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Abstract 12 

 13 

This paper presents an approach to improve wind datasets developed using the regional atmospheric 14 

model Weather Research Forecasting by combining its predictions with remotely sensed wind 15 

observations in enhanced wind speed analyses that leads to blended winds.  In this study, satellite data 16 

derived from scatterometers, radiometers, and synthetic aperture radar are used. The spatial and 17 

temporal features of each wind product are thoroughly analysed. For the probabilistic evaluation of 18 

their skill, comprehensive comparisons with available buoy data are carried out. The statistical 19 

analysis shows that the combined use of satellite and numerical weather prediction model data 20 

improves the agreement with buoy measurements, demonstrating the added value of using the 21 

blended product. As an application of the method, new improved satellite wind speeds are presented 22 

in the form of a wind energy assessment along the Iberian coastal area. From inspection of the 23 

provided wind power maps, northern and central regions emerge as the most promising areas for wind 24 

harnessing offshore despite some seasonal variations. Finally, potential wind farm sites are provided, 25 

along with insights into multi-year wind speed distribution. The results show how the new dataset 26 

can be used for the selection of promising areas for wind exploitation. 27 

 28 

Keywords: WRF; Satellite wind; blended data; wind energy 29 

 30 

 31 

1 Introduction 32 

 33 

Improving the skill of wind speed predictions and understanding its regional patterns, brings 34 

numerous economic and technical advantages [1-2], in particular for the wind energy industry, which 35 
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is expanding offshore at a fast pace [3-6]. In the present day, the spatial distribution of wind resources 36 

is still a major element for the siting of offshore wind parks [7-10]. Having adequate climate services 37 

and adopting the existing ones persists as a big challenge for the wind energy sector [11].  38 

Several wind datasets are publicly available, allowing for a quick evaluation of the regions with 39 

greater wind exploitation potential. Examples are reanalysis datasets such as Era-interim [12] and 40 

Era5 [13] or MERRA-2 [14]. However, these lack the necessary spatial resolution and are not capable 41 

of addressing each site’s unique local climatic characteristics which highly affects wind power peaks 42 

and ramps predictions [15]. The Global Wind Atlas and the New European Wind Atlas are also widely 43 

used tools for wind energy assessment and have even been used in combination with reanalysis data 44 

for bias correction, but research found some versions of this product to be inefficient in improving 45 

simulation quality [16].  46 

Similarly, numerical weather prediction (NWP) models are also one of the most widely used tools for 47 

wind assessment [17-18]. Various studies have further pointed out the WRF model as an effective 48 

wind assessment tool [19-20]. WRF has been proved to be a useful model to assess wind resources 49 

in various countries such as Oman [21], Northern Europe [22], Iceland [23], Portugal [24], and 50 

therefore it has been chosen to perform this study. 51 

Although several resource assessment systems have been developed to provide accurate estimates of 52 

the available wind power across different regions, the current deterministic NWP models regardless 53 

of their demonstrated skill, have several limitations as they only represent a single wind trajectory for 54 

each site and consequently one future scenario of the energetic conditions and high dependence upon 55 

the initial conditions. Ensembles of simulations have been proved to improve this situation  [25-27].  56 

Despite its indisputable capabilities, NWP models still have a large margin for improvement. Novel 57 

improved methods can significantly reduce the risk and uncertainty for both the planning and 58 

maintenance stages of wind parks. A new design for wind and wind power forecasting designed by 59 

combining the results of WRF with fuzzy clustering, association rule and optimization methodologies 60 

can be effective in reducing the uncertainty of wind farm forecasting [28]. In this study, the strengths 61 

that NWPs offer are combined with satellite data to improve their skill.  62 

Therefore, combining NWP models with other sources of information can diminish the uncertainty 63 

of wind speed forecasts, especially if they have been tuned to give the most accurate conditions for a 64 

specific site. To take advantage of the strengths of multiple products, the joint use of distinct wind 65 

data sources tailored to the needs of each application has been widely employed over the last years 66 

[29-31]. A study [32] reconstructed one year of wind data from multiple satellite information and the 67 

WRF model to analyse the offshore wind resources over the South China Sea. The developed 68 

methodology provides a valuable tool for a well-informed site selection. This is of major interest for 69 

offshore areas where few in situ observations are available. Despite the demonstrated capabilities of 70 
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NWP models, there are numerous advantages of using outher sources of information. For instance, 71 

remote sensing data  is capable of resolving fine-scale structures not fully captured by these models 72 

[33]. 73 

Satellite information has been recently used to assess the spatial variability of global ocean wind 74 

resources [34-35]. While satellite data contribute to spatial and temporal coverage, buoy data consists 75 

of a long and accurate time series of wind observations capable of describing the true wind conditions 76 

and providing information on the diurnal and seasonal/annual variability of the wind resource.  77 

As concerns the Portuguese coastal zone, the study area considered in this work, the need for 78 

improved understanding of the wind patterns along the Iberian coastal zone drove several works that 79 

aimed at determining the most suitable areas for wind exploitation. Satellite data confirm that the 80 

Portuguese coastline has the potential to generate large amounts of electricity [36-37] showing that 81 

four main areas with homogeneous wind conditions can be devised on the Portuguese coast [35].  For 82 

example, a 10-year hindcast for the Iberian Peninsula coast demonstrated the WRF model’s ability to 83 

express the local wind across the selected domain [24]. Also, for the Iberian Peninsula, another study 84 

[38] presents projections of future climate scenarios using a set of models that proved to successfully 85 

hindcast inland and offshore winds. The statistical properties of the data were analysed and it was 86 

shown that four main areas with homogeneous wind conditions could be devised on the Portuguese 87 

coast [39].  To address the challenges of the most commonly used wind resource assessment methods, 88 

this study aims to provide an accurate wind product capable of improving the existing data and 89 

provide accurate local resource estimation using two of the most accurate sources of wind data, 90 

numerical models and satellite data. 91 

 For this purpose, in this work, surface wind observations, retrieved from several satellite 92 

scatterometer and radiometer measurements, are combined with a 9-year (2004 – 2012) wind hindcast 93 

produced by the WRF model, resulting in new time series of blended wind estimates. The main 94 

strength of this method is that it uses the most suitable model configuration for the area of interest in 95 

combination with accurate satellite data that can correct the known deficiencies of NWP models such 96 

as wind magnitude bias. After validating the blended winds against a dataset of wind measurements 97 

obtained from a network of meteorological buoys, the temporal and spatial variability along the 98 

Iberian coast is examined in more detail.  99 

The annual and seasonal variability as well as the mean extreme wind speed thresholds are also 100 

presented. 'The statistical characterization of wind power errors is performed. In this framework, the 101 

extreme wind speed in a given return period is used as a reference for survivability studies of the 102 

floating wind devices. The statistical percentile technique (90%, 95%, and 99%) and maxima over a 103 

specific period are some of the most commonly employed approaches to determine such a reference 104 

value [40].  To that end, the spatial distribution of the 99th percentile of the yearly wind speed is also 105 
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mapped. The final aim is to build a new dataset of winds to produce high-resolution wind maps that 106 

can be used as a site selection tool for offshore and coastal projects. 107 

This paper is organized in the following manner: section 2 briefly discusses the WRF model, the 110 

satellite analyses, buoy data and its agreement with observations; section 3 provides information 111 

about the Iberian coast wind patterns, the seasonal and intra-annual variations and extreme 112 

distribution of the wind. A comprehensive analysis of renewable energy follows in section 4 along 113 

with energy maps able to describe the available resources. Finally, a brief discussion of the results is 114 

presented in section 5.  115 

 116 

 117 

2 Data 118 

2.1 In-situ wind measurements 119 

 120 

The main source of surface wind used is from buoys located in the Atlantic Ocean along the 121 

North of Spain (South of Biscay Bay), western areas of Spain and Portugal, and Southwest of Spain 122 

(Table 1). Buoy data are provided by Puertos Del Estado (Spain), Xunta De Galicia (Spain), and 123 

Instituto Hidrográfico (Portugal). They are made available as Copernicus Marine Environment 124 

Monitoring Service (CMEMS (marine.copernicus.eu) products. More specifically, buoy data are 125 

retrieved from the CMEMS platform “European Marine Observation and Data Network” (EMODnet) 126 

[41].  127 

Most of the buoy data (>98%) are available in hourly estimates. In addition to wind speed and 128 

direction information, both provided at anemometer heights (3 m), buoy measurements of required 129 

atmospheric and oceanic parameters such as temperatures and relative humidity are also provided. 130 

The use of quality control flags, available with data, allow the consistent assessment of reliable wind 131 

speed time series. To avoid the use of inhomogeneous (erroneous) data, not detected through the 132 

standard quality control process, or to reject correct data, each buoy time series is investigated 133 

individually, and proper selected statistical criteria are determined and applied. More specifically, for 134 

each month of the study period and each buoy, monthly-averaged buoy wind estimates, and the 135 

associated standard deviations, are calculated from the available buoy wind measurements. Buoy data 136 

exceeding three standard deviations monthly values are investigated individually. Hourly buoy winds 137 

are converted to 10m neutral winds using COARE3.0 parameterizations [42]. 138 

 139 

 140 

 141 
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Table 1: Buoy information including buoy WMO code, coordinates (latitude, longitude), period of 

data availability, mean 10m wind speed (Mean), standard deviation (STD, skewness (Skew), kurtosis 

(Kur), 5% (P05) and 95% (P95) quartiles. 

 

WMO 

Code 

Latitude Longitude Period Mean 

(m/s) 

STD 

(m/s) 

Skew Kur P05 

(m/s) 

P95 

(m/s) 

6200191 41.1500°N 9.5800°W 
2010-

2019 
7.61 3.87 0.37 2.87 1.78 14.25 

6200192 39.5100°N 9.6400°W 
2009-

2019 
7.45 3.70 0.60 3.69 2.00 13.80 

6200199 39.5600°N 9.2100°W 
2010 - 

2019 
6.17 3.38 0.60 2.96 1.34 12.29 

6201031 41.9011°N 8.8993°W 
2010 - 

2019 
7.30 3.62 0.42 3.15 1.83 13.49 

6201038 42.6295°N 8.7804°W 
2007 - 

2019 
5.39 3.05 0.49 2.89 0.94 10.73 

6201040 42.1719°N 8.9063°W 
2008 - 

2019 
5.97 3.81 1.17 5.87 1.08 12.71 

6201062 42.5500°N 8.9475°W 
2011 - 

2019 
6.92 4.76 1.47 6.19 1.09 14.75 

62025 43.7419°N 6.1679°W 
1997 - 

2019 
6.03 3.64 0.67 3.07 1.07 12.71 

62082 44.0896°N 7.6428°W 
1996 - 

2019 
7.80 4.02 0.56 3.73 1.67 14.49 

62083 43.4963°N 9.2134°W 
1998 - 

2019 
7.81 4.16 0.29 2.53 1.39 14.96 

62084 42.1225°N 9.4142°W 
1998 - 

2019 
7.11 3.93 0.30 2.41 1.31 13.78 

62085 36.4953°N 6.9650°W 
1996 - 

2019 
6.30 3.33 0.55 3.07 1.43 12.24 

 142 

Table 1 summarizes the main statistics allowing the characterization of wind speed at each buoy 143 

location (Figure 2). As expected, the highest wind speed conditions are found at buoys located 144 

northwest of Spain, while the lowest winds are depicted near coast locations or in the Gulf of Cadiz. 145 

The three statistical conventional moments (standard deviation (STD), skewness (Skew), and kurtosis 146 

(Kur)) indicate that surface wind speed exhibit significant local characteristics. The latter would be 147 

further assessed through the estimation of temporal scale variability of wind speed from each buoy. 148 

Figure 1 shows the autocorrelation of wind speed as a function time lag varying between 1 hour and 149 

36 hours. It results that most of the wind speeds exhibit significant autocorrelation exceeding 0.80 at 150 

95% confidence level, for time lag lower than 6 hours. Therefore, the satellite surface wind analyses, 151 

used in this study, are estimated from remotely sensed data as 6-hourly averages at synoptic times 152 

(0000 UTC, 0006 UTC, 0012 UTC, 1800 UTC) over a gridded map of 0.125° in latitude and 153 

longitude. 154 

 155 
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 156 
 157 

Figure 1: Autocorrelations of wind speeds derived from buoys (Table 1) estimated from all 158 

available hourly measurements. 159 

 160 

 161 

2.2 WRF model wind estimates 162 

 163 

WRF is a FLOSS (free libre open source software) model, fully compressible and non-hydrostatic, 164 

with a variety of capabilities that meets the needs of both operational forecasting and academic 165 

communities at a variety of spatial scales.  It supports multiple dynamical cores, real-data and 166 

idealized simulations, data assimilation capabilities, a broad spectrum of physics and dynamic options 167 

as well as multiple types of nesting [43]. Details of the model setup are summarized in Table 2. 168 

 169 

Table 2. WRF system configuration and parameterization options 170 

Horizontal Resolution (km) 9 

Temporal resolution (hours) 6 

Grid Dimension 96x148 

Vertical Grid dimension 47 eta levels 

Radiation CAM scheme for both short and long wave radiation 

PBL Physics Yonsei University scheme 

Land Surface  Unified Noah Land Surface Model 

Microphysics WRF Single-Moment 6-class scheme 

Cumulus Kain-Fritsch scheme 

 171 

Within the context of this work, WRF version 3.9 was used to downscale the Era-Interim forecasts 172 

with 0.75 degrees of horizontal resolution to a 9 km mesh grid on a 1:3 nesting configuration. The 173 

Jo
urn

al 
Pre-

pro
of



 

7 

 

NWP model produces weather data with a 6-hours temporal resolution and 47 vertical levels. The 174 

computational grid covers the Iberian Peninsula and part of the Atlantic Ocean. Figure 2 illustrates 175 

the full operational setup of the WRF forecasting system along with the location of the marine buoys 176 

that supported the quantitative verification of the results. 177 

 178 

 179 
 180 

Figure 2. WRF domain and location of the offshore buoys from EMODNET database. 181 

 182 

 183 

2.3 Satellite retrieval of surface wind 184 

 185 

The remotely sensed data used in this study is described in various papers (e.g. [44, 45]). 186 

Satellite data used here are those available during the period 2004 – 2012. The reader may refer to 187 

the websites, shown in Table 3, providing details about instruments, wind processing, and relevant 188 

publications and reports.  Briefly, the main sources of remotely sensed wind data are from 189 

scatterometers onboard QuikSCAT (1999 – 2009), Metop-A (2007 – present), and Metop-B (2012 – 190 

present). Ancillary remotely sensed data are derived from radiometers: Special Sensor Microwave 191 

Imager Sounder (SSMI/S) onboard the Defense Meteorological Satellite Program (DMSP) F16 (2003 192 

– present) and F17 (2006 – present), and from WindSat onboard Coriolis satellite (2003 – present). 193 

10m wind speed and direction retrievals from SAR onboard Sentinel-1A (2014 – Present) and –1B 194 

(2016 – Present) are also of concern. They are mainly used for estimating the spatial variation at local 195 

scales [44]. 196 

Scatterometer and radiometer data used in this study are Level 2 (known as L2b product) wind 197 

retrievals available on wind vector cell (WVC) grid within the radar and radiometer ground swath, 198 
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i.e., suitable areas (depending on radar/radiometer characteristics). Scatterometer and WindSat 199 

provide both wind speed and direction at 10m height, while SSMI/S provide only 10m wind speed. 200 

The WVC grid size varies among different wind products. QuikSCAT WVC grids are of 12.5 km x 201 

12.5 km, while ASCAT WVC is of 25 km x 25 km until 2009, and of 12.5 km x 12.5. Scatterometer 202 

beams measure the normalized radar cross-section (NRCS), also known as backscatter coefficient 203 

(σ0), from the wind-roughened sea surface, which is mainly a function of wind condition (speed and 204 

direction). Backscatter σ0 data represent a dimensionless property of the surface, describing the ratio 205 

of the effective echoing area per unit area illuminated. Scatterometer wind retrievals are obtained 206 

from  σ0  measurements through an inversion procedure based on the use of Geophysical Model 207 

Functions (GMF). Scatterometer wind retrievals are provided over swaths of 1800km (QuikSCAT), 208 

and 2×600km (ASCAT). The links shown in Table 3 provide technical details related to scatterometer 209 

wind processing. References such as [42; 44] provide results related to the accuracy of scatterometer 210 

wind retrievals.  211 

The ancillary remotely sensed wind data used in this study are retrieved from the special sensor 212 

microwave imager (SSM/I) and sounder (SSMI/S) brightness temperature measurements (TB). Only 213 

surface wind speed at 10m height can be derived from SSMI and SSMI/S TB based on the use of an 214 

empirical model fitting the relationship between surface wind speed and TB through the radiative 215 

transfer equation (RTE). They are provided by a remote sensing system (RSS) [46]. SSM/I and 216 

SSMI/S wind data are available over swath (1400 km width) at wind cell of 0.25° in latitude and 217 

longitude over global oceans. 218 

Sentinel-1A and –1B SAR wind speed and direction retrievals, used in this study, are known as 219 

level 2 ocean (L2OCN) products, acquired in interferometric wide (IW) swath mode. Data are 220 

available over a swath of 250 widths, with a moderate geometric resolution of 5 m × 20m. Details 221 

about SAR winds and the related accuracy are available in the literature [44]. 222 

Several publications provide useful information related to improving the accuracy of the 223 

remotely sensed winds (see for instance [47]). For this study, the accuracy, at the regional scale, of 224 

the remotely sensed winds is briefly assessed through comprehensive comparisons with buoy 225 

measurements used in this study. To achieve the comparison, buoy and satellite wind retrievals are 226 

collocated based on the spatial and temporal criteria, 25 km and 1 hour, respectively. Table 4 227 

summarizes some statistical parameters aiming at the characterization of the comparisons of buoy 228 

and satellite retrieval wind speeds, zonal components, and meridional components. The resulting 229 

statistical parameters shown in table 4 are also required for the calculation of blended winds (see 230 

hereafter).    231 

 232 

 233 
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Table 3: Relevant websites providing information about radars and radiometers used in this study. 

Satellite Period Website 

QuikSCAT 
1999 –

2009 
https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_2B_OWV_COMP_12, 

ASCAT 
2006 – 

Present 
projects.knmi.nl/scatterometer/ascat_osi_12_prod 

SSMI/S F16 
2003 - 

Present 
http://data.remss.com/ssmi/f16/bmaps_v07/ 

SSMI/S F17 
2007 - 

Present 
http://data.remss.com/ssmi/f17/bmaps_v07/ 

WindSat 
2003 - 

Present 
http://data.remss.com/windsat/bmaps_v07.0.1/ 

Sentinel SAR 
2014 - 

Present 
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products 

 

Table 4: Comparison of statistical parameters  of collocated 10m wind speed, zonal, and meridional 

components from buoys and QuikSCAT, ASCAT retrievals, and WRF model analyses  for 2004 - 

2012. Bias is defined as the mean difference between buoy and product winds (in this order). RMS, 

bs, as, and , indicate root mean difference, regression coefficients (slope and intercept), and scalar 

correlation coefficient, respectively. Length is the number of collocated buoy and satellite wind data. 

Similar statistics are also shown for Sentinel-1a SAR IW winds. The former is estimated from buoy 

and SAR collocated data  for 2015 – 2018. 

 

 Wind Speed  

 Length Bias 

(m/s) 

RMS 

(m/s) 

bs as (m/s)   

QuikSCAT 29911 -0.17 1.39 0.90 0.72 0.95  

ASCAT 18252 0.06 1.27 0.91 0.57 0.95  

SAR 3887 0.45 1.65 0.86 0.49 0.91  

 Zonal wind component  

QuikSCAT 29390 0.21 2.54 1.20 -0.20 0.92  

ASCAT 18115 0.03 1.66 1.15 -0.02 0.96  

SAR 3719 0.13 1.83 1.07 -0.12 0.93  

 Meridional wind component  

QuikSCAT 29572 -0.50 2.21 1.14 0.38 0.91  

ASCAT 18080 -0.13 1.68 1.15 -0.02 0.96  

SAR 3787 -0.42 2.04 1.05 0.37 0.92  

 234 

The resulting statistics (Table 4) are determined assuming that buoy and satellite winds are both 235 

non-error-free.  Only those obtained for scatterometers QuikSCAT and ASCAT are shown. Both are 236 

similar to those obtained from scatterometer accuracy determination based on the use of buoy 237 

networks such as National Data Buoy Centre (NDBC) and Météo-France and U.K. Met Office buoys 238 

[48]. Biases are small, RMS wind speed differences do not exceed 1.40 m/s, and correlation exceeds 239 

0.90 at 95% confidence. RMS differences of QuikSCAT zonal and meridional wind components 240 
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exceed 2 m/s, while those estimated for ASCAT are about 1.70 m/s. It results from the difference in 241 

collocated buoy/QuikSCAT and buoy/ASCAT low wind speed (<5 m/s) distributions. They account 242 

for almost 27%, and 22% of the total length of collocated data, respectively.  Excluding wind speeds 243 

lower than 5 m/s, lead to similar statistics for QuikSCAT and ASCAT wind components (not shown).  244 

Table 4 also shows statistics aiming at the characterization of the comparison between a buoy 245 

and SAR IW winds. They are only required for the determination, from SAR IW retrievals, of the 246 

spatial structures of surface wind speed, zonal, meridional wind components along the area of interest 247 

(see section 2.4). Buoy and SAR IW agree well. However, SAR IW wind speed tends to be 248 

underestimated compared to buoy measurements [49]. Briefly, it relies on GMF used for retrieving 249 

wind speed and direction from the SAR backscatter coefficient. 250 

 251 

2.4  Blended WRF and satellite wind fields 252 

 253 

The method aiming at the determination of regular space and time surface wind fields, named 254 

surface wind analyses, over the oceanic area of interest, from remotely sensed observations, is 255 

described in previous papers (e.g. [49]). It is an objective method based on the kriging technique with 256 

the external drift method as described in the aforementioned reference. External drift is from the WRF 257 

model. Briefly, the scatterometer and radiometer winds are used to estimate 6-hourly averaged wind 258 

speed and direction over all grid cells of 0.125° in latitude and longitude (except grid cells over land).  259 

The contribution of each remotely sensed data requires knowledge of the associated weight. 260 

The latter accounts for the spatial and temporal separations of the analysis. Weight determination 261 

requires the knowledge of the spatial and temporal variability function (named variogram) of wind 262 

speed, zonal, and meridional components. Variograms illustrate the spatial and temporal scales of the 263 

variable, which are highly related to the space and time covariance functions. In practice, the 264 

variogram is determined as a parametric function, requiring the determination of three parameters. 265 

Two parameters, called variogram spatial and temporal ranges, indicate respectively the spatial and 266 

temporal lags beyond where no significant spatial and temporal correlation between wind variables 267 

are drawn. The third parameter (called sill) is the variogram value associated with the variogram 268 

ranges.  269 

Figure 3 shows the spatial scales (in km) of wind speed of the related wind components. They 270 

are determined from SAR IW retrievals based on the use of the method described in [45].   Briefly, 271 

for each hour of the day and each point on a 0.125°×0.125° grid, SAR-based wind covariances are 272 

estimated as a function of distance δh for 1 km≤ δh ≥ 300 km at 5 km steps. The hourly statistics is 273 

estimated only if the sampling length of SAR retrievals is significant (≥ 30). Space distribution of the 274 

spatial scales reflects the nature of local air–sea-land interactions and generally aligns with local 275 
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topography. The presence of sharp landmasses (such as capes) would introduce apparent 276 

inhomogeneities to spatial scale maps. Local air–sea-land interactions are also reflected in the spatial 277 

distribution of wind scale patterns that tend to be aligned with regional coastal configuration and 278 

topography.  279 

Wind speed (Figure 3a) exhibits small spatial scales, laying between 10km and 30km, over 280 

coastal areas (<100 km of coastlines), while over offshore areas, these scales are mostly higher than 281 

50km. As expected, regarding spatial wind patterns, the coastal wind speed scale exhibits a significant 282 

zonal pattern. Similar results are found for the zonal wind component (Figure 3b) and meridional 283 

wind component (Figure 3c). However, their spatial scales are larger than those found for wind speed 284 

and generally exceed 30km, except at a few locations.  285 

 286 

 287 

Figure 3: Spatial wind patterns of a) wind speed (m/s), b) zonal wind component (m/s), and c) meridional 288 
wind component (m/s), estimated from Sentinel SAR wind retrievals. They are determined at each grid cell 289 
(0.125°×0.125°) off Portugal and Spain's Atlantic coasts. The x-axis and y-axis represent the longitude and 290 
latitude of the domain. The colour shows the spatial scale value (in km)  291 
 292 

The determination of the variogram temporal range is based on the use of the results drawn 293 

from the buoy temporal autocorrelation behaviours (Figure 1). The former indicates that the wind 294 

temporal scale would be lower than 12 hours.  295 
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 296 

Figure 4: Examples of four consecutive 10m blended satellite wind analyses occurring on 27 297 

February 2010 at the synoptic time a)00h:00, b)06h:00, c)12h:00, and d)18h:00 UTC. The x-axis 298 

and y-axis represent the longitude and latitude of the domain. Colour indicates wind speed values, 299 

while the black arrows indicate wind direction. 300 

 301 

The resulting variograms are then used as inputs of the objective method components aiming 302 

at the determination of regional satellite wind analyses at synoptic times. The latter is also referred to 303 

as blended satellite winds or 6-hourly satellite wind analyses. An example of these wind analyses is 304 

shown in Figure 4. It shows four consecutive 6-hourly analyses of 27 February 2010.  It assesses the 305 

spatial and temporal variability of wind speed as well as wind direction, associated with southeast-306 

northeast high wind condition development. 307 

Figure 5 shows an example of the differences across the two datasets, the WRF and blended 308 

winds, for the strong wind episode occurring on February 27th. It can be seen that the WRF model 309 
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can reproduce the wind pattern generally well. Areas of increased wind speed in the northwest corner 310 

are visible in both maps although it is clear that WRF underestimates high wind speeds between the 311 

37º and 43º parallels. The general tendency for WRF to underpredict strong winds is well known and 312 

has previously been discussed [39]. In contrast, across the area of the highest concentration of strong 313 

winds, at the northwest corner of Galicia, WRF overestimates the maximum observed winds. This 314 

was confirmed by comparison with buoy measurements in that area not presented in this section The 315 

use of the blended product allows correcting the model bias further improving the accurate 316 

reproduction of the local meteorological phenomena. 317 

 318 

 319 
Figure 5: Example of the difference between WRF 10m wind speed (left) and blended wind maps 320 

for the high wind episode occurring on 27 February 2010 at synoptic time 18:00.  321 

 322 

The resulting satellite 6-hourly analyses are first compared to remotely sensed wind data. It 323 

assesses the ability of satellite analyses to restore the observed surface wind characteristics. To 324 

achieve such comparisons, satellite wind analyses and WRF wind estimates are collocated in space 325 

and time with satellite observations. The collocation spatial and temporal criteria are 25km, and 326 

3hours, respectively. Figure 6 shows the time series of statistical parameters (mean difference (bias), 327 

the standard deviation of the difference, and correlation), estimated at a regional scale, aiming the 328 

characterization of the comparison between satellite wind speed observations and, on one hand, 329 

satellite analyses, and on other hand WRF estimates. It is concluded that satellite wind analyses 330 

improve the results of the comparisons. Indeed, Bias as STD is reduced and correlation increases, 331 

compared to results found for WRF. 332 
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 333 

Figure 6: Time series (January 1st - March   31st, 2010) of statistical parameters (mean (bias) (panel 334 

on top) and standard deviation (STD) (middle) wind speed difference, and the related correlation 335 

coefficient (in bottom)) characterizing the comparisons between satellite wind speed observations 336 

and analyses (shown in red color), and between satellite wind speed observations and WRF estimates 337 

(in blue color) 338 

 339 

Nine years (2004 – 2012) of satellite wind analyses are calculated. Their accuracy is determined 340 

through comprehensive comparisons with 6-hourly averaged buoy (Table 1) wind speed and 341 

direction. The latter is estimated from valid 10m hourly wind data available within 3 hours of synoptic 342 

times. Only 6-hourly buoy data estimated at least with 3 hourly measurements are selected for 343 

comparison purposes.  Buoy and satellite 6-hourly winds available at the same synoptic times and 344 

located within 12.5 km of each other, are selected as collocated data, and used for the determination 345 

of satellite analysis accuracy. A similar procedure is used for collocating in space and time buoy and 346 

WRF winds. 347 

Figure 7 shows a comparison between buoy and satellite (left column panels) and between 348 

buoys and WRF (right column panels). Both WRF and satellite exhibit good agreement with buoy 349 

data. However, satellite analysis improves the comparisons, especially for wind speed (Figure 7 a) 350 

and b)). The scatter of the satellite wind speed analysis is reduced for almost all wind speed ranges. 351 

More specifically, the RMS of the difference between buoy and satellite, and between buoy and WRF 352 

are 1.71 m/s, and 1.97 m/s, respectively. Although satellite zonal (Figure 7 c)) and meridional (Figure 353 
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7 e)) wind components exhibit better comparison results, compared to WRF results (Figure 7 d) and 354 

f)), the improvements are quite limited. For instance, the RMS difference values of the zonal 355 

component are 2.06 m/s and 2.19 m/s for satellite and WRF, respectively (Figure 8).   356 

It is worth mentioning that the performance metrics presented here are in-line with those 357 

published in similar studies. Other authors compared WRF simulations against the same network of 358 

buoys used in this work, obtaining analogous results for the same statistical scores [36].  Similarly, 359 

the authors in another study obtained analogous RMSE values in comparisons of WRF against 8 mast 360 

and lidar sites across northern Europe [50]. This is an important result since these were the results of 361 

the validation that preceded the creation of the New European Wind Atlas. Still, WRF model has been 362 

tuned and tested in the region that motivated this study turning it into a better choice for on-site 363 

resource assessment.  364 

 365 

 366 

Figure 7: comparison of 6-hourly buoy and satellite analyses (left column), and between buoys and 367 

WRF (right column). Panels in the top (a) and b)), middle (c) and d)), and bottom e) and f)) show 368 

wind speed, zonal, and meridional comparisons, respectively. Coloured contours indicate the 369 

sampling length of collocated data associated with wind bins of 0.50 m/s width. Only contours 370 

associated with sampling length exceeding 30 are shown. 371 

 372 

 373 
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Figure 8: Root mean square differences (RMSD) between buoy and satellite (a), and between 374 

buoys and WRF wind speed (b), shown at buoy locations. 375 

 376 

 377 

3  Validation of the dataset  378 

3.1 Wind speed 379 

 380 

In this section, the spatial and temporal wind patterns are analyzed in more detail using the blended 381 

winds described in the previous section. To gain further insight into the spatial pattern of the mean 382 

wind speed, a wind map is drawn and displayed in Figure 9 (left panel). As it is observed, two main 383 

characteristic patterns are evident from the colour distribution analysis. The wind speed is higher in 384 

the northern regions, most particularly in the northwest corner of the Iberian Peninsula, where wind 385 

speed is above 8.5 m/s on average.  386 

This region of Galicia is affected by strong west winds that come from the Atlantic low-pressure 387 

systems. As expected, winds rapidly increase with the distance to the coast varying between 5-6 m/s 388 

along the western coast and rapidly increasing up to 8.5 m/s in the northern regions. In the south, the 389 

lowest wind speeds occur, with magnitudes of around 4-5.5 m/s near the coast though they still 390 

represent attractive conditions for wind projects. Overall, winds vary between 6-7.5 m/s in the west 391 

side of the Iberian Peninsula, most affected by western Atlantic winds, indicating good overall 392 

conditions for building wind parks taking into account the average water depth and distance to shore 393 

of offshore wind farms [51].  394 

In addition to the annual means, extreme winds are calculated using the statistical percentile 395 

procedure (Figure 9, right panel). In this paper, the threshold chosen to define the extremes was the 396 

99th percentile. The map at the upper percentile level (right panel of Figure 9) shows that the lowest 397 

extreme winds occur in the south, not exceeding 14 m/s on average. This is also valid near the coast 398 

throughout most of the domain, though rapidly increasing up to 17 m/s in the northmost regions and 399 

with the distance from the coast. This is suitable for most wind turbines which have a typically rated 400 

speed of 11-17 m/s and cut off speed of 25 m/s. [52-53]. 401 
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 402 
Figure 9: Annual average 10m blended wind speed (m/s) for the 9-year period (left) and 99th 403 

percentile (right).  404 

 405 
 406 

3.2 Annual wind variability 407 

 408 

To access the inter-annual variability, Figure 10 shows the normalized wind speed from 2004 to 409 

2012. The deviations from the mean are calculated by dividing each year's average wind speed records 410 

by long-term mean throughout the 9 years . These numbers allow analysing the variability 411 

for the 9 years and to estimate the deviations from the long term mean value during that period.  412 

The results show that the annual wind speed ranges from a low of 85-90% of the 9-yearly mean 413 

wind speed to a high of 125% of the average intensity. An increasing trend is noticed throughout 2010 414 

though preceded by lower the intensity year of 2009. According to the wind analysis, the years 2008 415 

and 2010 show the higher average intensity up to nearly 115% of the medium-term mean contrasting 416 

with the years of 2004 and 2007 that show lower intensity winds. For the year 2010 in particular, the 417 

distinct pattern is likely related to the strong signature of North Atlantic Oscillation [54]. These maps 418 

give a general overview of the spatial and temporal patterns of the wind in the selected region, 419 

however, a thorough analysis must be done in specific regions for wind turbine implementation.  420 

 421 
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 422 
Figure 10: Normalized wind speed (m/s) for 2004-2012. The deviations from the mean are calculated 423 

by dividing each year average wind speed records by the 9-yearly mean wind speed  *100. 424 

3.3 Seasonal wind variability 425 

 426 

The seasonal distribution of winds for the study area is shown in Figure 11. As expected, the winter 432 

represents the most energetic season with winds of greater magnitude occurring more frequently, 433 

especially above the 7 m/s threshold and exceeding 9 m/s in the northern regions.   Conversely, lower 434 

magnitude winds occur more frequently in the spring and summer even though the difference is more 435 

noticeable in the northwest corner of the domain. Along the coast, winds still exceed on average 6 436 

m/s which still represents attractive conditions. This is due to the strong winds that occur during 437 

summer in Portugal, created by a thermal low over the Iberian Peninsula and the Azores high-pressure 438 

system [55]. These blow mostly from North-Northeast directions and contribute to the potential for 439 

wind exploitation during these months. 440 

 441 
Figure 11: Wind speed seasonal variations (m/s). From left to right (spring, summer, fall, winter) 442 

 443 
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 444 
Figure 12: 99th percentile wind speed (m/s). From left to right (spring, summer, fall, winter) 445 

 446 

Figure 12 shows the spatial distribution of winds exceeding the 99th percentile. The winds exhibit 447 

similar spatial characteristics to the average wind displayed in Figure 11. Overall, extreme winds 448 

range from 11-19 m/s over the selected domain throughout the year. All seasons have their largest 449 

winds in the northwest corner of the domain, in agreement with the median wind maps. Similarly, 450 

summer is the period with the lowest magnitude winds. It is also interesting to notice that for the 451 

winter and fall seasons, the spatial distribution of the extreme wind differs in how it compares with 452 

the median wind pattern. Although the winds are stronger on average during the winter season 453 

between the 37 and 41º parallels, fall months are subject to larger magnitude extreme winds in this 454 

subsection of the domain.  455 

 456 

 457 

4 Wind Energy 458 

 459 

One of the potential benefits of an accurate wind product is an accurate estimation of wind energy. 460 

The energy resources at selected regions of interest have been determined using the blended wind 461 

product. The wind power density (WPD) is calculated over the entire area and further in detail for the 462 

three proposed locations for wind turbine implementation. The wind power density is calculated 463 

considering the wind speed frequency of occurrence in 1 m/s intervals, using the following 464 

expression: 465 

                                      (6) 466 

where the air density ρ (kg/m³) is taken as 1.225 kg/m3.  467 

From the seven wind power classes defined [56], class 3 and above are considered suitable for most 468 

wind power projects. This corresponds to a WPD of 150/200 W/m² at 10 m height or the equivalent 469 
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5.1/5.6 m/s mean wind speed. Figure 13 shows the spatial pattern of the wind power density obtained 470 

from the satellite analyses. The northern region denotes the highest potential while the southern areas 471 

have more modest values available for exploitation. Still, there is an overall high amount of energy 472 

along the entire coast with great dependence upon the distance to the coast. Nearly 350-400 W/m2 473 

(class 6) are available in average for extraction offshore the north and central coast and 250-300 474 

W/m2.  475 

The pronounced seasonal variations of the energy density in the Iberian Peninsula offshore area are 476 

depicted in Figure 14. Three sites are marked to identify the most energetic region across the country. 477 

Porto, Ericeira and Albufeira are some of the potential sites, a choice that was based on a preliminary 478 

inspection of physical and environmental limitations among other constraints [57].   479 

  480 

Figure 13: Average Wind power density (W/m2) in the Iberian Peninsula coast from 2004-2012; 481 

winds obtained from the satellite analyses.  482 

 483 

The maps illustrate how the winds are maximum during winter months and less intense during the 484 

rest of the year in agreement with what was presented in subsection 3.4. Summer is the least energetic 485 

season, but the potential progressively increases until it reaches its maximum value during the winter 486 

season. In terms of overall potential, the values vary around 300-600 W/m2 during the winter season 487 
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decreasing to 100-300 W/m2 during the summer. It is interesting to notice that during summer the 488 

spatial variability is remarkably decreased when compared with the other seasons. Still, even during 489 

the least energetic seasons, the observed potential corresponds to a wind class 5. 490 

Figures 15 and 16 show the 10m wind speed time series for two wind energy test sites. The two 491 

datasets are compared: wind data obtained from WRF model and the new blended winds. 492 

Additionally, the results obtained from wind speed derived from the new European wind atlas is also 493 

summarized in table 5.  Figures 16 and 17 show a generally good agreement between the two datasets 494 

as expected though WRF derived winds are consistently higher throughout the year which can lead 495 

to an overestimation of the available resource at a particular site. In addition, an inspection of table 496 

5, shows that even a small difference in the average wind speed can translate into power density 497 

differences of roughly 200 W/m2 annually. The opposite is also true.  498 

 499 

Figure 14: Wind power density seasonal variations (W/m2). From left to right (spring, summer, fall, 500 

winter) 501 

 502 

 503 

  504 

Figure 15.  10m wind speed (m/s) offshore Aguçadoura during the month of August of 2012 505 

 506 
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 507 

Figure 16.  10m wind speed (m/s) offshore Albufeira during August of 2012 508 

 509 

Table 5. Mean Wind speed and power density values for two selected wind energy test sites 510 

Source Area Aguçadoura Albufeira 

WRF Wind Speed (m/s) 4.10 6.34 

 WPD (W/m²) 243 278 

Blended data Wind Speed (m/s) 5.74 5,31 

 WPD (W/m²) 459 285  

Wind Atlas Wind Speed (m/s) 5.48 5.90 

 WPD (W/m²) 214 220 

 511 

 512 

As an example, at Albufeira, despite the similar average wind power density estimated for the year 513 

2012, the average wind speed differs by only 1 m/s. But oppositely, at Aguçadoura, 1.6 m/s difference 514 

in the average wind translate into nearly 200 W/m2 of available power while 0.3 m/s difference from 515 

the wind Atlas dataset derived wind, in turn, would mean an additional 250 W/m2 yearly. Looking at 516 

the wind Atlas annual values we can see they are quite similar even though the two regions have 517 

considerable differences in the actual wind resource. To give an example of the implications of such 518 

differences, at Albufeira considering the WRF results, a wind turbine with a cut-in wind speed of 4 519 

m/s would operate 354 days per year while using the blended winds the forecast is 339 working days. 520 

This has strong implications, especially when assessing a realistic maximum yield of offshore wind 521 

as the numbers will dictate investment needs and designing strategies to maximize the net energy 522 

flux. If we take into account the validation of the blended winds, and consider them accurate, this will 523 

affect the wind energy projections. Still, a comparison with observations such as buoy or mast data 524 

would be of utmost importance in the initial stages of a wind project. 525 

 526 

 527 
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5. Discussion and Conclusions 528 

 529 

The main goal of the work presented in this paper is to develop a new wind product capable of 530 

addressing the main limitations of two of the most commonly used methods for generating the 531 

existing wind datasets: satellite data and numerical weather prediction models. For this purpose, wind 532 

data from scatterometers, radiometers, Synthetic-aperture radar and a wind forecasting model are 533 

combined and the potential improvements of the new analyses were assessed by comparison with a 534 

network of offshore buoys moored along the Iberian Peninsula coast. The results show that blended 535 

winds improve the agreement with wind observations, reducing the bias and improving every 536 

statistical score evaluated. The scatter of the satellite wind speed analysis is reduced for almost all 537 

wind speed ranges further reducing the magnitude of the wind power estimation error.  538 

Several wind atlases are already publicly available and have been used for site selection and for 539 

designing energy harnessing systems worldwide. These use data mainly from reanalysis datasets or 540 

satellite information. However, these tools can still introduce uncertainty from its main components: 541 

mesoscale and microscale modelling. Similarly, several studies have already provided reasonably 542 

accurate estimates of the wind speed and energy resources in the region that concerns this work by 543 

using numerical models. The main strength of the dataset presented is the fact that since the WRF 544 

model has been used in this area in several studies, the combination of physical parameterizations 545 

used here with satellite data aims at providing better results than the ones we would obtain from the 546 

existing reanalysis and wind maps.  547 

The main strength of this research is that it uses the existing knowledge obtained from the multiple 548 

sensitivity and assessment studies in this geographical area in combination with skilful satellite data 549 

to create improved wind information for the Portuguese coast.  550 

The second part of this work presents an example of an application of this new wind dataset: an 551 

improved regional wind atlas to identify suitable areas for wind parks. 552 

To give an example of the applications of this product a spatial and temporal analysis of the wind 553 

patterns is also carried out. The results show that a significant percentage of the winds vary from 5.5 554 

to 8.5 m/s and despite some seasonal and interannual variations, the conditions are very attractive for 555 

new wind projects. As expected from a location in the northern hemisphere, winter presents a more 556 

energetic season with stronger winds over the entire domain and a higher probability of occurrence 557 

of extreme events.  558 

Though locations close to the shoreline are still economically profitable, it is shown that the wind 559 

rapidly increases with the distance to the coast. Analyzing the energy projections, it can be concluded 560 

that northern regions concentrate most of the energy consistently throughout the seasons. Overall, the 561 
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energy hot spots are located in the central and northern regions with the energy attaining its maximum 562 

at the northwest corner of the Peninsula. Still, the wind power class is above the threshold of three 563 

for all seasons and years which confirms the economic feasibility at this preliminary assessment stage. 564 

At Porto and Ericeira, two promising areas to harness energy in its vicinity, around 350-400 W/m2 565 

are available for extraction, on average, during the 2004-2012 period. When comparing the results 566 

against the data from wind atlas, differences up to 200 W/m2 from the estimated wind power can be 567 

detected, which provides additional support that the choice of the dataset is of utmost importance for 568 

site selection.  569 

Looking into the results provided by the newly generated wind maps shows that the entire area is 570 

promising for renewable energies, but a high wind energy site alone is not the only requirement for 571 

building wind parks. The next step would be combining the results of this study with the existing 572 

knowledge on the limitations imposed by physical and environmental constraints such as distance to 573 

shore, biodiversity protection, shipping routes, military areas, human activity, oil and gas exploration 574 

and tourist zones. [58] 575 

Finally, the new blended winds can be used to generate time series for promising sites around the 576 

world along with the estimation of the maximum wind energy yield for use in renewable energy 577 

system models. The techniques described in this paper can be applied to any test site and help correct 578 

numerical model bias, improving future wind integration studies. 579 

 580 

5 Acknowledgements 581 

 582 

 This work was conducted within the ARCWIND project–Adaptation and implementation of floating 583 

wind energy conversion technology for the Atlantic region (EAPA 344/2016), which is co-financed 584 

by the European Regional Development Fund through the Interreg Atlantic Area Programme. This 585 

work contributes to the Strategic Research Plan of the Centre for Marine Technology and Ocean 586 

Engineering (CENTEC), which is financed by the Portuguese Foundation for Science and 587 

Technology (Fundação para a Ciência e Tecnologia - FCT) under contract UIDB/UIDP/00134/2020. 588 

 589 

 590 

References 591 

[1] Palin, E.J., Scaife, A.A., Wallace, E., Pope, E.C.D., Arribas, A. and Brookshaw, A. (2016). Skillful 592 

Seasonal Forecasts of Winter Disruption to the U.K. Transport System. Journal of Applied 593 

Meteorology and Climatology, 55(2), 325–344.  594 

Jo
urn

al 
Pre-

pro
of



 

25 

 

[2] Bett, P.E., Thornton, H.E., Lockwood, J.F., Scaife, A.A., Golding, N., Hewitt, C., Zhu, R., Zhang, 595 

PQ. and Li, CF. (2017). Skill and Reliability of Seasonal Forecasts for the Chinese Energy Sector. 596 

Journal of Applied Meteorology and Climatology, 56(11), 3099–3114. 597 

[3] Diaz, H.M. and Guedes Soares, C. (2020) Review of the current status, technology and future 598 

trends of offshore wind farms. Ocean Engineering. 209:107381 599 

[4] Castro-Santos, L., Martins, E. and Guedes Soares, C. (2016) Cost assessment methodology for 600 

combined wind and wave floating offshore renewable energy systems. Renewable Energy. 97:866-601 

880. 602 

[5] Castro-Santos, L., Silva, D., Bento, A.R., Salvação, N. and Guedes Soares, C. (2020) Economic 603 

feasibility of floating offshore wind farms in Portugal. Ocean Engineering. 207:107393 604 

[6] Castro-Santos, L., Bento, A.R., Silva, D., Salvação, N. and Guedes Soares, C. (2020) Economic 605 

feasibility of floating offshore wind farms in the north of Spain. Journal of Marine Science and 606 

Engineering. 8(1):58-76. 607 

[7] Christoforaki, M. and Tsoutsos, T. (2017), “Sustainable siting of an offshore wind park a case in 608 

Chania, Crete”, Renewable Energy, Vol. 109, pp. 624-633. 609 

[8] Diaz, H.M. and Guedes Soares, C. (2020); An integrated GIS approach for site selection of floating 610 

offshore wind farms in the Atlantic Continental European coastline. Renewable and Sustainable 611 

Energy Reviews. 134:110328  612 

[9] Diaz, H.M., Fonseca, R.B. and Guedes Soares, C. (2019) Site selection process for floating 613 

offshore wind farms in Madeira Islands. Guedes Soares, C., (Eds.). Advances in Renewable Energies 614 

Offshore.  Taylor & Francis; pp. 729-737. 615 

[10] Diaz, H.M. and Guedes Soares, C. (2021) A multi-criteria approach to evaluate floating offshore 616 

wind farms siting in the Canary Islands (Spain). Energies. 14:865 617 

[11] Goodess, C.M., Troccoli, A., Acton, C., Añel, J.A., Bett, P.E., Brayshaw, D.J., De Felice, M., 618 

Dorling, S.R., Dubus, L., Penny, L., Percy, B., Ranchin, T., Thomas, C., Trolliet, M., Wald, L. (2019) 619 

Advancing climate services for the European renewable energy sector through capacity building and 620 

user engagement, Climate Services, 16,2019,100139,ISSN 2405-8807 621 

[12] Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., 622 

Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., Van de Berg, L., Bidlot, J., 623 

Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.B., Hersbach, 624 

H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, 625 

B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., Rosnay, P., Tavolato, C., Thépaut and F. Vitart, J.-N.,  626 

2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. 627 

Quart. J. R. Meteorol. Soc., 137, 553-597. 628 

Jo
urn

al 
Pre-

pro
of



 

26 

 

[13] Copernicus Climate Change Service ERA5 monthly averaged data on single levels from 1979 to 629 

present ECMWF (2019) 630 

[14] Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., 631 

Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullathe,r R., Draper, C., Akella, 632 

S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, 633 

D., Nielsen, J.E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S.D., Sienkiewicz, 634 

M., Zhao, B. (2017) The modern-era retrospective analysis for research and applications, version 2 635 

(MERRA-2) J Clim, 30 (14), pp. 5419-5454 636 

[15] González-Aparicio, I., Monforti, F., Volker, P., Zucker, A., Careri, F., Huld, T. and Badger, J. 637 

(2017). Simulating European wind power generation applying statistical downscaling to reanalysis 638 

data, Applied Energy, Volume 199, Pages 155-168. 639 

[16] Gruber. K., Regner. P., Wehrle. S., Zeyringer. M. and Schmidt. J. (2022). Towards global 640 

validation of wind power simulations: A multi-country assessment of wind power simulation from 641 

MERRA-2 and ERA-5 reanalysis bias-corrected with the global wind atlas,Energy,Volume 238, Part 642 

A, 121520. 643 

[17] Al-Yahyai, S., Charabi, Y. and Gastli, A. (2010). Review of the use of Numerical Weather 644 

Prediction (NWP) Models for wind energy assessment. Renewable and Sustainable Energy Reviews, 645 

14(9), 3192–3198. 646 

[18] Salvação, N. and Guedes Soares, C. (2016) Resource assessment methods in the offshore wind 647 

energy sector.  L. Castro-Santos and V. Diaz-Casas (Eds.). Floating Offshore Wind Farms. Springer 648 

International Publishing Switzerland; pp. 121-141. 649 

[19] Salvação, N., Bernardino, M. and Guedes Soares, C., 2014. Assessing mesoscale wind 650 

simulations in different environments. Computers & Geosciences, Volume 71, October 2014, Pages 651 

28-36. 652 

[20] Jesus, F.D., Menéndez, M., Guanche, R. and Losada, I. (2014). A wind chart to characterize 653 

potential offshore wind energy sites. Computers & Geosciences, 71, 62–72. 654 

[21] Charabi, Y., Al-Yahyai, S. and Gastli, A. (2011). Evaluation of NWP performance for wind 655 

energy resource assessment in Oman. Renewable and Sustainable Energy Reviews, 15(3), 1545–656 

1555. 657 

[22] Karagali, I., Badger, M. Hahmann, A.N., Peña, A. Hasaber, C.B. and Sempreviva, A.M. (2013), 658 

“Spatial and temporal variability of winds in the Northern European Seas”, Renewable Energy, Vol. 659 

57, pp. 200-210. 660 

[23] Nawri, N., Petersen, G.N., Bjornsson, H., Hahmann, A.N., Jónasson, K., Hasager, C.B. and 661 

Clausen, N-E. (2014), “The wind energy potential of Iceland”, Renewable Energy, Vol. 69, pp. 290-662 

299. 663 

Jo
urn

al 
Pre-

pro
of



 

27 

 

[24] Salvação, N. and Guedes Soares C., (2018). Wind resource assessment offshore the Atlantic 664 

Iberian coast with the WRF model. Energy, 145, 276–287. 665 

[25] Al-Yahyai, S., Charabi, Y., Al-Badi, A. and Gastli, A. (2012), “Nested ensemble NWP approach 666 

for wind energy assessment”, Renewable Energy, Vol. 37, pp. 150-160. 667 

[26] Mylonas, M.P., Barbouchi, S., Herrmann, H. and Nastos, P.T. (2018), “Sensitivity analysis of 668 

observational nudging methodology to reduce error in wind resource assessment (WRA) in the North 669 

Sea”, Renewable Energy, Vol. 120, pp. 446-456. 670 

[27] Linaje, N.G.-A., Mattar, C. and Borvarán, D. (2019). Quantifying the wind energy potential 671 

differences using different WRF initial conditions on Mediterranean coast of Chile. Energy, 188, 672 

116027.  673 

[28] Zhao, J., Guo, Y., Xiao, X., Wang, J., Chi, D. and Guo, Z. (2017). Multi-step wind speed and 674 

power forecasts based on a WRF simulation and an optimized association method. Applied Energy, 675 

197, 183–202.  676 

[29] Naidu, N., Nagababu, G., Kachhwaha, S. and Savsani, V. (2016). Evaluation of offshore wind 677 

power potential of India by combining satellite and moored buoy data. Guedes Soares, C., (Ed.), 678 

Progress in Renewable Energies Offshore. London, UK: Taylor & Francis Group, pp. 153-158. 679 

[30] Kumar, S.V.A., Nagababu, G. and Kumar, R. (2019). Comparative study of offshore winds and 680 

wind energy production derived from multiple scatterometers and met buoys. Energy, 185, 599–611. 681 

[31] Guo, Q., Huang, R., Zhuang, L., Zhang, K. and Huang, J. (2019). Assessment of China’s 682 

Offshore Wind Resources Based on the Integration of Multiple Satellite Data and Meteorological 683 

Data. Remote Sensing, 11(22), 2680. 684 

[32] Chang, R., Zhu, R., Badger, M., Hasager, C., Xing, X. and Jiang, Y. (2015). Offshore Wind 685 

Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea. 686 

Remote Sensing, 7(1), 467–487. 687 

[33] Hasager, C.B., Hahmann, A.N., Ahsbahs, T., Karagali, I., Sile, T., Badger, M. and Mann, J. 688 

(2019). Europe’s offshore winds assessed from SAR, ASCAT and WRF., Wind Energy Science 689 

https://doi.org/10.5194/wes-2019-38 690 

[34] Guo, Q., Xu, X., Zhang, K., Li, Z., Huang, W., Mansaray, L. and Huang, J. (2018). Assessing 691 

Global Ocean Wind Energy Resources Using Multiple Satellite Data. Remote Sensing, 10(2), 100. 692 

[35] Nezhad, M.M., Groppi, D., Marzialetti, P., Fusilli, L., Laneve, G., Cumo, F. and Garcia, D.A. 693 

(2019). Wind energy potential analysis using Sentinel-1 satellite: A review and a case study on 694 

Mediterranean islands. Renewable and Sustainable Energy Reviews, 109, 499–513. 695 

[36] Carvalho, D., Rocha, A., Gómez-Gesteira, M. and Santos, C.S. (2017). Offshore winds and wind 696 

energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and 697 

Jo
urn

al 
Pre-

pro
of



 

28 

 

buoys – A comparative study for the Iberian Peninsula Atlantic coast. Renewable Energy, 102, 433–698 

444.  699 

[37] Carvalho, D., Rocha, A., Gómez-Gesteira, M., Alvarez, I. and Santos, C.S. (2013). Comparison 700 

between CCMP, QuikSCAT and buoy winds along the Iberian Peninsula coast. Remote Sensing of 701 

Environment, 137, 173–183.  702 

[38] Santos, F.; Gómez-Gesteira, M.; deCastro, M.; Añel, J.A.; Carvalho, D.; Dias, J.M.  (2018). On 703 

the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding 704 

ocean. Applied Energy, 228(), 289–300.   doi:10.1016/j.apenergy.2018.06.086      705 

[39] Campos, R.M. and Guedes Soares, C. (2018). Spatial distribution of offshore wind statistics on 706 

the coast of Portugal using Regional Frequency Analysis. Renewable Energy. 123:806-816. 707 

[40] Wang, J., Qin, S., Jin, S. and Wu, J. (2015). Estimation methods review and analysis of offshore 708 

extreme wind speeds and wind energy resources. Renewable and Sustainable Energy Reviews, 42, 709 

26–42. 710 

[41] www.emodnet.eu 711 

[42] Fairall, C.W., Bradley, E.F., Hare, J.E., Grachev, A.A. and Edson, J.B. (2003). Bulk 712 

Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. Journal of 713 

Climate, 16(4), 571–591  714 

[43] Wang, W., Barker, D., Bray, J., Bruyere, C., Duda, M. and Dudhia, J. User's guide for advanced 715 

research WRF (ARW) modeling system version 3. Mesoscale and microscale meteorology division. 716 

National Center for Atmospheric Research (MMM-NCAR); 2007.  717 

[44] Bentamy, A., Mouche, A., Grouazel, A., Moujane, A. and Mohamed, A.A. (2018). Using 718 

sentinel-1A SAR wind retrievals for enhancing scatterometer and radiometer regional wind analyses. 719 

International Journal of Remote Sensing, 40(3), 1120–1147.  720 

[45] Desbiolles, F., Bentamy, A., Blanke, B., Roy, C., Mestas-Nuñez, A.M., Grodsky, S.A., Herbette, 721 

S., Cambon, G. and Maes, C. (2017). Two decades [1992–2012] of surface wind analyses based on 722 

satellite scatterometer observations. Journal of Marine Systems, 168, 38–56.  723 

[46] Wentz, F.J. (2013).  SSM/I Version-7 Calibration Report, report number 011012, Remote Sensing 724 

Systems, Santa Rosa, CA, 46pp.    725 

 [47] Bentamy, A., Croize-Fillon, D. and Perigaud, C. (2008). Characterization of ASCAT 726 

measurements based on buoy and QuikSCAT wind vector observations. Ocean Science, 4(4), 265–727 

274. 728 

 [48] Gómez, G., Cabos, W.D., Liguori, G., Sein, D., Lozano-Galeana, S., Fita, L., Fernández, J., 729 

Magariño, M.E., Jimenez-Guerrero, P., Montávez, J.P., Dominguez, M., Romera, R. and Gaertner, M. 730 

(2015). Characterization of the wind speed variability and future change in the Iberian Peninsula and 731 

the Balearic Islands. Wind Energy, 19(7), 1223–1237. 732 

Jo
urn

al 
Pre-

pro
of



 

29 

 

[49] Patlakas, P., Galanis, G., Barranger, N. and Kallos, G. (2016). Extreme wind events in a complex 733 

maritime environment: Ways of quantification. Journal of Wind Engineering and Industrial 734 

Aerodynamics, 149, 89–101 735 

[50] Hahmann, A. N., Sīle, T., Witha, B., Davis, N. N., Dörenkämper, M., Ezber, Y., García-736 

Bustamante, E., González-Rouco, J. F., Navarro, J., Olsen, B. T., & Söderberg, S. (2020). The making 737 

of the New European Wind Atlas – Part 1: Model sensitivity. Geoscientific Model Development, 738 

13(10), 5053-5078. 739 

[51] Bailey, H. & Brookes, K. and Thompson, P. (2014). Assessing Environmental Impacts of 740 

Offshore Wind Farms: Lessons Learned and Recommendations for the Future. Aquatic biosystems. 741 

10. 8. 10.1186/2046-9063-10-8 742 

[52] Al-Hinai, A.; Charabi, Y.; Aghay Kaboli, S.H. Offshore Wind Energy Resource Assessment 743 

across the Territory of Oman: A Spatial-Temporal Data Analysis. Sustainability 2021, 13, 2862 744 

[53] Dupont, E., Koppelaar, R. and Jeanmart, H. (2017). Global available wind energy with physical 745 

and energy return on investment constraints. Applied Energy. 209. 10.1016/j.apenergy.2017.09.085. 746 

[54] Jerez, S., Trigo, R. M., Vicente-Serrano, S. M., Pozo-Vázquez, D., Lorente-Plazas, R., Lorenzo-747 

Lacruz, J., Santos-Alamillos, F., & Montávez, J. P. (2013). The Impact of the North Atlantic 748 

Oscillation on Renewable Energy Resources in Southwestern Europe, Journal of Applied 749 

Meteorology and Climatology, 52(10), 2204-2225 750 

[55] Soares P. M. M., Cardoso R. M., Semedo A., Chinita M.J. and Ranjha R. (2014) Climatology of 751 

the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results, 752 

Tellus A: Dynamic Meteorology and Oceanography, 66:1, 22377 753 

[56] Oh, K.-Y., Kim, J.-Y., Lee, J.-S. and Ryu, K.-W. (2012). Wind resource assessment around 754 

Korean Peninsula for feasibility study on 100 MW class offshore wind farm. Renewable Energy, 42, 755 

217–226. 756 

[57] Salvação, N., Guedes Soares, C. and Bentamy, A. (2019), Estimating the offshore wind energy 757 

along the Portuguese coast using WRF and satellite data”, Advances in Renewable Energies Offshore, 758 

Guedes Soares, C. (Ed.), Taylor & Francis Group, London, UK, pp. 703-710 759 

[58] Salvador S., Gimeno L., Javier Sanz Larruga F., (2019) The influence of maritime spatial 760 

planning on the development of marine renewable energies in Portugal and Spain: Legal challenges 761 

and opportunities, Energy Policy, Volume 128, Pages 316-328, ISSN 0301-4215. 762 

Jo
urn

al 
Pre-

pro
of



 
 Declaration of interests  

☒ The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.  

☐The authors declare the following financial interests/personal relationships which may be 

considered as potential competing interests: 

Jo
urn

al 
Pre-

pro
of


