96 2001 and Williams et al., 2001; Coastal Vulnerability Index from Bagdanavičiūtė et al., 2015 and Hereher, 97 2016; Beach Vulnerability Index from Cazes-Duvat, 2001 and Alexandrakis and Poulos, 2014; 98 Geomorphological Vulnerability Index from Peña-Alonso et al., 2017; Total Vulnerability Index from 99 Mathew et al., 2020). Relevant criteria and tools for vulnerability assessment were adapted from these 9100 studies to create a new multidisciplinary index adapted to the case study of the island of Mayotte.

101 Coastal urbanisation is a worldwide trend (Cooper and Jackson, 2019) and also impacts the island 102 of Mayotte with its recent demographic increase and socio-economic development. This study therefore had 103 two main objectives: i) quantify the evolution of the typology and position of the shoreline of Mayotte since 104 1950; ii) identify which portions of the shoreline are particularly vulnerable and why, through the 105 development of a multidisciplinary vulnerability index. Specifically, the study aims at applying the tools of 106 shoreline evolution analysis and vulnerability assessment to the case of Mayotte. Aerial photographs of 107 Mayotte since 1950 are available, allowing to study the shoreline evolution over several decades using high 108 spatial resolution aerial photographs (Jeanson et al., 2019). The digitisation of the whole shoreline of Grande 109 Terre at this scale since 1950 had never been done before, this is therefore the first research work to carry 110 out an inventory of Mayotte's shoreline on the scale of the entire island and to suggest safeguard plans to be 111 put in place. The first hypothesis of this study is that urbanisation and erosion of Mayotte's shoreline 112 increase with time, following worldwide trends. The second hypothesis of this study is that coastal 113 urbanisation increases the vulnerability of beaches. A multidisciplinary vulnerability index was developed 114 to compare the vulnerability of several coastal sites depending on several factors (morpho-dynamic factors, 115 protection by natural ecosystems, anthropogenic pressure). The innovative concept of this vulnerability index is its multidisciplinarity and thus adaptability to any field and context depending on the chosen criteria. 116 Wider application of this index would allow coastal managers to select key coastal sites on which to 117 118 undertake conservation and/or restoration actions.

120 **2. Materials and methods**

121 **2.1. Study site: Mayotte**

122 Mayotte is a French overseas department which is part of the Comoros volcanic archipelago in the 123 Indian Ocean (12°50' S, 45°08' E) (Fig. 1). Mayotte has a tropical climate including a wet season with 124 monsoon winds from North/North-West (during austral summer from December to March) and a dry season 125 with stronger trade winds from the South/South-East (during austral winter from June to September) 126 separated by two short shoulder seasons (Météo-France, 2021). These seasonal changes have a strong 127 influence on the shoreline structure and dynamics (Jeanson et al., 2013, 2019). The different periods of 128 erosion through time formed the current topography of the island, with a steep topography and pocket 129 beaches between volcanic headlands (Nougier et al., 1986). The island is surrounded by a fringing reef, a 130 lagoon, and a barrier reef. The specificities of the island are the lagoon, which is one of the widest and 131 richest in the Indian Ocean (more than 1,000 km²), and the double barrier reef in the South-West (Masse et 132 al., 1989; Jeanson, 2009; Leone et al., 2014; Chevalier et al., 2017). Coral reefs influence the hydrodynamics 133 along the coast and play a protective role for the shore by decreasing the energy of waves and oceanic 134 currents, depending on the structure of the reef (Jeanson et al., 2013). Tides in Mayotte are semi-diurnal and 135 the tidal range is mesotidal (with a mean spring range of 3.20 m). Tide currents are therefore the main 136 currents in the lagoon, and the oceanic currents have a less important role (Idier et al., 2008; Chevalier et 137 al., 2017). The volcanic and tropical context of Mayotte together with the presence of large reefs, a lagoon, 138 and associated hydrodynamic context lead to a high shoreline morphological diversity, suitable to host many 139 different habitats and a high faunal biodiversity. The rugged coast extends along 240 km for Grande Terre 140 and 25 km for Petite Terre (De La Torre and Aubie, 2003), with mainly cliffs interrupted by sandy or muddy 141 bays where mangroves grow (Jeanson, 2009) (Fig. 1).

144 Figure 1: Location of Mayotte Island, Indian Ocean (adapted from Jeanson et al., 2019).

145

Mayotte is a French territory since 1841 and became the 101st French department in 2011. 256,500 inhabitants lived in Mayotte in 2017 (INSEE, 2017) and the population is very young. In 2017, more than half of the inhabitants were under 18 years old and the mean age was 23 years old. By comparison, the mean 149 age in metropolitan France is 43 years old. Only one third of people in age of working in Mayotte have a 150 job. This low employment can be explained by the poorly developed tourism and market sectors (agriculture, 151 construction, industry, commerce, and other services). The non-market sector is more developed with many 152 people working in public administration, education, health care and social actions. The buildings are 153 traditionally organised in villages, with a mosque in the center, as the main religion in Mayotte is Islam. 154 The territory is divided in 17 districts. The main urban pole is the axis Mamoudzou-Dzaoudzi, which are the principal towns on Grande Terre and Petite Terre, respectively. This urban pole includes the main 155 156 infrastructures of the island (e.g., harbour, airport, prefecture, and hospital) and an industrial zone, 157 condensing the main activities and the car traffic in this area. Grande Terre and Petite Terre are linked by a 158 barge that travels from one island to the other on a regular basis every day. Many households live in 159 precarious situations, with 40% of houses still made of sheet metal in 2017, 29% do not have access to 160 running water, and 10% do not have access to electricity. However, living conditions improved since the 161 2000s (80% of houses did not have access to running water in 1997), but mainly for people living in 162 permanent buildings. Over the course of 20 years, the population and habitations doubled, going from 163 130,000 inhabitants and 30,000 habitations in 1997 to 256,500 inhabitants and 63,100 principal residences 164 in 2017 (INSEE, 2017).

165 This study includes several analyses of Mayotte's shoreline at different scales. As aerial photographs were available for the entire main island of Mayotte, Grande Terre, the analysis of changes in 166 167 the shoreline category (rocky shore, beach, mangrove, urbanised shoreline) over time was done for the 168 whole island. For practical reasons of software limitations and time available, the analysis of changes in the 169 shoreline position over time was done only for twelve sites (three from each of the four categories, trying to be representative of what can be observed along all the island despite the practical constraints). The 170 assessment of the criteria used in the development of the multidisciplinary vulnerability index requiring 171 172 more fieldwork, the application of this index was done in only four sites to compare beaches with different 173 local conditions.

2.2. Analysis of shoreline evolution based on aerial photographs

176 To characterise the shoreline evolution of Mayotte, a time series of aerial photographs of the main 177 island of Mayotte (Grande Terre) was used: 1950, 1969, 1989, 2008, and 2016. Photographs from 2008 and 178 2016 were assembled and processed (orthorectified and georeferenced) by the French National Geographic 179 Institude (IGN). Photographs from 1950, 1969, and 1989 were downloaded from the IGN website 180 (https://remonterletemps.ign.fr/), cropped on XnConvert, assembled on Agisoft Metashape 1.7.1. 181 (Professional Edition), and georeferenced in RGM04 (the local reference system of Mayotte) on ArcGIS 182 10.8.1 using the aerial photograph from 2016 as reference (following a method similar to Duvat and Pillet, 183 2017).

Based on the aerial photographs, the shoreline was manually traced at a scale of 1:2,000 in QGIS along all the coast. The shoreline was defined as the seaward limit of vegetation in natural areas and the seaward limit of human construction in urbanised areas as per previous studies (Duvat and Pillet, 2017; Collin et al., 2018). Three natural areas were distinguished: rocky shore, beach and mangrove. Urbanised areas were represented as a single category: urbanised shoreline. The choice of these categories relies on previous studies (De La Torre & Aubie, 2003; Madi Moussa et al., 2019) and on the capacity to discern them on aerial photographs.

191 Limitation of the software used does not allow to analyse the historical change of shoreline's 192 position for the whole island at once. For practical reasons, it was therefore decided to select three sites from 193 each category (rocky shore, beach, mangrove, and urbanised shoreline) along Mayotte's coast in order to 194 try to obtain representative results for the whole island. The evolution of the position of the shoreline in 195 each site was assessed by calculating the Net Shoreline Movement (NSM) and End Point Rate (EPR). The 196 NSM was the distance between the oldest and the most recent shoreline (1950 and 2016, respectively). The EPR was calculated by dividing the NSM by the time elapsed between the oldest and the most recent 197 198 shoreline (66 years). To do so, a module in ArcGIS was used: Digital Shoreline Analysis System version 5 199 (DSAS v5; Oyedotun, 2014). To calculate the uncertainty on the shoreline position, three sources of error 200 needed to be taken into account: the spatial resolution of the photograph (Ures), the uncertainty from the 201 georeferencing process (provided by the forward error of the ground control points on ArcGIS) (U_{geo}), and 202 the uncertainty from shoreline tracing inaccuracies (estimated to be two meters for each date, because of the 203 scale used during the tracing process: 1:2,000) (U_{tra}) (Table 1). Equation 1 from Hapke et al. (2011) allowed 204 to combine these sources of error to obtain the uncertainty of the shoreline's position for each year (U_{tot}). 205 Equation 2 from Hapke et al. (2011) was used to estimate the uncertainty of the rate in shoreline position 206 change (U_r) between pairs of years. Between 1950 and 2016, the calculated shoreline change rate uncertainty 207 (U_r) was of 0.08 m.y⁻¹.

208
$$U_{tot} = \sqrt{U_{res}^2 + U_{geo}^2 + U_{tra}^2}$$
 (Equation 1) $U_r = \frac{\sqrt{U_{tot,year_1}^2 + U_{tot,year_2}^2}}{year_2 - year_1}$ (Equation 2)

209 Table 1: Sources of uncertainty and total uncertainty for aerial photographs from 1950, 1969, 1989, 2008,

210 *and 2016.*

	Spatial resolution	Georeferencing	Tracing uncertainty	Total uncertainty
	(U _{res}) (m)	uncertainty (U _{geo}) (m)	$(U_{tra})(m)$	$(U_{tot})(m)$
1950	1	4.6	2	5.1
1969	1	8.0	2	8.3
1989	1	7.8	2	8.1
2008	0.5	0	2	2.1
2016	0.5	0	2	2.1

211

212 **2.3.** Multidisciplinary vulnerability index: case study on four beaches in Mayotte

213 *2.3.1. Development of the index*

214 While analyses of aerial photographs to assess Mayotte's shoreline evolution were done on the 215 whole island of Grande Terre, the vulnerability assessment of Mayotte's shoreline in this study focused on 216 four sites. Bandrélé, M'tsamboro, N'gouja, and Sakouli (Fig. 1) are representative sites for fringing reef 217 beaches in Mayotte. The comparison of sandy shores with different levels of urbanisation allows to assess 218 the impact of urbanisation on beach vulnerability, taking into account the local conditions. M'tsamboro is 219 the most urbanised site, with a village directly behind the beach, and a wall defining the shoreline. In 220 Bandrélé, there is a mangrove at the back of the beach, creating a buffer zone between the village and the 221 beach. Sakouli and N'gouja are both more natural sites with mainly natural shoreline with vegetation and only a few hotels and restaurants at the back of the beach. The main difference between these two last sitesis that N'gouja is a protected area, and it is therefore forbidden to fish there.

224 The method chosen to assess the vulnerability was the development of an index inspired by the 225 coastal vulnerability index from Hereher (2016), and completed by other studies on coastal or beach 226 vulnerability (Bodéré et al., 1991; Gornitz et al., 1994; Cazes-Duvat, 2001; García-Mora et al., 2001; 227 Williams et al., 2001; Jeanson, 2004; Alexandrakis and Poulos, 2014; Peña-Alonso et al., 2017; Ruol et al., 228 2018; Mathew et al., 2020). The criteria used to assess the vulnerability (through susceptibility, adaptability, 229 or exposure) of the beaches were chosen to be relevant based on the specific characters of the study area 230 and were gathered in sub-indexes by field: morpho-dynamic, ecological and anthropogenic. The morpho-231 dynamic index and the anthropogenic index were based on 8 criteria with equal weights (Table 2). 232 Weighting coefficient were not given to these criteria because the global level of vulnerability results from 233 the combination of these criteria and not from each one individually (Cazes-Duvat, 2001). The ecological index was based on 11 criteria, with lower weights for interlinked criteria, giving a maximum score of 6 234 235 (Table 2). Each criterion was scored from 0 (condition linked to a low vulnerability) to 1 (condition linked 236 to heightened vulnerability). For each site and each index, all the criteria were summed according to their 237 weights and divided by the maximum score (8 for morpho-dynamic and anthropogenic indexes, 6 for 238 ecological index) to obtain an index between 0 (minimum vulnerability) and 1 (maximum vulnerability). A 239 global multidisciplinary vulnerability index ranging from 0 (minimum vulnerability) to 1 (maximum 240 vulnerability) was calculated as the average of the three sub-indexes. No weighting coefficient were given 241 to the sub-indexes because the global level of vulnerability results from the combination of these sub-242 indexes and not from each one individually (Cazes-Duvat, 2001). This method of use of a checklist of 243 criteria to assess the feature of a site is originally based on the works from Bodéré et al. (1991) and Gornitz et al. (1994), and was already used and improved in several researches regarding coastal or beach 244 245 vulnerability (e.g., Cazes-Duvat, 2001; García-Mora et al., 2001; Williams et al., 2001; Jeanson, 2004; 246 Alexandrakis and Poulos, 2014; Hereher, 2016; Peña-Alonso et al., 2017; Ruol et al., 2018; Mathew et al., 247 2020) that were consulted in the development of our index.

249 *2.3.2. Data acquisition*

250 Most criteria were determined through punctual field observations on the four selected sites 251 (Bandrélé, M'tsmaboro, N'gouja, and Sakouli) from March to July 2021. Some were also measured or 252 calculated based on aerial photographs, and on data gathered in the field. Thus, topographic profiles were 253 carried out with a Global Navigation Satellite System with Real Time Kinematic (GNSS RTK Trimble R8s). 254 These profiles are done by taking the three-dimensional position of points a few meters apart along a line 255 going from the shoreline to the fore-reef of the fringing reef at low tide, in the middle of the beach. 256 Topographic profiles were used to determine two criteria: beach slope and beach width (Table 2). Pictures 257 were taken at an altitude of 110 m (set to match the legal regulations and the practical constraints, i.e., the 258 ratio between battery available and resolution needed) with an unmanned aerial vehicle (UAV) Dji Phantom 259 4 pro with a 20 megapixels sensor to cover the entire area of the beach with an overlapping of 80% in X and 75% in Y, from the shoreline to the fore-reef of the fringing reef. Orthophotos resulting from treatment of 260 261 UAV pictures using Agisoft Metashape 1.7.1. (Professional Edition) were used to determine two criteria: 262 width of the fringing reef and of the beach (Table 2).

263 Table 2: Criteria used in the three sub-indexes on which is based the vulnerability index: morpho-dynamic

264 *index, ecological index, and anthropogenic index, with the method used to determine them, justification*

265 for the choice, and associated scores and weights. Criteria were determined qualitatively or quantitatively

according to the data available. Results for each site and each criteria are provided in italic (BD:

267 Bandrélé; MT: M'tsamboro; NG: N'gouja; SK: Sakouli). For each site, all the criteria were summed and

268 divided by the maximum scores to obtain an index between 0 (minimum vulnerability) and 1 (maximum

269 vulnerability). The thresholds between the scores were chosen in order to have a linear relation between

- the (rounded) smallest and highest values. The vulnerability index resulting from the combination of the
- 271 three sub-indexes (morpho-dynamic, ecological, and anthropogenic) therefore reflects the relative

272 *vulnerability of the four sites, not an absolute vulnerability.*

			MO	RPHO-DYN	AMIC INDEX			
	D	Justification				Scores		
Criteria	Determination	for the choice	Weight		0.05	o -		
	of the criteria	of criteria		0	0.25	0.5	0.75	1
Presence	Observation on	Intertidal sand	1	Yes				No
of	the field	bars represent a		BD				MT
intertidal		source of						NG
sand bars		sediments,						SK
		increasing the						
		sediments						
		budget and						
		therefore the						
		adaptability of						
		the beach (Cohn						
		et al., 2015)						
Texture of	Estimation from	Sediments	1	Coarse		Medium sand		Fine sand
sediments	observation on	texture is an		sand		BD		
	the field	indicator of the				MT		
		beach's capacity				NG		
		to cope with				SK		
		incident waves,						
		with fine						
		sediments being						
		the most						
		susceptible to						
		transport, and						
		therefore						
		increasing the						
		susceptibility of						
		the beach						
		(García-Mora et						
		al., 2001;						
		Williams et al., 2001:						
		Alexandrakis						
		and Poulos.						
		2014:						
		Bagdanavičiūtė						
		et al., 2015:						
		Peña-Alonso et						
		al., 2017)						
Beach	Calculation on	A steeper slope	1	≤2	$2 < X \leq 4$	$4 < X \le 6$	$6 < X \le 8$	> 8
slope (%)	topographic	increases the		BD			MT	NG
	profiles between	susceptibility of					SK	
	the shoreline	the beach						
	and the break in	(Cazes-Duvat,						
	slope using	2001; Williams						
	Profiler 3.2	et al., 2001;						
	module in Excel	Alexandrakis						
		and Poulos,						
		2014)						
Beach	Measurements	The width of the	1	> 72	$\overline{64 < X \le 72}$	56 < X < 64	$48 < X \leq$	≤48
width (m)	on drone	beach		SK	BD		56	MT
	pictures in	influences the					NG	

	-					
	ArcGIS via the	availability of				
	estimation of	sediments on				
	the position of	the beach.				
	the break in	Wider beaches				
	slope on the	having larger				
	topographic	surface exposed				
	profiles	to waves, the				
		intensity of this				
		agent on the				
		beach is				
		decreased				
		uecreased,				
		promoting the				
		deposition of				
		sediments and				
		decreasing the				
		susceptibility of				
		the beach				
		(Bodéré et al.,				
		1991; Cazes-				
		Duvat, 2001;				
		García-Mora et				
		al., 2001;				
		Williams et al.,				
		2001;				
		Alexandrakis				
		and Poulos,				
		2014;				
		Bagdanavičiūtė				
		et al., 2015;				
		Peña-Alonso et				
		al., 2017; Ruol				
		et al., 2018)				
Sediment	Calculation on	The shoreline	1	Accretion	Stability	Erosion
arv	aerial	erosion/accretio	_	BD	MT	
evolution	photographs	n on several			NG	
between	using DSAS	previous			SK	
1950 and	module in	decades			SIL	
2016	ArcGIS	indicates the				
2010	710015	nat history of				
		past instory of				
		seumentary				
		evolution of the				
		shoreline and				
		offers a basis				
		for future				
		projections of				
		shoreline				
		response to sea				
		level rise. Past				
		erosion trend				
		therefore shows				
		a lower				
		adaptability of				
		the beach				
		(Bodéré et al.,				

		1991 · Gornitz et					
		al 100/1					
		Cazes-Duvat					
		2001, Williama					
		2001, williams					
		Dogdonovičiūto					
		at al 2015					
		D_{2} ΔL_{2} $\Delta L_$					
		Pena-Alonso et					
0 1 .		al., 2017)	1	T			т
Supply in	Estimation from	Higher supply	I	Important	Moderate		Low
terrigenou	the calculation	in terrigeneous		BD	MT		NG
S	of the surface of	sediments			SK		
sediments	the catchment	increases the					
	area above each	adaptability of					
	beach on	the beach					
	ArcGIS	(Alexandrakis					
		and Poulos,					
		2014)					
Expositio	Observation on	More exposed	1	Sheltered		BD	Exposed
n to	the field	beaches have a				MT	
waves and		higher exposure				NG	
swell		and				SK	
		susceptibility					
		(García-Mora et					
		al., 2001; Peña-					
		Alonso et al.,					
		2017)					
		2017)					
Tidal	Theorical values	Large tidal	1	Microtidal	Mesotidal		Macrotidal
Tidal range (m)	Theorical values	Large tidal range is	1	Microtidal (≤ 2)	Mesotidal $(2 < X \leq 4)$		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with	1	Microtidal (≤ 2)	Mesotidal $(2 < X \le 4)$ <i>BD</i>		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal	1	Microtidal (≤ 2)	Mesotidal $(2 < X \le 4)$ <i>BD</i> <i>MT</i>		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can	1	Microtidal (≤ 2)	$Mesotidal (2 < X \le 4) BD MT NG$		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport	1	Microtidal (≤ 2)	 Mesotidal $(2 < X \le 4)$ BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated	1	Microtidal (≤ 2)	 Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) <i>BD</i> <i>MT</i> <i>NG</i> <i>SK</i>		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone suscentible	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to epicodic	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges and thus	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges and thus potentially	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges and thus potentially impacting the	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges and thus potentially impacting the wetland	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges and thus potentially impacting the wetland ecology.	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges and thus potentially impacting the wetland ecology. Therefore,	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges and thus potentially impacting the wetland ecology. Therefore, macrotidal	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges and thus potentially impacting the wetland ecology. Therefore, macrotidal coasts are more	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)
Tidal range (m)	Theorical values	Large tidal range is associated with strong tidal currents that can transport unconsolidated sediments, with a wide intertidal zone susceptible to episodic flooding and penetration of saline water following sea level rise and/or storm surges and thus potentially impacting the wetland ecology. Therefore, macrotidal coasts are more vulnerable than	1	Microtidal (≤ 2)	Mesotidal (2 < X ≤ 4) BD MT NG SK		Macrotidal (> 4)

		tide ranges (Gornitz et al., 1994; Williams et al., 2001;						
		al 2017)						
		al., 2017)			I INDEY			
		Instification			AL INDEA	Scores		
Criteria	Determination	for the choice	Weight			Scores		
	of the criteria	of criteria		0	0.25	0.5	0.75	1
Presence	Observation on	Mangroves play	1	Yes				No
of	the field	a protective role		BD				MT
associated		for the shore						NG
ecosystem		(e.g., dissipation						SK
protecting		of wave energy						
the coast:		and sediment						
mangrove		stabilisation),						
		decreasing its						
		susceptibility						
		(Jeanson et al.,						
		2014; Spalding						
		et al., 2014;						
		Guannel et al.,						
		2016; Narayan						
		et al., 2016;						
		Powell et al.,						
		2019)						
Presence	Observation on	Seagrass beds	0.5	Yes				No
of	the field	play a protective		BD				
associated		role for the		MT				
ecosystem		shore (e.g.,		NG				
protecting		dissipation of		SK				
the coast:		wave energy						
seagrass		and sediment						
bed		stabilisation),						
		decreasing its						
		susceptibility						
		(Ondiviela et						
		al., 2014;						
		Spatcing et al.,						
		2014, Guainier						
		Noreven et el						
		2016)						
Density of	Qualitative	Higher density	0.5	Verv high	Hioh	Moderate	Low	Verv low
seaorass	estimation	enhances the	0.5	, cry mgn	111511	NG	MT	RD
hed	based on visual	protective role				110	SK	
	observation at	of seagrass bed						
	low tide	(e.g., dissipation						
		of wave energy						
		and sediment						
		stabilisation).						
		therefore						
		decreasing						

			1			1		
		exposure and						
		susceptibility of						
		the shore						
		(Ondiviela et						
		al., 2014)						
Presence	Observation on	Fringing reefs	0.75	Yes				No
of	the field and on	play a protective		BD				
associated	aerial	role for the		MT				
ecosystem	photographs	shore (e.g.,		NG				
protecting	1 8 1	dissipation of		SK				
the coast.		wave energy						
fringing		and sediment						
reaf		and sediment						
Iteel								
		decreasing its						
		susceptibility						
		(Spalding et al.,						
		2014; Guannel						
		et al., 2016;						
		Narayan et al.,						
		2016; Powell et						
		al., 2019)						
Distance	Measurements	Beaches can be	0.25	> 3000		$500 < X \leq$		≤ 500
between	of the distance	separated in 3		(open		3000		MT
the	between the	categories: open		(epen)		RD		NG
shoreline	shoreline and	beaches least		oeden)		DD		SK
and the	the reaf front of	vulnorable to						SK
	the fringing reaf	vullierable to						
reel front		erosion, beaches						
of the	in the middle of	at a distance of						
fringing	the beach on	the reef front						
reef (m)	drone pictures	between 150						
	in ArcGIS.	and 500 m very						
		vulnerable to						
		erosion, and						
		beaches at a						
		distance of the						
		reef front						
		between 500						
		and 3000 m						
		with						
		intermediate						
		mienneulate						
		(Cazes-Duvat,						
	- 1 .	2001)						
Presence	Observation on	Barrier reefs	0.5	Yes	Yes	Yes		No
of	aerial	play a protective		(double	(continuous	(discontinuous		
associated	photographs	role for the		barrier)	barrier)	barrier)		
ecosystem		shore (e.g.,		NG		BD		
protecting		dissipation of				MT		
the coast:		wave energy				SK		
barrier		and breaking of						
reef		offshore waves),						
		decreasing its						
		susceptibility						
		(Snalding et al						
1		(Spatung et al.,	1		1	1	1	1

		2014; Guannel						
		et al., 2016;						
		Naravan et al						
		2016: Powell et						
		al., 2019)						
Distance	Measurements	The higher the	0.25	≤2	$2 < X \leq 4$	$4 < X \le 6$	$6 < X \le 8$	> 8
between	on aerial	distance				BD		MT
the	photographs in	between the				SK		NG
shoreline	ArcGIS	shore and the						
and the		barrier reef is,						
barrier		the more wind-						
reef		waves can be						
(lagoon		generated and						
width)		increase with						
(km)		wind, increasing						
()		the						
		susceptibility of						
		the shore						
		(Gallon et al						
		2014)						
Width of	Measurements	The protective	0.25	> 1700	1400 < X <	1100 < X <	800 < X <	< 800
the barrier	on aerial	role of the	0.20	MT	1700	1400	1100	_ 000
reef (m)	photographs in	barrier reef			1,00	1.00	RD	
reer (iii)	ArcGIS	(dissination of					NG	
	710015	(ussipation of wave energy)					SK	
		increases with					5A	
		the reef width						
		therefore						
		decreasing						
		avposure and						
		exposure and						
		susceptibility of						
		(Kanahan 1						
		(Kench and						
		Brander, 2006;						
		Jeanson, 2009;						
		Spalding et al.,						
		2014; Narayan						
		et al., 2016)		-				
Wrack	Observation on	Wrack plays a	1	Important		Moderate		Low
	the field	protective role						BD
		for the shore by						MT
		attenuating						NG
		wave energy						SK
		and trapping						
		sediments,						
		therefore						
		decreasing						
		susceptibility of						
		the beach						
		(Bodéré et al.,						
		1991; Robbe et						
		al., 2021)						
High	Observation on	Coastal	0.5	Important	NG	Moderate	MT	None
vegetation	the field	vegetation plays		BD	SK			

(i.e., trees		a protective role						
and		against erosion						
shrubs) in		by trapping and						
upper		stabilising						
beach		coastal						
		sediments,						
		therefore						
		decreasing the						
		susceptibility of						
		the beach						
		(Bodéré et al.,						
		1991; Williams						
		et al., 2001; Lee						
		et al., 2020)						
Low and	Observation on	Coastal	0.5	Important		Moderate	MT	None
creeping	the field	vegetation plays		1		SK	NG	BD
vegetation		a protective role						
(i.e.,		against erosion						
herbaceou		by trapping and						
s plants		stabilising						
and vines)		coastal						
in upper		sediments.						
beach		therefore						
		decreasing the						
		susceptibility of						
		the beach						
		(Bodéré et al						
		1991 · Lee et al						
		2020)						
		2020)	AN	THROPOGE	INIC INDEX			
		Instification				Scores		
Critoria	Determination	for the choice	Weight			Scores		
Cinterna	of the criteria	of criteria	weight	0	0.25	0.5	0.75	1
Beach	Observation on	High beach	1	Low		Moderate		High
frequentat	the field	frequentation	1	RD EOW		MT		NG
ion	the nett	alters				1011		SK
1011		geomorphology						SK
		and equilibrium						
		of the beaches						
		therefore						
		increasing						
		increasing						
		exposure and						
		susceptionity,						
		and decreasing						
		natural						
		the beach	1		1			
		(D - 1/2) + 1						
		(Bodéré et al.,						
		(Bodéré et al., 1991; Simeone						
		(Bodéré et al., 1991; Simeone et al., 2012;						
		(Bodéré et al., 1991; Simeone et al., 2012; Peña-Alonso et						

Reef flat	Observation on	Higher reef flat	1	Low	SK	Moderate	MT	High
frequentat	the field	frequentation		NG		BD		U
ion		can damage the						
		reef and						
		decrease its						
		protective role						
		(e.g., dissipation						
		of wave energy						
		and sediment						
		stabilisation),						
		therefore						
		increasing the						
		susceptibility of						
		the beach						
		(Guannel et al.,						
		2016; Powell et						
		al., 2019)						
Motorised	Observation on	Vehicles transit	1	None		Some		A lot
vehicles	the field	on the beach		BD				
on the		alters the		MT				
beach		equilibrium		NG				
		profiles of the		SK				
		beaches, and						
		prevents plant						
		from growing						
		and acting as						
		obstacles to						
		sedimentary						
		transport,						
		therefore						
		increasing						
		exposure and						
		susceptibility,						
		and decreasing						
		natural						
		adaptability of						
		(Dodárá at al						
		(Douere et al.,						
		Kindermann						
		and Gormally						
		2010: Peña-						
		Alonso et al						
		2017)						
Presence	Observation on	Hard coastal	1	No				Yes
of coastal	the field	defences modify		BD				MT
defences		the limits of the		NG				
		beaches and		SK				
		alter coastal						
		drift and the						
		natural transport						
		of the sediments						
		(potentially						
		causing						

r	1		1					
		acceleration or						
		displacement of						
		erosion),						
		increasing						
		exposure and						
		susceptibility,						
		and decreasing						
		natural						
		adaptability of						
		the beach						
		(Cazes-Duvat						
		2001.						
		2001, Nordatrom						
		Nordstroin,						
		2004; Pena-						
		Alonso et al.,						
		2017)						
Importanc	Observation on	More	1	Low		Moderate	BD	High
e of	the field	urbanisation				NG		MT
urbanisati		decreases the				SK		
on		natural						
		adaptability of						
		the beach						
		(Bodéré et al.,						
		1991; Cazes-						
		Duvat, 2001;						
		García-Mora et						
		al., 2001;						
		Hereher, 2016:						
		Peña-Alonso et						
		al 2017: Ruol						
		et al (2017, 100)						
Boat	Observation on	Boats anchoring	1	None	Low	Moderate		Important
anaharing	the field	domogoo the	1	None	PD	Modelate		MT
anchornig	the neid	uamages the			DD NC			111 1
		protective			NG			
		ecosystems			SK			
		along the coast,						
		decreases their						
		protection, and						
		therefore						
		increases the						
		susceptibility of						
		the beach (Liu						
		et al., 2021)						
Waste	Observation on	Pollution from	1	None	Low	Moderate	Important	Very
water	the field	waste water			NG		BD	important
discharge		discharge			SK		MT	
near the		damages the						
coast		health of						
		protective						
		ecosystems						
		along the coast.						
		decreases their						
		protection and						
		therefore						
1	1		1	1	1	1	1	1

		increases the					
		susceptibility of					
		the beach					
		(Tuholske et al.,					
		2021)					
Sand	Observation on	Sand mining	1	None	Low	Moderate	Important
mining	the field	alters		NG	BD		
		equilibrium of		SK	MT		
		the beaches,					
		therefore					
		increasing					
		exposure and					
		susceptibility,					
		and decreasing					
		natural					
		adaptability of					
		the beach					
		(Bodéré et al.,					
		1991; Cazes-					
		Duvat, 2001)					

3. Results

276 **3.1. Characterisation of Mayotte's shoreline evolution**

The changes between 1950 and 2016 of Grande Terre shoreline typology were limited, with a noticeable change only in terms of urbanised shoreline, increasing from 1% in 1950 to 6% in 2016 (Fig. 2 and 3). The percentage of beaches along the shoreline was stable across time, and the mangroves showed some variability between the years but an overall long-term stability in shoreline length occupied by mangroves (Fig. 3). Urbanisation was therefore mainly conducted on rocky shores, with the biggest change taking place between 1989 and 2008 (urbanised shoreline increasing from 3 to 6%, Fig. 2 and 3).

Figure 2: Map of the shoreline classification of Grande Terre (the main island of Mayotte) in 1950, 1969,
1989, 2008, and 2016. Rocky shore in black, beach in yellow, mangrove in green, urbanised shoreline in
red.

Figure 3: Percentage of the shoreline as rocky shore, beach, mangrove and urbanised area in 1950, 1969,
1989, 2008, and 2016 on the main island of Mayotte (Grande Terre).

The analysis of changes in the shoreline position between 1950 and 2016 (Fig. 4, 5, 6, and 7) (with 293 294 a shoreline change rate uncertainty of 8 cm.y⁻¹) showed that the rocky shore did not display any change: between -5 ± 8 cm.y⁻¹ and 0 ± 8 cm.y⁻¹ (Fig. 4). The beaches were more dynamic environments: -2 ± 8 cm.y⁻¹ 295 ¹ for M'tsamboro; -6 ± 8 cm.y⁻¹ for Sakouli; 10 ± 8 cm.y⁻¹ for N'gouja (Fig. 5). The mangroves were more 296 dynamic on shorter terms with an accretion for Longoni $(19 \pm 8 \text{ cm.y}^{-1})$ and Bandrélé $(27 \pm 8 \text{ cm.y}^{-1})$ (Fig. 297 6). The third mangrove (Kani-Kéli) showed an overall stability with a change rate of -1 ± 8 cm.y⁻¹, although 298 299 a trend of accretion in the northern section of the mangrove, and a trend of erosion in the eastern section of 300 the mangrove emerged (Fig. 6). The most impressive changes were in urbanised areas: Mamoudzou with a change rate of 101 ± 8 cm.y⁻¹, and Chiconi with a change rate of 55 ± 8 cm.y⁻¹ (Fig. 7). 301

The trends that can be drawn from these results are therefore a stability of the rocky coasts; a slight variability between the beaches which are mostly stable or show slight accretion or erosion trends; a more marked variability of the mangroves which are mostly accreting or stable overall, but with sometimes 305 erosion and accretion within the same mangrove depending on the section observed; and a result of 306 considerable accretion for the large urban areas because of infrastructure building gaining ground at the 307 expense of the sea (not marked for smaller villages). However, these trends should be taken with caution as 308 they are based on only three sites in each category, and not on an analysis covering the whole island.

309

Figure 4: Evolution of the position of the shoreline (rocky shore) between 1950 and 2016 in three locations: north-west with a mean shoreline movement of 0 m and a mean end point rate of 0 m.y⁻¹ (A), center-east with a mean shoreline movement of 0 m and a mean end point rate of 0 m.y⁻¹ (B), and south-west with a mean shoreline movement of -3 m and a mean end point rate of -0.05 m.y⁻¹ (C). The net shoreline movement (m) and end point rate (m.y⁻¹) are extracted from the DSAS module in ArcGIS 10.8.1.

316

Figure 5: Evolution of the position of the shoreline (beach) between 1950 and 2016 in three locations: M'tsamboro in the north-west with a mean shoreline movement of -2 m and a mean end point rate of -0.02 m.y⁻¹ (A), Sakouli in the center-east with a mean shoreline movement of -4 m and a mean end point rate of -0.06 m.y⁻¹ (B), and N'gouja in the south-west with a mean shoreline movement of 6 m and a mean end point rate of 0.10 m.y⁻¹ (C). The net shoreline movement (m) and end point rate (m.y⁻¹) are extracted from the DSAS module in ArcGIS 10.8.1.

Figure 6: Evolution of the position of the shoreline (mangrove) between 1950 and 2016 in three locations: the mangrove of Longoni in the north with a mean shoreline movement of 12 m and a mean end point rate of 0.19 m.y^{-1} (A), the mangrove of Bandrélé in the center-east with a mean shoreline movement of 18 m and a mean end point rate of 0.27 m.y^{-1} (B), and the mangrove of Kani-Kéli in the south with a mean shoreline movement of -1 m and a mean end point rate of -0.01 m.y^{-1} (C). The net shoreline movement (m) and end point rate (m.y⁻¹) are extracted from the DSAS module in ArcGIS 10.8.1.

Figure 7: Evolution of the position of the shoreline (urbanised shoreline) between 1950 and 2016 in three locations: Mamoudzou in the north-east with a mean shoreline movement of 66 m and a mean end point rate of 1.01 m.y⁻¹ (A), Nyambadao in the center-east with a mean shoreline movement of -1 m and a mean end point rate of -0.01 m.y⁻¹ (B), and Chiconi in the center-west with a mean shoreline movement of 36 m and a mean end point rate of 0.55 m.y⁻¹ (C). The net shoreline movement (m) and end point rate (m.y⁻¹) are extracted from the DSAS module in ArcGIS 10.8.1.

341 **3.2. Beach vulnerability index**

The scores given to each site (BD for Bandrélé, MT for M'tsamboro, NG for N'gouja, and SK for Sakouli) for each criteria were presented in Table 2. The three sub-indexes and the multidisciplinary vulnerability index obtained after calculations were presented in Figure 8. 345 The morpho-dynamic index showed that Bandrélé had a low morpho-dynamic vulnerability (0.25) 346 followed by Sakouli (0.56), and then by M'tsamboro (0.69) and N'gouja (0.75) (Fig. 8A). Bandrélé 347 displayed the lowest ecological vulnerability (0.45) and M'tsamboro the highest (0.65), while N'gouja and 348 Sakouli displayed intermediate values (0.57 and 0.59, respectively) (Fig. 8B). The vulnerability linked to 349 anthropogenic pressures was higher in M'tsamboro (0.66) than in the three other sites (between 0.25 and 350 0.31) (Fig. 8C). Combining the three sub-indexes in a global multidisciplinary index allowed to discrimate 351 the lowest vulnerability for Bandrélé (0.34, mainly linked to morpho-dynamic and ecological factors) and 352 the highest for M'tsamboro (0.66, mainly linked to ecological and anthropogenic factors) (Fig. 8D). Sakouli 353 and N'gouja displayed intermediate values of vulnerability (0.48 and 0.52, respectively) (Fig. 8D).

354

Figure 8: Beach vulnerability index (D) of four beaches in Mayotte (Bandrélé, M'tsamboro, N'gouja, and
Sakouli) and its three components: morpho-dynamic index (A), ecological index (B), and anthropogenic
index (C). The left part of the arrows represents the minimum vulnerability (0), while the right part of the
arrows represents the maximum vulnerability (1).

4. Discussion

362

4.1. Characterisation of Mayotte's shoreline evolution

363 Artificialisation of Mayotte's shoreline is a reality, but remains limited nowadays (the urbanised 364 shoreline increased from 1% in 1950 to 6% in 2016, Fig. 3) compared to the trends in other parts of France 365 (e.g., metropolitan France, French West Indies, French Polynesia, La Réunion, etc.; Le Berre, 2017; Madi 366 Moussa et al., 2019; Gairin et al., 2021; Giraud-Renard et al., 2022) and worldwide (Adger et al., 2005; 367 Airoldi and Beck, 2007; Dugan et al., 2011; Gittman et al., 2016; Matić-Skoko et al., 2020). As an example, 368 more than 50% of the land in coastal areas is urbanised in several European countries (Airoldi and Beck, 2007). Taking two examples of islands in other parts of the world, the urbanised shoreline increased from 369 4% in 1950 to 21% in 2017 in Guadeloupe (study on a part of the northern and southern shorelines; Giraud-370 371 Renard et al., 2022) and from 12% in 1955 to 61% in 2019 in Bora Bora (Gairin et al., 2021). This "delay" 372 in shoreline urbanisation in Mayotte could be explained by several physical and socio-economic factors. 373 Firstly, the high tidal range in Mayotte (3.20 m) makes it difficult to build directly on the shoreline and in the intertidal area (e.g., a high volume of material would be necessary to be able to build embankments that 374 375 would not be flooded during high tide, tidal currents would put more pressure on infrastructure, etc.), and 376 therefore narrows the space available for permanent human infrastructure. In Bora Bora and Guadeloupe, 377 the tidal range is only 30-50 cm, making the land-water interface more attractive for constructions. The 378 nature of the island of Mayotte, with its steep slopes, numerous rocky shores with cliffs, and no coastal 379 plain, is also a factor explaining the low urbanisation on the shoreline. Moreover, the global development 380 in Mayotte occurred recently, with an increasing demographic pressure lately (the population doubled in 20 381 years, going from 130,000 inhabitants in 1997 to 256,500 in 2017; INSEE, 2017). Thus, the main increase 382 in shoreline urbanisation took place between 1989 and 2008 (from 3 to 6%, Fig. 3). This period coincides 383 with a strengthening of ties between metropolitan France and Mayotte (notably as Mayotte became a French 384 Territorial Collectivity in 1976, and a French department in 2011), improving socio-economic conditions

385 and medical care (thus decreasing mortality) (Bernardie-Tahir and El-Mahaboubi, 2001). It is also a period 386 of economic development with the construction of the deepwater port in Longoni in the 2000s and the 387 development of the industrial area around Mamoudzou (Jeanson et al., 2019). The construction of 388 habitations and roads often takes place near the sea, as the population concentrates there mainly because of 389 the strong mountain slopes on the island and economic issues, but not systematically on the shoreline itself 390 (Bernardie-Tahir and El-Mahaboubi, 2001; Jeanson et al., 2014). The percentage of urbanisation would 391 therefore likely be much higher in a study focusing on a larger littoral fringe than the shoreline itself (viewed 392 as a line and not an area in this study). Overall, as the majority of the shoreline is still natural, a sound 393 management advice would be to put in place conservation measures to preserve this natural environment.

394 The shoreline was divided in four categories in this study: rocky (rocky shore, 51% in 2016), muddy 395 (mangrove, 24% in 2016), sandy (beach, 19% in 2016), and artificial (urbanised shoreline, 6% in 2016) 396 (Fig. 3). The changes over time from 1950 to 2016 were assessed for three sites of each category. None of 397 the rocky shores showed any change in extent or position (Fig. 4), as they are the most stable environment. 398 Only one of the beaches analysed showed an accretion of a few centimeters per year (N'gouja, Fig. 5). It is 399 a tricky task to assess the evolution of beaches because of multiple special cases. Some beaches display 400 erosion while others display accretion (e.g., terrigenous sediments inputs due to high soil erosion favour 401 accretion of beaches) and hints of both phenomena can be seen within one beach (e.g., Fig. 5A and 5B), 402 suggesting a succession of calm episodes favourable to sedimentation and punctual extreme events causing 403 erosion. The beaches are dynamic environments at a seasonal scale, with long-shore (e.g., N'gouja) or cross-404 shore sand exchange movements changing direction each season. However, they appear relatively stable 405 over several decades, suggesting that the coral reef environment protects them from losing sediments 406 (Jeanson et al., 2013, 2019). There is more variability regarding the evolution of mangroves, with erosion 407 or accretion trends depending on each mangrove, and even within the mangrove (e.g., mangrove of Kani-408 Kéli; Fig. 6). Mangroves on the west and south coast of the island display losses in extent over the sea, while 409 on the north coast they show stability or a little prograding (Jeanson et al., 2014, 2019), suggesting that 410 mangrove resilience depends on the morphodynamics and hydrodynamics of the reef, which vary around 411 the island (Jeanson et al., 2013). Mangroves are constituted of living trees, and therefore evolve at a shorter-412 term than rocks or beaches. The evolution of mangroves also depends on local anthropogenic (e.g., cut of 413 trees, urbanisation) and natural (e.g., silting, hydro-sedimentary processes) factors (Jeanson et al., 2014). However, in the current context of siltation in Mayotte, mangroves display a relative stability (Jeanson, 414 415 2009). The changes of the urbanised shoreline position are the most impressive, as modifications from 416 anthropogenic origin are more drastic than natural ones. Some villages, like Nyambadao, do not have a big 417 impact on the shoreline position, while others, like Chiconi and Mamoudzou, build walls and embankments, 418 gaining ground at the expense of the sea (Fig. 7). Mamoudzou is a special example of urban development. 419 It is the main city of Mayotte and the studied area is the main harbour which links Petite Terre (the island 420 with the only airport of Mayotte) and Grande Terre (the main island of Mayotte). This strategic location can 421 therefore explain the extent of artificialisation and thus the strong seaward change of the position of the 422 shoreline: it is one of the main areas involved in the economy of the island (Jeanson et al., 2019).

The choice of three sites from each category of shoreline was done to try to obtain representative results for the entire island. However, the specific conditions and results for each site (mainly beaches, mangroves, and urbanised sites) do not allow to conclude that our results are a valid representation of the whole island's shoreline. A further study of the coastal sites of the entire island would be necessary to be able to obtain a representative conclusion for the whole island.

428

429 **4.2. Beach vulnerability index**

The vulnerability index is applied to four beaches along the coast of Mayotte, with different levels of urbanisation and local conditions. Among the four sites, the most urbanised site, M'tsamboro, displays the highest vulnerability, and Bandrélé the lowest, while Sakouli and N'gouja have intermediate vulnerability (Fig. 8). The three sub-indexes help to understand which factors play the main role in the assessment of the vulnerability. The presence of the mangrove in Bandrélé plays a role of protection of the coast, decreasing the vulnerability of the beach through ecological factors (Fig. 8B). Indeed, mangroves commonly play a role of buffer between the land and beach and trap sediments (Jeanson et al., 2014). 437 Morpho-dynamic factors also decrease the vulnerability of this site (Fig. 8A). In contrast, the more 438 developed urbanisation in M'tsamboro increases its vulnerability, mainly through the anthropogenic subindex (Fig. 8C) but also through the ecological sub-index (Fig. 8B), including because of the impact of 439 440 urbanisation on ecosystems. The choice was made to study the vulnerability of the beaches. That is why 441 Bandrélé is not considered as having high anthropogenic pressure despite having a village nearby: we 442 consider that the anthropogenic pressure is on the mangrove, which plays a role of buffer between the village 443 and the beach. The results from this vulnerability index highlight the need to protect coastal ecosystems in 444 less vulnerable locations (such as Bandrélé) in order to maintain their protective role for the shore, and to 445 restore or change the way to manage vulnerable coastal sites (such as M'tsamboro) in order to give them a 446 better protection against natural and anthropogenic hazards.

447 To develop this vulnerability index, we were initially inspired by the coastal vulnerability index 448 (CVI) presented by Hereher (2016). As it was not possible to replicate exactly the method from this study 449 (due to practical constraints and local conditions), we developed a similar index based on the data available 450 for our study sites and on the data that we could gather on the field and calculate by ourselves. We then 451 looked for other similar indexes in the literature in order to be as comprehensive as possible and completed 452 our index with complementary criteria from other studies (Bodéré et al., 1991; Gornitz et al., 1994; Cazes-453 Duvat, 2001; García-Mora et al., 2001; Williams et al., 2001; Jeanson, 2004; Alexandrakis and Poulos, 454 2014; Peña-Alonso et al., 2017; Ruol et al., 2018; Mathew et al., 2020). The goal of using this method was 455 to obtain an index that takes into account a maximum of factors influencing beach vulnerability, while being 456 adaptable to any situation. The adaptability of this index is an advantage because it can be relevant to any 457 specific situations, but the counterpart is that the index is not standardised at a worldwide scale. It would 458 therefore be difficult to compare this index between several studies. Harmonisation would be necessary in 459 the boundary and threshold values used to score the criteria to obtain an "absolute" vulnerability to be able 460 to compare several studies using this index. Indeed, the vulnerability index in our study reflects the relative 461 vulnerability of the four study sites, not an absolute vulnerability.

462 The vulnerability index developed in this study focuses on the vulnerability of the beaches 463 themselves. This was the choice made in this study, notably based on criteria inspired from literature, 464 available data and scope of this study, but it is not the only way to grasp this concept. To highlight the need 465 to protect natural ecosystems, another way is to assess their own vulnerability to climatic and anthropogenic 466 hazards (as in the study from Hereher, 2016). In the ecological index from this study, coastal ecosystems 467 (coral reefs, mangroves, seagrass beds) are only seen as factors protecting the shoreline and therefore 468 decreasing its vulnerability (Table 2). However, these ecosystems can be seen as vulnerable themselves, 469 therefore increasing the site vulnerability. In this other point of view, complementary data would be 470 necessary (e.g., mangrove and coral reef diversity, density, etc.). One can argue that the density or width of 471 mangroves also influences their protective role of the shore. There is no impact of this missing data in this 472 study because the mangrove was present in only one site, but it could indeed be useful for any other study 473 comparing several sites with mangroves. Several studies were already conducted about the impact of 474 morpho- and hydrodynamic factors on mangroves in Mayotte (e.g., Jeanson et al., 2014, 2019). The coastal 475 protective role of mangroves by the dissipation of wave energy and sediment stabilisation has been 476 demonstrated in other studies (e.g., Spalding et al., 2014; Guannel et al., 2016; Narayan et al., 2016; Powell 477 et al., 2019), but none of them is conducted specifically on Mayotte's mangroves. Another choice that can 478 be made is to focus the assessment on the vulnerability of human assets. In this case, it would be of interest 479 to analyse more precisely the infrastructures with cultural and socio-economic data (their exposure, 480 susceptibility, and adaptability) as values to protect, and not only as pressures on the environment. Regarding 481 the weighting coefficient given to the criteria in the calculation of each sub-index, and to the sub-indexes in 482 the calculation of the multidisciplinary index, the choice was made not to give weights to the majority of the criteria and sub-indices, as in the study from Cazes-Duvat (2001). The only weighting factors provided 483 484 were to give less weight to intelinked ecological criteria. An improvement of this method might be to ask 485 the judgement from a panel of experts to choose relevant weighting factors for criteria and sub-indexes, as 486 suggested in the study from Bagdanavičiūtė et al. (2015) using the analytical hierarchical process (AHP). This method seems to be more accurate when the necessary data and experts are available (Bagdanavičiūtė
et al., 2015).

489 In the context of Mayotte, it is also of interest to extent the vulnerability analysis to the whole island 490 and to map it to make it more visually impacting for authorities. It would then be useful as a decision tool 491 to prioritise sites to act on in coastal management. The anthropogenic sub-index shows that urbanisation can 492 impact negatively the vulnerability of the shoreline. The changes in shoreline category over time shows that Mayotte's shoreline is subject to artificialisation, but in a moderate way. To prevent future intensive 493 494 artificialisation and its impact on the shoreline and coastal ecosystems, conservation measures must be 495 implemented as of now. In another context, it would be also interesting to adapt the index at a larger scale, 496 e.g., the region or the world (to compare several islands in different oceans for example). In this last case, 497 it is interesting to add a climatic sub-index with forcing variables contributing to coastal impacts, in 498 particular erosion (such as in the study from Gornitz et al., 1994). The vulnerability index used in this study 499 is therefore adaptable and can be used in all contexts and scales by adapting the boundary values of each 500 criterion inside the indexes. The advantage of a multidisciplinary index is that it is not limited to one kind 501 of factors and can therefore reflect a more integrative approach taking into account the vulnerability linked 502 to various fields of science. Some criteria in this study were assessed qualitatively because of the availability 503 of data, but another study could use only quantitatively determined criteria if sufficient resources are 504 available.

505

506 **5.** Conclusions

507 The historical analysis of a time series of aerial photographs of Mayotte from 1950 to 2016 showed 508 that the urbanisation of the shoreline is still low nowadays compared with the worldwide trend. However, 509 the coastal development sped up in the last 30 years. At the scale of this study, natural environments (rocky 510 shore, beach, and mangrove) did not show global trend of erosion or accretion, but it was observed that 511 beaches and mangroves are more dynamic than rocky shores. With the increasing demographic pressure and 512 socio-economic development in Mayotte, coastal habitats sheltering a rich biodiversity (e.g., coral reefs, 513 beaches, mangroves, and seagrass beds) will probably be subject to more anthropogenic pressure in the 514 future. It would therefore be advisable to manage the development in a sustainable way in order to preserve 515 terrestrial, coastal, and marine environments in and around the island, with initiatives similar to the creation 516 of the Mayotte Marine Natural Park for example. The use of a multidisciplinary vulnerability index could 517 be helpful in the decisional process in the context of coastal management to take into account factors from several fields that influence vulnerability of ecosystems (beaches in the case of this study). The vulnerability 518 519 index developed and used in this study is simple to make, can be adapted according to the available data, 520 can include factors from different fields, and produces a unique value that can be communicated to 521 authorities and coastal managers to help assess priorities in actions to undertake (e.g., restore vulnerable 522 sites, and preserve less vulnerable sites). In the case of Mayotte, the vulnerability index demontrates the 523 importance to preserve natural protective ecosystems (i.e., mangroves, coral reefs, and seagrass beds) and to use a sustainable management in the development of urban coastal areas in order to avoid an increase in 524 525 the vulnerability of coastal sites.

526

527 Funding:

This work was supported by Fondation de France (2019-08602), ANR-19-CE34-0006-Manini, ANR-19CE14-0010-SENSO.

530 Acknowledgments:

We wish to acknowledge the Fondation de France for supporting the project "Quel littoral demain dans
l'Outre-mer Français". We also acknowledge Sarah Charroux and Yann Mercky for their help during data
acquisition on the field and data treatment.

534 **Declaration of Interests:**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

538 **References**

- 539 Adger, W.N., Hughes, T.P., Folke, C., Carpenter, S.R., Rockström, J., 2005. Social-Ecological Resilience
- 540 to Coastal Disasters. Science 309, 1036–1039. <u>https://doi.org/10.1126/science.1112122</u>
- 541 Airoldi, L., Beck, M.W., 2007. Loss, status and trends for coastal marine habitats of Europe, in:
- 542 Oceanography and Marine Biology: An Annual Review. CRC Press, pp. 345–405.
- Alexandrakis, G., Poulos, S., 2014. An holistic approach to beach erosion vulnerability assessment.
 Scientific reports 4, 6078. https://doi.org/10.1038/srep06078
- 545 Bagdanavičiūtė, I., Kelpšaitė, L., Soomere, T., 2015. Multi-criteria evaluation approach to coastal
- 546 vulnerability index development in micro-tidal low-lying areas. Ocean & Coastal Management 104, 124-
- 547 135. https://doi.org/10.1016/j.ocecoaman.2014.12.011
- Bernardie-Tahir, N., El-Mahaboubi, O., 2001. Mayotte : des parfums au tourisme. Les nouveaux enjeux du
 littoral. Les Cahiers d'Outre-Mer. Revue de géographie de Bordeaux 54, 369–396.
 https://doi.org/10.4000/com.1137
- 551 Besset, M., Gratiot, N., Anthony, E.J., Bouchette, F., Goichot, M., Marchesiello, P., 2019. Mangroves and
- shoreline erosion in the Mekong River delta, Viet Nam. Estuarine, Coastal and Shelf Science 226, 106263.
- 553 <u>https://doi.org/10.1016/j.ecss.2019.106263</u>
- Boak, E.H., Turner, I.L., 2005. Shoreline Definition and Detection: A Review. Journal of Coastal Research
 214, 688–703. <u>https://doi.org/10.2112/03-0071.1</u>
- Bodéré, J.-C., Cribb, R., Curr, R., Davies, P., Hallégouët, B., Meur-Férec, C., Piriou, N., Williams, A., Yoni,
 C., 1991. La gestion des milieux dunaires littoraux. Evolution de leur vulnérabilité à partir d'une liste de
- 558 contrôle. Etude de cas dans le sud du Pays de Galles et en Bretagne occidentale. Norois 151, 279–298.
- 559 <u>https://doi.org/10.3406/noroi.1991.6371</u>

Cazes-Duvat, V., 2001. Évaluation de la vulnérabilité des plages à l'érosion : application à l'archipel des
Seychelles / A beach vulnerability index and its implementation in the islands of Seychelles.
Géomorphologie : relief, processus, environnement 7, 31–40. <u>https://doi.org/10.3406/morfo.2001.1084</u>

563 Chevalier, C., Devenon, J.L., Pagano, M., Rougier, G., Blanchot, J., Arfi, R., 2017. The atypical 564 hydrodynamics of the Mayotte Lagoon (Indian Ocean): Effects on water age and potential impact on 565 plankton productivity. Estuarine, Coastal and Shelf Science 196, 182–197. 566 https://doi.org/10.1016/j.ecss.2017.06.027

- 567 Cohn, N., Anderson, D., Ruggiero, P., 2015. Observations of intertidal bar welding along a high energy,
 568 dissipative coastline, in: Coastal Sediments 2015. World Scientific.
 569 https://doi.org/10.1142/9789814689977 0021
- 570 Collin, A., Duvat, V., Pillet, V., Salvat, B., James, D., 2018. Understanding Interactions between Shoreline

571 Changes and Reef Outer Slope Morphometry on Takapoto Atoll (French Polynesia). Journal of Coastal

572 Research 85, 496–500. <u>https://doi.org/10.2112/SI85-100.1</u>

- 573 Cooper, J.A.G., Jackson, D.W.T., 2019. Coasts in Peril? A Shoreline Health Perspective. Frontiers in Earth
 574 Science 7. https://doi.org/10.3389/feart.2019.00260
- 575 De La Torre, Y., Aubie, S., 2003. Etude de la morpho-dynamique des littoraux de Mayotte. Phase 1 :
 576 synthèse, typologie et tendances d'évolution. (Rapport BRGM/RP-52320-FR).
- Dolan, R., Hayden, B.P., May, P., May, S.K., 1980. The reliability of shoreline change measurements from
 aerial photographs. Shore and Beach 48, 22–29.
- 579 Dugan, J.E., Airoldi, L., Chapman, M.G., Walker, S.J., Schlacher, T., 2011. Estuarine and Coastal
- 580 Structures: Environmental Effects, A Focus on Shore and Nearshore Structures, in: Wolanski, E., McLusky,

- 581 D. (Eds.), Treatise on Estuarine and Coastal Science. Academic Press, Waltham, pp. 17–41.
 582 https://doi.org/10.1016/B978-0-12-374711-2.00802-0
- Duvat, V.K.E., Pillet, V., 2017. Shoreline changes in reef islands of the Central Pacific: Takapoto Atoll,
 Northern Tuamotu, French Polynesia. Geomorphology 282, 96–118.
 https://doi.org/10.1016/j.geomorph.2017.01.002
- Gairin, E., Collin, A., James, D., Maueau, T., Roncin, Y., Lefort, L., Dolique, F., Jeanson, M., Lecchini, D.,
 2021. Spatiotemporal Trends of Bora Bora's Shoreline Classification and Movement Using HighResolution Imagery from 1955 to 2019. Remote Sensing 13, 4692. https://doi.org/10.3390/rs13224692
- 589 Gallop, S.L., Young, I.R., Ranasinghe, R., Durrant, T.H., Haigh, I.D., 2014. The large-scale influence of 590 the Great Barrier Reef matrix on wave attenuation. Coral Reefs 33. 1167-1178. 591 https://doi.org/10.1007/s00338-014-1205-7
- García-Mora, M.R., Gallego-Fernández, J.B., Williams, A.T., García-Novo, F., 2001. A Coastal Dune
 Vulnerability Classification. A Case Study of the SW Iberian Peninsula. Journal of Coastal Research 17,
 802–811.
- Giraud-Renard, E., Dolique, F., Collin, A., James, D., Gairin, E., Courteille, M., Beaufort, O., RenéTrouillefou, M., Dulormne, M., Jeanson, M., Lecchini, D., 2022. Long-term evolution of the Guadeloupean
 shoreline (1950-2017). Journal of Coastal Research. http://dx.doi.org/10.2112/JCOASTRES-D-2100161.1.
- 599 Gittman, R.K., Scyphers, S.B., Smith, C.S., Neylan, I.P., Grabowski, J.H., 2016. Ecological Consequences
- of Shoreline Hardening: A Meta-Analysis. BioScience 66, 763–773. <u>https://doi.org/10.1093/biosci/biw091</u>

- Gornitz, V.M., Daniels, R.C., White, T.W., Birdwell, K.R., 1994. The Development of a Coastal Risk
 Assessment Database: Vulnerability to Sea-Level Rise in the U.S. Southeast. Journal of Coastal Research
 Special issue, 327–338.
- 604 Guannel, G., Arkema, K., Ruggiero, P., Verutes, G., 2016. The Power of Three: Coral Reefs, Seagrasses
- and Mangroves Protect Coastal Regions and Increase Their Resilience. PLOS ONE 11, e0158094.
 https://doi.org/10.1371/journal.pone.0158094
- 607 Hapke, C.J., Himmelstoss, E.A., Kratzmann, M.G., List, J.H., Thieler, E.R., 2011. National Assessment of
- 608 Shoreline Change: Historical Shoreline Change along the New England and Mid-Atlantic Coasts (Open-
- 609 File Report 2010-1118), Open-File Report. U.S. Geological Survey.
- 610 Hereher, M.E., 2016. Vulnerability assessment of the Saudi Arabian Red Sea coast to climate change.
- 611 Environ Earth Sci 75, 13. <u>https://doi.org/10.1007/s12665-015-4835-3</u>
- 612 Idier, D., Romieu, E., Delattre, M., Pedreros, R., de la Torre, Y., 2008. Hydrodynamique tidale du lagon de 613 Mayotte : observations in situ et modélisation, in: Xèmes Journées, Sophia Antipolis. Presented at the 614 Journées Nationales Génie Côtier Génie Civil, Editions Paralia, 553-562. pp. 615 https://doi.org/10.5150/jngcgc.2008.053-I
- 616 INSEE, 2017. Recensement de la population à Mayotte [WWW Document]. URL
 617 <u>https://www.insee.fr/fr/statistiques/3291775?sommaire=2120838</u>
- 618 IPCC, 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
- 619 Jeanson, M., 2004. Dynamique morphosédimentaire en milieu récifal et lagonaire, Etude de cas aux îles de
- 620 Tahiti et Moorea (Polynésie française). Université de Reims Champagne-Ardenne.
- 621 Jeanson, M., 2009. Morphodynamique du littoral de Mayotte, des processus au réseau de surveillance.
- 622 Université du Littoral Côte d'Opale.

- Jeanson, M., Anthony, E.J., Dolique, F., Aubry, A., 2013. Wave characteristics and morphological
 variations of pocket beaches in a coral reef–lagoon setting, Mayotte Island, Indian Ocean. Geomorphology
 182, 190–209. https://doi.org/10.1016/j.geomorph.2012.11.013
- 626 Jeanson, M., Anthony, E.J., Dolique, F., Cremades, C., 2014. Mangrove Evolution in Mayotte Island, Indian 627 А 60-year Synopsis Based on Aerial Photographs. Wetlands 34, 459-468. Ocean: 628 https://doi.org/10.1007/s13157-014-0512-7
- 629 Jeanson, M., Dolique, F., Anthony, E.J., Aubry, A., 2019. Decadal-scale Dynamics and Morphological
- 630 Evolution of Mangroves and Beaches in a Reef-lagoon Complex, Mayotte Island. Journal of Coastal
- 631 Research 88, 195. <u>https://doi.org/10.2112/SI88-015.1</u>
- Kench, P.S., Brander, R.W., 2006. Wave Processes on Coral Reef Flats: Implications for Reef
 Geomorphology Using Australian Case Studies. Journal of Coastal Research 22, 209–223.
 https://doi.org/10.2112/05A-0016.1
- 635 Kindermann, G., Gormally, M.J., 2010. Vehicle damage caused by recreational use of coastal dune systems
- 636 in a Special Area of Conservation (SAC) on the west coast of Ireland. Journal of Coastal Conservation 14,
- 637 173–188. https://doi.org/10.1007/s11852-010-0102-7
- 638 Le Berre, I., 2017. L'artificialisation des littoraux : déterminants et impacts, in: Béchet, B., Le Bissonais,
- 639 Y., Ruas, A. (Eds.), Sols Artificialisés et Processus d'artificialisation Des Sols : Déterminants, Impacts et
- 640 Leviers d'action. Expertise Scientifique Collective (ESCo). IFSTTAR, INRA, pp. 234–254.
- 641 Lee, J.-T., Yen, L.-Z., Chu, M.-Y., Lin, Y.-S., Chang, C.-C., Lin, R.-S., Chao, K.-H., Lee, M.-J., 2020.
- 642 Growth Characteristics and Anti-Wind Erosion Ability of Three Tropical Foredune Pioneer Species for
- 643 Sand Dune Stabilization. Sustainability 12, 3353. https://doi.org/10.3390/su12083353

- Leone, F. (dir) et al., 2014. Atlas des risques naturels et des vulnérabilités territoriales de Mayotte, collection
 "Géorisques", hors-série. PULM, Montpellier.
- 646 Letortu, P., Costa, S., Maquaire, O., Delacourt, C., Augereau, E., Davidson, R., Suanez, S., 2014. Taux
- 647 d'ablation des falaises crayeuses haut-normandes : l'apport du scanner laser terrestre, in: Géomorphologie :
- 648 relief, processus, environnement. Presented at the Actes des 14e Journées des Jeunes Géomorphologues,
- 649 Groupe français de géomorphologie (GFM), pp. 133–144. <u>https://doi.org/10.4000/geomorphologie.10872</u>
- Liu, B., Gong, M., Wu, X., Liu, X., 2021. A comprehensive model of vessel anchoring pressure based on
- 651 machine learning to support the sustainable management of the marine environments of coastal cities.
- 652 Sustainable Cities and Society 72, 103011. https://doi.org/10.1016/j.scs.2021.103011
- Madi Moussa, R., Fogg, L., Bertucci, F., Calandra, M., Collin, A., Aubanel, A., Polti, S., Benet, A., Salvat,
- B., Galzin, R., Planes, S., Lecchini, D., 2019. Long-term coastline monitoring on a coral reef island (Moorea,
 French Polynesia). Ocean & Coastal Management 180, 104928.
 https://doi.org/10.1016/j.ocecoaman.2019.104928
- Masse, J.P., Thomassin, B.A., Acquaviva, M., 1989. Bioclastic Sedimentary Environments of Coral Reefs
 and Lagoon around Mayotte Island (Comoro Archipelago, Mozambique Channel, SW Indian Ocean).
 Journal of Coastal Research 5, 419–432.
- Mathew, M.J., Sautter, B., Ariffin, E.H., Menier, D., Ramkumar, M., Siddiqui, N.A., Delanoe, H., Del Estal,
 N., Traoré, K., Gensac, E., 2020. Total vulnerability of the littoral zone to climate change-driven natural
 hazards in north Brittany, France. Science of The Total Environment 706, 135963.
 https://doi.org/10.1016/j.scitotenv.2019.135963
- Matić-Skoko, S., Vrdoljak, D., Uvanović, H., Pavičić, M., Tutman, P., Bojanić Varezić, D., 2020. Early
 evidence of a shift in juvenile fish communities in response to conditions in nursery areas. Sci Rep 10,
 21078. <u>https://doi.org/10.1038/s41598-020-78181-w</u>

- 667 Météo-France, 2021. Climat Mayotte. URL http://www.meteofrance.yt/climat/mayotte
- 668 Narayan, S., Beck, M.W., Reguero, B.G., Losada, I.J., Wesenbeeck, B. van, Pontee, N., Sanchirico, J.N.,

669 Ingram, J.C., Lange, G.-M., Burks-Copes, K.A., 2016. The Effectiveness, Costs and Coastal Protection

- 670 Benefits of Natural and Nature-Based Defences. PLOS ONE 11, e0154735.
- 671 https://doi.org/10.1371/journal.pone.0154735
- 672 Nordstrom, K.F., 2004. Beaches and Dunes of Developed Coasts. Cambridge University Press.
- 673 Nougier, J., Cantagrel, J.M., Karche, J.P., 1986. The Comores archipelago in the western Indian Ocean:
- volcanology, geochronology and geodynamic setting. Journal of African Earth Sciences (1983) 5, 135–145.
- 675 <u>https://doi.org/10.1016/0899-5362(86)90003-5</u>

682

- Ondiviela, B., Losada, I.J., Lara, J.L., Maza, M., Galván, C., Bouma, T.J., van Belzen, J., 2014. The role of
 seagrasses in coastal protection in a changing climate. Coastal Engineering 87, 158–168.
 https://doi.org/10.1016/j.coastaleng.2013.11.005
- 679 Oyedotun, T.D.T., 2014. Shoreline geometry: DSAS as a tool for Historical Trend Analysis.
 680 Geomorphological Techniques (Online Edition) 2, 1–12.
- 681 Peña-Alonso, C., Fraile-Jurado, P., Hernández-Calvento, L., Pérez-Chacón, E., Ariza, E., 2017. Measuring

geomorphological vulnerability on beaches using a set of indicators (GVI): A tool for management. Journal

- of Environmental Management 204, 230–245. https://doi.org/10.1016/j.jenvman.2017.08.053
- 684 Powell, E.J., Tyrrell, M.C., Milliken, A., Tirpak, J.M., Staudinger, M.D., 2019. A review of coastal
- 685 management approaches to support the integration of ecological and human community planning for climate
- 686 change. J Coast Conserv 23, 1–18. https://doi.org/10.1007/s11852-018-0632-y
- Rault, C., Dewez, T.J.B., Aunay, B., 2020. Structure-from-motion processing of aerial photographs:
 sensitivity analyses pave the way for quantifying geomorphological changes since 1978 in La Réunion

- Island. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. V-2–2020, 773–780.
 https://doi.org/10.5194/isprs-annals-V-2-2020-773-2020
- Ray, G.C., Hayden, B.P., 1992. Coastal Zone Ecotones, in: Hansen, A.J., di Castri, F. (Eds.), Landscape
- 692 Boundaries: Consequences for Biotic Diversity and Ecological Flows, Ecological Studies. Springer, New
- 693 York, NY, pp. 403–420. https://doi.org/10.1007/978-1-4612-2804-2_21
- 694 Robbe, E., Woelfel, J., Balčiūnas, A., Schernewski, G., 2021. An Impact Assessment of Beach Wrack and
- 695 Litter on Beach Ecosystem Services to Support Coastal Management at the Baltic Sea. Environmental
- 696 Management 68, 835–859. <u>https://doi.org/10.1007/s00267-021-01533-3</u>
- 697 Ruol, P., Martinelli, L., Favaretto, C., 2018. Vulnerability Analysis of the Venetian Littoral and Adopted
- 698 Mitigation Strategy. Water 10, 984. https://doi.org/10.3390/w10080984
- 699 Simeone, S., Palombo, A.G.L., Guala, I., 2012. Impact of frequentation on a Mediterranean embayed beach:
 700 Implication on carrying capacity. Ocean & Coastal Management 62, 9–14.
- 701 https://doi.org/10.1016/j.ocecoaman.2012.02.011
- 702 Spalding, M.D., Ruffo, S., Lacambra, C., Meliane, I., Hale, L.Z., Shepard, C.C., Beck, M.W., 2014. The
- role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean & Coastal
- 704 Management 90, 50–57. https://doi.org/10.1016/j.ocecoaman.2013.09.007
- Tuholske, C., Halpern, B.S., Blasco, G., Villasenor, J.C., Frazier, M., Caylor, K., 2021. Mapping global
 inputs and impacts from of human sewage in coastal ecosystems. PLOS ONE 16, e0258898.
 https://doi.org/10.1371/journal.pone.0258898
- Turner, R.K., Schaafsma, M. (eds.), 2015. Coastal Zones Ecosystem Services: From Science to Values and
 Decision Making, Springer. ed, Studies in Ecological Economics. Switzerland.

- 710 United Nations, 2017. Factsheet: People and Oceans, in: Ocean Fact Sheet Package. Presented at the Ocean
- 711 Conference, New York, pp. 1–7.
- 712 Williams, A.T., Alveirinho-Dias, J., Garcia Novo, F., García-Mora, M.R., Curr, R., Pereira, A., 2001.
- 713 Integrated coastal dune management: checklists. Continental Shelf Research, European Land-Ocean
- 714 Interaction 21, 1937–1960. <u>https://doi.org/10.1016/S0278-4343(01)00036-X</u>