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Photoperiod‑driven rhythms 
reveal multi‑decadal stability 
of phytoplankton communities 
in a highly fluctuating coastal 
environment
Lorenzo Longobardi1*, Laurent Dubroca2, Francesca Margiotta3, Diana Sarno3 & 
Adriana Zingone1,3*

Phytoplankton play a pivotal role in global biogeochemical and trophic processes and provide 
essential ecosystem services. However, there is still no broad consensus on how and to what 
extent their community composition responds to environmental variability. Here, high‑frequency 
oceanographic and biological data collected over more than 25 years in a coastal Mediterranean site 
are used to shed light on the temporal patterns of phytoplankton species and assemblages in their 
environmental context. Because of the proximity to the coast and due to large‑scale variations, 
environmental conditions showed variability on the short and long‑term scales. Nonetheless, 
an impressive regularity characterised the annual occurrence of phytoplankton species and their 
assemblages, which translated into their remarkable stability over decades. Photoperiod was 
the dominant factor related to community turnover and replacement, which points at a possible 
endogenous regulation of biological processes associated with species‑specific phenological patterns, 
in analogy with terrestrial plants. These results highlight the considerable stability and resistance 
of phytoplankton communities in response to different environmental pressures, which contrast 
the view of these organisms as passively undergoing changes that occur at different temporal scales 
in their habitat, and show how, under certain conditions, biological processes may prevail over 
environmental forcing.

Given the tremendous importance of phytoplankton in the functioning and health of the oceans, one of the chal-
lenges of the modern scientific community is to understand and quantify their responses to a constantly changing 
environment. The impact of physical and chemical forcing on biological communities has been changing rapidly 
in the last  decades1 and is also predicted to become more severe in the next years due to the human-induced 
increase in global average  temperature2. Changes in physical and chemical factors in the marine environment 
can affect phytoplankton dynamics acting directly on species  physiology3 and by changing the physical habitat of 
the autotroph  communities4, resulting in modifications of light and nutrient availability by which phytoplankton 
is ultimately governed.

Understanding the mechanisms that underlie the relationships between the environment and phytoplankton 
is particularly important in coastal areas. Land-sea interface areas represent one of the most productive types of 
environment and are among the most ecologically and socio-economically important systems on the  planet5. Half 
of the world’s population lives along the  coasts6, whereby human well-being is directly linked to phytoplankton 
through sea-food availability, overall environmental quality and ecosystem services that coastal environments 
 provide7. At the same time, the pace of change in coastal-estuarine areas is  accelerating8, while the growth of the 
human population is increasing the anthropic impact and the need to exploit marine resources.

OPEN

1Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, 
Italy. 2Institut Français de Recherche Pour l’Exploitation de la Mer, IFREMER, Laboratoire Ressources Halieutiques 
de Port-en-Bessin, 14520 Port-en-Bessin-Huppain, France. 3Research Infrastructures for Marine Biological 
Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy. *email: 
lorenzo.longobardi@szn.it; zingone@szn.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-07009-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3908  | https://doi.org/10.1038/s41598-022-07009-6

www.nature.com/scientificreports/

The influence of land in coastal systems translates into very complex ecological dynamics, which are hardly 
understandable and scarcely  predictable9. The relationship between environmental fluctuations and phytoplank-
ton has been addressed in terms of variability in the seasonal  cycle10, responses to pulse  events11 and long-term 
 changes12–15. Given the remarkable diversity of coastal  environments7, different factors may have different impor-
tance among places in shaping the phytoplankton community. Nutrient load and temperature fluctuations in 
the Baltic Sea are considered the main factors altering the temporal structure of the  community16,17, whereas 
turbidity can affect community composition by modifying the light environment in other shallow  systems15,18,19. 
Long-term observations in Ilha Grande Bay (Brazil) show that the microalgal annual cycle and composition 
are markedly shaped by atmospheric conditions, such as rain and wind  patterns20. In other cases, no strong 
links have been found between important interannual changes in environmental conditions and changes in the 
phytoplankton  community21, suggesting that other factors such as trophic processes may play a more important 
role. Collectively, these studies have highlighted an impressive complexity of ecological dynamics related to the 
multidriver nature of environmental change and, not least, the technical challenges and limitations faced by the 
acquisition and comparability of long-term high-quality phytoplankton  data22.

Despite the high degree of variability in the coastal habitat, in many cases temporal regularity has also been 
reported for phytoplankton across many levels of biological organization, encompassing species successional 
patterns and  associations23, functional groups and species  traits24,25 and massive events such as  blooms26. A 
seasonal signal in the occurrence of marine autotrophs is typical of mid and high-latitude systems, where the 
annual astronomical cycle of solar radiation and day length triggers and shapes the times for several biological 
 dynamics9,27 At the base of the marine food web, temporal phytoplankton patterns set the pace for the dynamics 
of high-trophic levels and biogeochemical  processes28, whereby their modifications are closely coupled with the 
stability and the general ecological processes in marine  systems29.

Seasonal and interannual patterns of phytoplankton variability have usually been investigated based on bulk 
and aggregated indicators such as chlorophyll a and functional groups, which are useful to identify changes over 
wide spatial and temporal  scales30 but can provide a solid interpretative framework of temporal phytoplankton 
changes only if integrated with taxonomic  data31. In trait-based approaches, the close relationships between 
environmental fluctuations and distribution of species traits across the seasons reflect the match of species’ 
physiological settings with environmental  conditions32,33. However, due to the scarcity of marine long-term 
 programs34 and also to a growing scarcity of taxonomic experts, a gap exists in the knowledge of the pheno-
logical and interannual dynamics of phytoplankton species and communities and their interactions with the 
environmental variability.

The Gulf of Naples represents a suitable site for the study of seasonal and interannual variations of phyto-
plankton species and assemblages, because of the availability of one of the longest, high-resolution time series 
of data which is collected at the Long Term Ecological Research site MareChiara (LTER-MC) since 1984. In a 
global comparison of planktonic systems based on chlorophyll data, the site has been shown to be highly variable 
at both the seasonal and interannual  scale9, which is compatible with its nature of a mid-latitude coastal site not 
far from one of the most populated areas of the Mediterranean  Sea35. In the Gulf of Naples, temporal species 
recurrence against environmental variability was noticed for several phytoplankton and zooplankton species and 
further investigated for copepod  populations36. Here, taking advantage of the high resolution of the taxonomic 
data, we extend the search for temporal occurrence patterns to a high number of phytoplankton species and 
their assemblages. Specifically, using the whole time series from 1984 to 2015, we (i) characterize the seasonal 
patterns and trends of the main environmental variables and bulk phytoplankton features (chlorophyll a and total 
cell numbers), (ii) analyse the occurrence patterns of individual phytoplankton species and their communities, 
(iii) characterise the coupling between community turnover and environmental variability, and (iv) provide a 
hierarchical assessment of the environmental factors involved in the temporal phytoplankton variability. Our 
aim is to verify, in a highly dynamic and variable coastal environment, whether phytoplankton species and com-
munities are also variable and unpredictable or, rather, they show recurrent and stable phenological patterns over 
the years, which would indicate the relevance of biological processes linked to species-specific life-cycle traits 
in determining their seasonal succession.

Results
Seasonal variability and trends in environmental variables, chlorophyll a and phytoplank‑
ton abundance. A strong seasonal signal is a main characteristic of the system under study, where surface 
(0–5 m) water temperature was characterized by winter minima (> 13.13 ± 0.58 °C) and mid-late summer max-
ima (< 27.79 ± 0.76 °C) (Fig. 1a). During winter, the water column was homothermic, whereas from mid-spring 
to early autumn surface layer temperatures were significantly higher than those recorded below 10 m. Salinity 
(Fig. 1b) showed wide seasonal fluctuations with the maxima (up to 38.31) generally in early autumn, when high 
seawater temperature and enhanced winds concurred to increase the evaporation rate. The lowest salinity values 
(35.47–36.20) were typical of late spring and early summer. Below 10 m depth, salinity followed the same pat-
tern as at surface but with an overall lower variability around the mean compared to the surface. The mixed layer 
depth (Fig. 1c), mainly driven by temperature, shallowed quickly between mid-March to the end of May and 
settled around the 10-m depth until the beginning of September, after which it gradually deepened occupying 
the entire water column in December.

Except for phosphates (Fig. 1f), nutrient concentrations in the water column showed wide seasonal varia-
tions, with the highest DIN (Fig. 1d) and silicate concentrations (Fig. 1e) recorded in winter and followed by a 
gradual decline towards the summer minima. In the deep layers (10–70 m), nutrient concentrations were typi-
cally lower and less variable than in surface layers except for summer, when DIN was low throughout the whole 
water column and silicates were higher in deep layers than at the surface.
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Since mid-late winter, surface chlorophyll a concentrations increased gradually reaching their maximum 
values generally in May, then decreased in summer (Fig. 1g). Seasonal variations were smoother in deeper layers, 
which were not affected by the late spring–summer peaks. The break of the thermocline in late summer-early 
autumn (Fig. 1c) was generally accompanied by a second chlorophyll a increase of lesser magnitude than in 
spring. Surface phytoplankton abundance started to increase in late winter and raised rapidly to reach the annual 
maximum (up to  107–108 cells  L−1) in late spring, usually in May (Fig. 1h). It kept relatively high throughout 
the summer and gradually dropped to the lowest values (down to the minimum  104 cells  L−1) in late autumn.

Although seasonal cycles were well defined for most abiotic and biotic variables, the relatively wide confidence 
interval around weekly averages revealed a high interannual variability, especially throughout the stratification 
period, also concerning total phytoplankton abundance and chlorophyll a. Phytoplankton communities were 
numerically dominated by small phytoflagellates and small diatoms in almost all seasons (Supplementary Fig. S2), 
while dinoflagellates reached the highest densities between April and May and coccolithophores increased in 
late summer, generally reaching their maximum in October.

Concerning long-term variations, a surface temperature increase at LTER-MC was persistent and particu-
larly evident in the second half of the year (Fig. 2a), characterised by a significant linear upward trend in August 
(average >  + 0.06 °C  year−1) and by a consistent increase also in July and September (+0.01and +0.06 °C  year−1, 

14

18

22

26

°C

temperature
a

37.2

37.5

37.8

38.0

salinity
b

10

30

50

70

m
mixed layer depth

c

1

2

3

4

5

m
m

ol
 m

−3

DIN
d

1.0

1.5

2.0

2.5

3.0

3.5

m
m

ol
 m

−3

silicates
e

0.04

0.08

0.12

0.16

m
m

ol
 m

−3

phosphates
f

1

2

3

4

5

0 10 20 30 40 50

m
g 

m
−3

chlorophyll a
g

0

15

30

45

0 10 20 30 40 50

ce
lls

 1
06  l−1

phytoplankton
h

week

0-5 m

10-70 m

Figure 1.  Weekly climatology of the main environmental and biological variables at LTER-MC during 1984–
2015. In all panels with two lines, the light and dark blue lines refer to the average of surface (0–5 m) and deep 
layer (10–70 m) respectively, like in panel a, while the shaded areas represent the respective 0.95 confidence 
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Figure 2.  (Left) Time series of monthly averaged values of environmental and phytoplankton data at 
LTER-MC. The red line is the local polynomial regressions fitted to each time series while the shaded area 
around means represents the 0.95 confidence interval. (a) temperature, (b) salinity, (c) DIN, (d) silicates, (e) 
phosphates, (f) chlorophyll a, (g) phytoplankton abundance. (Right) Average annual change of each variable at 
monthly scale during the continuous sampling period 1996–2015. The significance of linear monotonic trends 
(Mann–Kendall test) is indicated by the colours of the bars, where grey bars refer to a pvalue higher than 0.05 
while blue bars are significant at pvalue < 0.05.
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respectively). Conversely, surface salinity reached the minima in the first years of the time series and decreased 
in all months over the second part (Fig. 2b), showing a significant linear downward trend in April and June, and 
interannual, cyclical fluctuations characterised by a period of about 5 years. Surface DIN and silicates (Fig. 2c–d) 
were slightly higher in the first part of the series and remained quite stable over the years, except for a significant 
linear increase of silicates in February and an overall decrease of DIN during late winter. Phosphate concentra-
tions were much higher in the first part of the series and underwent a gradual but remarkable decline since 
the ‘90s, which was significant in all seasons but winter (Fig. 2e). In parallel with the main nutrients, surface 
chlorophyll a concentration showed the highest peaks during the first part of the series (Fig. 2f). On average, 
the period 1997–2003 was characterized by the lowest phytoplankton biomass, followed by a gradual increase 
resulting in a linear and positive trend in many periods of the year. Total phytoplankton abundance was generally 
lower during the first part of the series (Fig. 2g) despite high values of chlorophyll a. The analysis of the monthly 
abundance trends showed a generally stable pattern, except for an increase in April and a slight decrease in the 
summer months, namely in July and August.

Temporal regularity in phytoplankton species and communities. The randomization test per-
formed on the results of the Lomb-Scargle periodogram analysis identified 75 species as significantly periodic 
out of a total of 81 species investigated (Supplementary Table S1). The temporal variability in the turnover of 
those taxa was investigated using the Bray–Curtis autocorrelation analysis, in which we estimated the communi-
ties’ similarity between pairs of samples for each possible monthly time-lag along the time series (1–384 months 
over the 32 years). The analysis performed on the second part of the time series (1996–2015, Fig. 3) as well as on 
the whole time-series (Supplementary Fig. S3) highlighted a clear seasonal rhythm in community composition, 
which showed a maximum average similarity among communities sampled at a time distance of 12 months and 
their multiples (24, 36, and so on), and minima at 6, 18 and 30 months apart. Such recurrent pattern in the simi-
larity of the community was kept along all the length of series, with a slight decay in both minimum and maxi-
mum values along the years over the 1996–2015 period, possibly related to the decrease of data available for the 
comparison between communities far in time by more and more years. When the first years (1984–1991) were 
included in the analysis, the similarity decay became a significant downward monotonic trend (pvalue < 0.001), 
with lower maximum and minimum average similarity values (Supplementary Fig. S3). Along with its difference 
from the one obtained on the years 1996–2015, this result reflected the higher difference of phytoplankton com-
munities of the first years from the rest of the time series.

Comparing environmental and phytoplankton community variability across years. To inves-
tigate the seasonal and interannual fluctuations of the environmental variables in parallel with those of the 
phytoplankton community we used the STATICO  analysis37, designed to describe the temporal evolution of the 
relationship between the phytoplankton and environmental variabilities in a common ordination space, a con-
figuration named ‘Compromise’. According to the STATICO analysis, the relationship between phytoplankton 
communities and environmental variables remained relatively stable over the years at LTER-MC, as indicated by 
the high correlation among most of the years with the first axis (Fig. 4), which explained 44% of the total inertia. 
However, like in the Bray–Curtis autocorrelation analysis, the first years of the series (1984–1988) separated 
from the others, indicating a divergence in the species-environment relationship between those years and the 
rest of the time series (1996–2015), as also indicated by the lower median value of the loadings of the first years 
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Figure 3.  Interannual recurrence of phytoplankton communities shown by average. Bray–Curtis similarities (0: 
completely different communities; 1: identical communities; shaded area: 95% confidence interval) between all 
pairs of weekly samples separated by a given number of months of the series (time lag, x axis) during 1996–2015. 
The first point of the series represents the average and 95% confidence interval of the Bray–Curtis similarity 
values among communities sampled 30 ± 4 days apart in the time interval considered. Similarly, the second point 
represents the average Bray–Curtis similarity among all the communities sampled 60 ± 4 days apart, the point at 
1 year is the average similarity among all the communities sampled at 360 ± 4 days apart, and so on. The decay 
of maximum and minimum average similarity values over time is probably influenced by the lower number of 
samples to compare for time lags of many years.
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of the first PCA axis (0.15) compared to that of the other years (0.21). Accordingly, the data from the first part of 
the time series had a lower contribution to the building of the Compromise space with respect to the others, and 
were excluded from subsequent representations as trajectory maps, which would be scarcely reliable.

In the Compromise space (Fig. 5), representing the stable part of the biological and environmental relation-
ship over time, the environmental gradient was mostly driven by radiation and temperature on the first axis 
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1989–1991 and 1995 were excluded from the analysis due to many missing data for environmental variables.
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(86.1% of the total inertia) and to a lower extent by salinity on the second axis (11.7%). The upper-left quadrant 
of the map represented the winter period, characterized by relatively high salinity, high nutrient concentrations 
and low temperature values. The spring and late-spring periods of the series covered the upper-right area of the 
map, with nutrients still relatively abundant but decreasing while approaching the bottom-right quadrant of 
the map, which marks the transition toward summer, characterised by the highest radiation and temperatures 
together with the lowest nutrient concentrations. The bottom-left quadrant of the Compromise map includes 
samples characterized by high salinity and relatively high nutrient concentrations; a condition typical of autumn 
at LTER-MC.

The trajectories in Fig. 6 represent the chronological projection of each month of a given year for the phyto-
plankton community and the environment, respectively, in the stable configuration of the species-environment 
relationship (the Compromise map, Fig. 5). Phytoplankton communities were characterized by quasi-circular 
trajectories relatively similar among the years, whereas environmental trajectories were less regular and often 
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Figure 6.  Yearly representation of phytoplankton community turnover compared to environmental variability. 
Monthly trajectories of phytoplankton community and environmental variabilities are projected on the common 
species-environment space (the Compromise) of Fig. 5. The labels on the trajectories indicate the months of 
the year. Bulges in the environmental trajectories in the upper quadrants in some years are related to nutrient 
pulses from terrestrial origin in winter or spring, while irregularities in the 3rd–4th quadrants are related to 
temperature anomalies in summer and autumn.
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different from year to year. Particularly, in late winter and spring of 2003–2006, 2008 and 2014–2015, anoma-
lous bulges related to nutrient pulses of terrestrial origin (low salinity) projected in the upper part of the plots, 
whereas anomalies related to high temperature were evident as irregular trajectories in the 3rd–4th quadrants 
in the summers and autumns of 2002–2005 and 2013–2015. In addition to these anomalies, environmental tra-
jectories differed in both shape and breadth compared to phytoplankton ones (Fig. 7), again pointing at a quite 
variable environmental context experienced by the phytoplankton community from year to year. Interestingly, 
the community turnover pace was not homogeneous over the annual cycle but showed two phases of brisker 
transitions, seen as longer distances among monthly assemblages, namely from summer to autumn and from 
winter to spring, corresponding to the break and the formation of the thermocline, respectively.

Identifying factors driving temporal phytoplankton variability. To assess the relationship between 
environmental conditions and temporal phytoplankton variability, we estimated a monthly index summaris-
ing the temporal variability of the phytoplankton community using the sampling month as a predictor vari-
able of phytoplankton species distribution and abundance in a discriminant function analysis (DFA). The DFA, 
performed on 4 distinct monthly time series (extracted from the complete 25-ys weekly/biweekly time series, 
see “Methods”) correctly predicted between 84 and 89% of the sampling months, with the first discriminant 
function (DF1) explaining between 36 and 42% of the overall predictive power, hence effectively summarising 
the temporal variability of the composition and abundance of the phytoplankton communities. The multiple 
linear regression between DF1 (as an index of temporal phytoplankton turnover) and environmental variables 
indicated phytoplankton communities as highly predictable based on environmental factors, as the models 
explained between 80 and 84% of the total temporal variability of their composition (Fig. 8a). In this analysis, 
a possible impact of correlated (collinear) variables was ruled out by VIF values lower than 6 in all the models. 
According to the Lindeman, Merenda and Gold’s method for variance  decomposition38, the photoperiod was 
by far the most important factor in explaining phytoplankton variability patterns (~ 42%) (Fig. 8b) followed by 
radiation and temperature (~ 26 and ~ 15% respectively), whereas salinity and inorganic nutrients seemed to 
play a marginal role, accounting for less than 10% of the total variability.

Discussion
The analysis of the ca 32 ys-spanning time series gathered at the LTER-MC site confirms the dynamic nature of 
the inner Gulf of Naples, reflected in the high variability of the environmental conditions at both the seasonal 
and interannual scale. However, a remarkable regularity and stability are depicted by local phytoplankton com-
munities, which may vary in total abundance but show a recurrent composition related to the periodical patterns 
of individual species and overall similar structure over the seasons from year to year.
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Figure 7.  Temporal variability of phytoplankton community and environmental factors at LTER-MC relative 
to the period 1996–2015, all years superimposed. The monthly trajectories of both phytoplankton communities 
(left) and environmental variables (right) are projected on the Compromise space of Fig. 5. Filled, coloured 
circles refer to the months of the years. The comparison of the two plots highlights the relative regularity of the 
phytoplankton community turnover over the years, contrasted by the different shapes and irregularities of the 
environmental trajectories.
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High variability is evident in several environmental factors analysed over the whole time series. At the long 
term scale, the marked downward trends in all months and the cyclic interannual fluctuations of salinity, also 
reflected in the levels of the main nutrients, testify for the varying impact over the years of freshwater inputs 
from the coast. Apparently, the sampling area seems to be more frequently influenced by coastal inputs than by 
offshore waters in recent years, especially in spring, a pattern that is mostly driven by increased  rainfall39. The 
temperature increase, particularly marked during the summer, is in line with the general warming trend reported 
for the whole Mediterranean  Sea40. Besides trends, the environmental variability and its effects on phytoplank-
ton abundance are also evident in the quite wide ranges shown by the climatology of physical, chemical and 
bulk biological variables considered in our study, namely, chlorophyll a and total cell number. These results are 
consistent with those from a previous meta-analysis investigating the temporal patterns of chlorophyll a from 
84 coastal  sites9, in which LTER-MC fell among the areas characterized by a marked seasonal dynamic but also 
strongly influenced by climatic shifts and processes of anthropic origin taking place at the interannual scale. 
This scenario translates into an environmental variability occurring at different temporal scales, in the form of 
isolated events, seasonal and cyclical fluctuations, and trends, which are fully evident in the present analysis of 
the multidecadal high-frequency sampling.

In contrast to the high environmental variability, our results reveal an impressive regularity in the annual 
occurrence of phytoplankton communities and individual taxa over the whole time series. The assemblages of 
the area, dominated by diatoms but including a high number of species belonging to all phytoplankton  groups41, 
constitute a pool of biological entities encompassing a wide spectrum of differences in terms of phylogeny, sizes, 
shapes, life cycles and functional traits. In spite of such remarkable biodiversity, a clear periodicity is shared by 
more than 90% of the individual species investigated in this study. This regularity, reported in previous studies 
for a few  species35,42, is fully substantiated in this study by quantitative and extensive analyses encompassing 81 
species, all pointing at temporal regularity for the majority of them and for their assemblages. The consistency of 
seasonal patterns is also impressive for the shape of the annual phytoplankton cycle and the identity of the most 
representative taxa, which have remained relatively unchanged over the years: despite some variations, there is 
a usual increase from late autumn-early winter minima to late winter- early spring  increase13, culminating with 
diatom-dominated late spring peaks which are followed by scattered and intense outbursts over the summer. 
These irregular summer peaks alternate with minima that reflect the occasional influence of offshore  waters43, 
while a relatively regular, but lesser increase keeps on being recorded in  autumn35,44.

Phytoplankton successional patterns in coastal temperate zones are argued to be determined by the chemical-
physical environment, whereby nutrients, turbulence, temperature and radiance are the factors that have histori-
cally been associated with the control of microalgal growth (e.g.23,45,46). The seasonal interplay of these parameters 
would cyclically shape the environment creating predictable seasonal conditions and niches to which specific 
phytoplankton life forms and assemblages are  suited24,25,47. In the case of the Gulf of Naples, the magnitude and 
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frequency of nutrient supplies from the nearby coast may be rather variable from year to year, with unpredictable 
nutrient pulses shown both in the seasonal and interannual variations over the time series and in the results of 
the STATICO analysis. The lack of corresponding interannual variations in the phytoplankton community sug-
gests a limited effect of nutrient pulses on phytoplankton successional dynamics even in cases when they were 
particularly intense, as in 2003–2006, 2008 and 2014–2015. This lack of response could depend on non-limiting 
nutrient levels in the area despite the seasonal signal often detected in their patterns. Indeed, in the decades 
1984–2000, the water column was seldom depleted in nitrates and silicates even during the summer  minima35, a 
condition that would also explain the frequent blooms of high nutrient-requiring and fast-growing diatoms even 
in this  season48. As no significant negative trend in nitrates and silicates emerged from our analyses, the system 
appears to have maintained non-limiting nutrient conditions in recent years. Phosphates, which decreased in the 
last 10 years, have nevertheless maintained concentrations above limitation  thresholds35, while the contiguity of 
oligotrophic water plays a role in dampening the effects of terrigenous nutrient inputs. Indeed, the intermittency 
of the different trophic regimes plays a role also in regulating phytoplankton successional dynamics, enhancing 
community diversity and preventing long-lasting dominance of a few  species43,48. In these particular conditions, 
nutrients may occasionally become limiting, but not enough to restructure the phytoplankton community sub-
stantially, as it happens in other coastal  areas11,16,49 and in particular in the northern Baltic  Sea50. This does not 
imply that terrigenous nutrient inputs, from a broad perspective, are irrelevant in the study area, whereby their 
availability sets the general trophic conditions of the area. We would rather emphasize that the lack of constraint 
from persisting nutrient limitation enables the emergence of underlying species-specific biological processes for 
individual species, and, in a broader perspective, for the whole community.

As for other environmental parameters that are related to temporal changes in phytoplankton communities, 
the trajectories over the seasonal cycle reveal two phases of brisker changes, namely, in the transitions from winter 
to spring and summer to autumn, corresponding to faster shifts in the thermal exchange with the atmosphere 
and salinity that lead to the changes in the water column structure. Such regular switching states, also docu-
mented for the eukaryotic community in the oligotrophic Blanes Bay (Spain)51 and for bacterioplankton in the 
Beaufort Sea (North Carolina, USA)52 and Western English  Channel53, highlight the relevance of the structuring 
and de-structuring phases of the water column, which may exert a prominent role in controlling the pace of the 
succession and changes in the community organization.

The relevance of environmental conditions is also highlighted by the peculiarity of the first years of the 
time series (1984–1991) with lower salinities, higher phosphate levels and higher biomass, already noticed in 
previous  studies13,35. The changes already visible after 1988 are reflected in the lower similarity of the plankton 
communities to those of the following years (1996–2015) and also in the low contribution of the early years to 
the definition of a common biological and environmental space in the STATICO analysis. No clear explanations 
have so far been found for those changes, which could be related to the peculiar climatic dynamics that involved 
the entire northern  hemisphere54 and were also reflected in the Mediterranean Sea at the end of the ‘80s. In those 
years, sudden changes in the atmospheric and hydrological systems had a significant impact on the biological 
systems of the Adriatic (eastern Mediterranean) and Ligurian (western Mediterranean) Seas, also affecting 
their planktonic  systems55. It is plausible that such a widespread shift concerned our study area as well, but this 
hypothesis is hardly testable because sampling only started a few years before and was interrupted in the years 
that would correspond to the shift. It is remarkable though that the main components of the communities and 
their periodicity did not differ substantially not even between the first years of the series and the following years.

The temporal regularity of individual taxa together with the cyclic pattern of the entire community in the 
long term suggest that more important internal regulation processes may play a key role in the annual rhythms 
observed in our study. Several endogenous biological attributes such as life cycles, species-specific physiology 
and growth rates may translate into the temporally regular signal under the peculiar environmental setting of the 
Gulf the Naples. The prominent role of photoperiod, accounting for most of the temporal community variability 
in our analyses, indeed supports the importance of endogenous rhythms linked to the most recurrent variable in 
our otherwise variable coastal site. Signals of recurrent patterns like those recorded in this study have also been 
detected in other areas. The yearly bloom timing of diatoms species in Norwegian coastal waters hardly varied 
under environmental conditions changing from year to year, leading to the hypothesis that it was related to day-
length-regulated germination of diatom resting  spores56. That benthic stage germination could be responsible 
for the regular occurrence of plankton species was first proposed by  Hansen57 based on his observation in the 
Kiel Bight and then confirmed by studies highlighting the role of endogenous regulation in germination timing 
of dinoflagellates  cysts58,59. Yet a periodicity is also evident in species that do not form resting stages as the quite 
regular Tripos (= Ceratium) in the Kiel  Bight57, or several taxa considered in the present study. Accordingly, 
whole-community analyses from different areas point at a lack of a clear relation between annual regularity and 
inorganic  nutrients60 and show photoperiod explaining a large fraction of seasonal phytoplankton  variability61. 
The records of regular seasonal patterns have probably been limited so far by the scarcity of time series includ-
ing species-level phytoplankton data. As a matter of fact, recurrent seasonal patterns are being reported with 
increasing frequency in recent DNA-metabarcoding studies, which allow for a high taxonomic resolution for 
most taxa (e.g.51,62,63), with limited if any explanations by environmental variables other than photoperiod under 
variable environmental conditions, in terms of irregular inter-annual nutrient supply and salinity  levels64. While 
most of the above-mentioned molecular studies focus on the smallest size-fraction or show recurrent patterns 
for a restricted part of the community, our study expands those results providing evidence for the recurrence 
of most taxa of the phytoplankton community over different size ranges which determines the overall seasonal 
regularity of the whole community.

In addition to photoperiod, other factors linked to the astronomic setting of our study site, notably tempera-
ture and irradiance, also partially explain the variability of phytoplankton community composition over the year. 
However, the prominent role of photoperiod suggests that this variable, rather than directly influence growth 
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rates, acts as a signal for phytoplankton species to set their timing, thus getting them to grow in certain periods 
of the years that are most favourable to their ecological and reproductive  success65–67. Indeed, phytoplankton 
communities and the large majority of individual species in the Gulf of Naples show diverse phenological pat-
terns that cover the whole year, rather than being concentrated in periods of longer day length, which should be 
more favourable for all species and especially for  diatoms68. The other environmental variables, i.e., temperature, 
salinity, nutrients, as well as biological ones (competition, grazing, parasites, etc.), would hence act at the evo-
lutionary level as distal rather than proximal drivers, selecting populations that are set to grow in those periods. 
In this respect, the match of environmental conditions with functional  traits24,33,69 should be seen as the result 
of an adaptive process rather than a cause-effect relationship. Like in terrestrial plants, phenological rhythms in 
these microbes could include a genetic  component70 entrained by the signal provided by light and modulated 
by other environmental factors, which would explain a certain amount of phenological variability normally 
observed for phytoplankton.

While confirming the dynamic environmental conditions of the study area, our results have shown temporal 
recurrence for phytoplankton species and communities over almost three decades. These microbial species, rather 
than passively undergo environmental fluctuations, appear to have a quite marked degree of endogenous control 
that allows them to occupy regularly defined temporal niches and confer resistance to the short and long-scale 
environmental changes occurring in the area.

The stability and resistance in a variable environment under both anthropogenic and climatic pressures may 
have important implications for management, suggesting that phytoplankton community structure may not be a 
good indicator of environmental  changes71,72. However, while this study has been focused on regular occurrence 
patterns and stability signals, possible ‘sentinels’ should probably be looked at in specific phytoplankton attrib-
utes, not considered in our analyses, such as diversity and size, or interannual variability and abundance trends 
of specific taxa. Detailed studies should address changes in the relative importance of smaller versus larger taxa, 
translating into trends for the average phytoplankton cell  size35, changes in the frequency and intensity of winter 
 blooms13 or variability in the abundance and phenology of potentially toxic species, considering the relevance of 
these aspects to ecosystem functioning and health, and their contribution to the environmental status assessment.

On the other hand, the lack of substantial changes in phytoplankton community structure over the studied 
period should not make us lower our guard on possible sudden evolution of the planktonic system. It should 
be kept in mind that the stability of plankton communities under continuous pressures over time may escalate 
into some abrupt change, as it has happened under regime shifts in other  areas12,54,73. An example of such shifts, 
although of a relatively minor entity, is the unexplained change that occurred in the Gulf of Naples around the 
end of the ‘80s. This consideration reinforces the need to continue the existing time series and investigate them in 
more detail, to discern the temporal signals driven by biological internal components from the environmentally-
driven ones, and to focus on minor changes and interannual variations that may be interpreted as early warning 
signals of changes.

Methods
Sampling area. The LTER-MC sampling site is located two nautical miles off Naples (40.81°N, 14.25°E), on 
a depth of ca 76 m (Supplementary Fig. S1), in an area subjected to strong anthropogenic pressure from one of 
the most populated areas of Europe. Land runoff supplies new nutrients to the surface layers, which are generally 
characterised by less salty waters (> 36) compared to the layers below (< 38.2)74. Nonetheless, because of the con-
tiguity with the open Tyrrhenian Sea, the eutrophic state driven by land runoff inputs alternates with or overlaps 
to an oligotrophic state due to the intrusion of offshore waters. The boundaries and the extension of these two 
different subsystems depend mainly on physical factors and vary over the  seasons75,76.

Data. The LTER-MC phytoplankton dataset consists of abundance or presence data for ca 800 species 
obtained from more than 1150 Niskin bottle samples and an equal number of net samples collected in surface 
waters (0.5 m) fortnightly for the first 6 years and at weekly scale since 1995. Among them, abundance data 
are available for little more than 370 taxa, some of which consist of suprageneric groups (e.g., undetermined 
cryptophytes, flagellates, naked dinoflagellates and pennate diatoms). A 4-ys gap (1991 to early 1995) separates 
the first from the second part of the series, which in some cases have been analysed separately in this study, as 
specified below, due to the different time scales and marked differences between them in both environmental 
and biological  variables35.

Physical and chemical data were obtained through in situ measurements or from samples collected simultane-
ously to phytoplankton sampling. Salinity and nutrient samples were routinely collected at 10 fixed depths (0, 2, 
5, 10, 20, 30, 40, 50, 60 and 70 m), seven of which (0, 2, 5, 10, 20, 40 and 60 m) were also sampled for chlorophyll 
a. Temperature data were obtained at 10 depths with reversing thermometers in the years 1984–1991 and with 
continuous multiparametric profilers from 1995 onwards. Salinity was determined with a salinometer (Beck-
man mod. RS7C and subsequently Autosal Guildline Instruments) until 2002, thence temperature, salinity and 
pressure data were obtained by a CTD multiparametric profiler (Sea-Bird Electronics, 9–11 plus V2) were used 
to measure. Inorganic nutrient samples were collected from Niskin bottles into 20 mL polyethylene vials and 
immediately frozen. The concentrations of ammonia, nitrates, nitrites, phosphates and silicates were determined 
following Hansen and  Grasshoff77. For chlorophyll a concentration, a variable volume of seawater was filtered 
under low vacuum and then extracted in 10 ml of neutralized acetone. All the data are routinely subject to qual-
ity check protocol, described along with detailed methods in Sabia et al.78. Radiation data were obtained from 
the NASA Langley Research Center (LaRC) POWER Project funded through the NASA Earth Science/Applied 
Science Program (https:// power. larc. nasa. gov/).

https://power.larc.nasa.gov/
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Phytoplankton abundance data for ca. 370 taxa (mostly at species level) were obtained using an inverted light 
microscope at × 400 magnification, observing transects of a sedimentation chamber corresponding to an actual 
volume of 0.02–1.52 mL of seawater. The identification of individual taxa was subjected to intercalibration among 
years and different microscopists, some of which were active since the first years. Because the method provides 
sounder data for the most frequent and abundant taxa, a subset of these taxa was selected among taxonomically 
unambiguous entities, as close as possible to the species level, after removing aggregated groups of multiple 
unidentified taxonomic units. A threshold of 5% was used to include only taxa that had been virtually recorded 
at least twice per year. Yearly distributions were also checked visually, and 4 additional, well-identified taxa with 
a lower frequency (Bacteriastrum furcatum, Skeletonema tropicum, Umbilicosphaera sibogae and Lioloma sp.) 
were retained for the analyses for a total of 81 species investigated (Supplementary Table S1).

Statistical analyses. The climatology of surface (average of 0, 2 and 5 m values) and deep (average of 10, 
20, 30, 40, 50, 60 and 70 m values) physical (temperature and salinity, mixed layer depth), chemical (dissolved 
inorganic nitrogen-DIN, phosphates and silicates) and biological (chlorophyll a) variables was investigated by 
averaging data on the weekly scale. Monotonic upward or downward trends for the whole series and each month 
separately were analysed performing a Mann–Kendall  test79,80 implemented in the R package ‘wq’81.

To characterize periodic properties and identify the dominant periods or frequencies, the time series of 
individual phytoplankton taxa’ abundance were submitted to the Lomb-Scargle periodogram  analysis82,83. To test 
the null hypothesis that there was no periodic component in the data, the probability of getting random peaks 
equal to or higher than the peak in the original data was computed using 100 repeated randomisations of each 
original data  sequence84 and setting the significance level at 0.01.

The temporal variability in the turnover of the selected taxa was investigated using the Bray–Curtis autocorre-
lation  analysis85,86, in which we calculated the similarity of the community composition between pairs of samples 
collected at each possible time-lag in the time series. The time-lags were organized on a monthly scale, and the 
Bray–Curtis similarity was averaged among all the samples distant by time lags of 30 ± 4, 60 ± 4, 90 ± 4 days and 
so on till the 11,580 ± 4 days’ time-lag (almost 32 years), the latter consisting of 12 observations. Similarities aver-
aged for each monthly time-lag were visualized on a bidimensional space as a function of the temporal distance 
among the samples (time lag), summarising both the seasonal and the interannual compositional variability 
of the phytoplankton  community85. The autocorrelation analysis was performed separately on the entire time 
series (1984–2015) and on its second part (1996–2015) only, and for each analysis, we estimated the interannual 
variability performing a Mann–Kendall  test79,80.

Multivariate analyses. The relationship between interannual environmental fluctuations and variability in 
the phytoplankton community was investigated with the STATICO  analysis37, an ordination technique designed 
to characterize the stable part in the dynamics of the relationship between the biological and environmental 
components of a system. Such a stable part, named ‘Compromise’, is used as a reference space on which the 
temporal evolution of the variability of the biological and environmental relationship is projected. Data were 
organized in yearly pairs of tables (biological and environmental data matrices) covering the period 1984–2015 
excluding the years 1989–1995, either totally missing (1991–1994) or characterised by several gaps in the sea-
sonal distribution of environmental variables. For each year, one table included monthly-averaged surface values 
of physical–chemical variables (temperature, radiation, salinity, dissolved inorganic nitrogen (DIN), phosphates 
and silicates), and the other monthly-averaged surface values of cell density of the 81 selected phytoplankton 
taxa, respectively. A co-inertia analysis was performed on each pair of tables producing a sequence of cross-
covariance matrices analysed with a partial triadic analysis. Specifically, a set of RV coefficients (a measure 
between 0 and 1 describing the similarity between two  matrices87) were computed for each couple of cross-
covariance tables producing a matrix of correlations between the different years. Then, a PCA was performed 
on the RV coefficients’ matrix to quantify the similarity of the different tables (years) in a visual configuration 
named ‘Interstructure’. Finally, each yearly couple of tables was projected in the Compromise map in the form of 
trajectories. For details of the methods,  see36,37,88.

The temporal variability of the phytoplankton community was further investigated using the discriminant 
function analysis (DFA), a multivariate technique that quantifies how well a certain combination of continuous 
variables discriminates between two or more levels of a categorical variable. The rationale behind the use of DFA 
is to extract a single multivariate index that describes the compositional variability of a community over time 
and to use that index as a response variable to environmental  factors53,89. We performed the DFA using the time 
series of taxon abundances (the continuous variables) as predictors of the sampling month (the categorical vari-
able), assuming that it would be possible to predict a certain temporal point along the time series based on the 
community composition at a given time. The DFA generates n-1 discriminant functions (with n = no of months), 
the first of which (DF1) provides the most overall discrimination among the groups (months), summarising the 
variability of the phytoplankton community in the LTER-MC time series. In order to increase the robustness of 
the results, we took advantage of the high sampling frequency of the 25 ys time series and extracted four different 
monthly time series from weekly/biweekly data, i.e., starting from ~ 52 observations for each year, we obtained 
four different time series composed of 12 annual observations.

The relationship between environmental factors and community variability was then tested performing a mul-
tiple linear regression using DF1 as a response variable and the environmental parameters (photoperiod, radia-
tion, temperature, salinity, DIN, silicates, and phosphates) as independent variables for each of the 4 time-series 
generated. To assess the presence of any multicollinearity among the predictors, we estimated the variance infla-
tion factor (VIF), which indicates collinearity for values higher than  1090. Then, we estimated the contribution of 
the predictors to the model’s total explained variance. One of the problems when decomposing the variance in 
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regression models is that each order of the regressors generates a different decomposition of the sum of squares. 
Therefore, the contributions were calculated according to Lindeman, Merenda and Gold’s  method38. The LMG 
method is based on the sequential sums of squares of all regressors and takes into account the dependence of the 
order of the regressors in the decomposition process. Although computationally expensive, the method provides 
reliable results also when dealing with multicollinearity among  predictors91,92.

Data availability
The datasets and the explained code used in the current study are organized in a private GitHub repository. The 
repository contents are available upon request to the corresponding authors through a shareable GitFront link.
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