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A B S T R A C T   

This paper presents an approach to improve wind datasets developed using the regional atmospheric model 
Weather Research Forecasting by combining its predictions with remotely sensed wind observations in enhanced 
wind speed analyses that leads to blended winds. In this study, satellite data derived from scatterometers, ra
diometers, and synthetic aperture radar are used. The spatial and temporal features of each wind product are 
thoroughly analysed. For the probabilistic evaluation of their skill, comprehensive comparisons with available 
buoy data are carried out. The statistical analysis shows that the combined use of satellite and numerical weather 
prediction model data improves the agreement with buoy measurements, demonstrating the added value of using 
the blended product. As an application of the method, new improved satellite wind speeds are presented in the 
form of a wind energy assessment along the Iberian coastal area. From inspection of the provided wind power 
maps, northern and central regions emerge as the most promising areas for wind harnessing offshore despite 
some seasonal variations. Finally, potential wind farm sites are provided, along with insights into multi-year 
wind speed distribution. The results show how the new dataset can be used for the selection of promising 
areas for wind exploitation.   

1. Introduction 

Improving the skill of wind speed predictions and understanding its 
regional patterns, brings numerous economic and technical advantages 
[1,2], in particular for the wind energy industry, which is expanding 
offshore at a fast pace [3–6]. In the present day, the spatial distribution 
of wind resources is still a major element for the siting of offshore wind 
parks [7–10]. Having adequate climate services and adopting the 
existing ones persists as a big challenge for the wind energy sector [11]. 

Several wind datasets are publicly available, allowing for a quick 
evaluation of the regions with greater wind exploitation potential. Ex
amples are reanalysis datasets such as Era-interim [12] and Era 5 [13] or 
MERRA-2 [14]. However, these lack the necessary spatial resolution and 
are not capable of addressing each site’s unique local climatic charac
teristics which highly affects wind power peaks and ramps predictions 
[15]. The Global Wind Atlas and the New European Wind Atlas are also 
widely used tools for wind energy assessment and have even been used 
in combination with reanalysis data for bias correction, but research 
found some versions of this product to be inefficient in improving 
simulation quality [16]. 

Similarly, numerical weather prediction (NWP) models are also one 
of the most widely used tools for wind assessment [17,18]. Various 
studies have further pointed out the WRF model as an effective wind 
assessment tool [19,20]. WRF has been proved to be a useful model to 
assess wind resources in various countries such as Oman [21], Northern 
Europe [22], Iceland [23], Portugal [24], and therefore it has been 
chosen to perform this study. 

Although several resource assessment systems have been developed 
to provide accurate estimates of the available wind power across 
different regions, the current deterministic NWP models regardless of 
their demonstrated skill, have several limitations as they only represent 
a single wind trajectory for each site and consequently one future sce
nario of the energetic conditions and high dependence upon the initial 
conditions. Ensembles of simulations have been proved to improve this 
situation [25–27]. 

Despite its indisputable capabilities, NWP models still have a large 
margin for improvement. Novel improved methods can significantly 
reduce the risk and uncertainty for both the planning and maintenance 
stages of wind parks. A new design for wind and wind power forecasting 
designed by combining the results of WRF with fuzzy clustering, 
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association rule and optimization methodologies can be effective in 
reducing the uncertainty of wind farm forecasting [28]. In this study, the 
strengths that NWPs offer are combined with satellite data to improve 
their skill. 

Therefore, combining NWP models with other sources of information 
can diminish the uncertainty of wind speed forecasts, especially if they 
have been tuned to give the most accurate conditions for a specific site. 
To take advantage of the strengths of multiple products, the joint use of 
distinct wind data sources tailored to the needs of each application has 
been widely employed over the last years [29–31]. A study [32] 
reconstructed one year of wind data from multiple satellite information 
and the WRF model to analyse the offshore wind resources over the 
South China Sea. The developed methodology provides a valuable tool 
for a well-informed site selection. This is of major interest for offshore 
areas where few in situ observations are available. Despite the demon
strated capabilities of NWP models, there are numerous advantages of 
using other sources of information. For instance, remote sensing data is 
capable of resolving fine-scale structures not fully captured by these 
models [33]. 

Satellite information has been recently used to assess the spatial 
variability of global ocean wind resources [34,35]. While satellite data 
contribute to spatial and temporal coverage, buoy data consists of a long 
and accurate time series of wind observations capable of describing the 
true wind conditions and providing information on the diurnal and 
seasonal/annual variability of the wind resource. 

As concerns the Portuguese coastal zone, the study area considered 
in this work, the need for improved understanding of the wind patterns 
along the Iberian coastal zone drove several works that aimed at 
determining the most suitable areas for wind exploitation. Satellite data 
confirm that the Portuguese coastline has the potential to generate large 
amounts of electricity [36,37] showing that four main areas with ho
mogeneous wind conditions can be devised on the Portuguese coast 
[35]. For example, a 10-year hindcast for the Iberian Peninsula coast 
demonstrated the WRF model’s ability to express the local wind across 
the selected domain [24]. Also, for the Iberian Peninsula, another study 
[38] presents projections of future climate scenarios using a set of 
models that proved to successfully hindcast inland and offshore winds. 
The statistical properties of the data were analysed and it was shown 
that four main areas with homogeneous wind conditions could be 
devised on the Portuguese coast [39]. To address the challenges of the 
most commonly used wind resource assessment methods, this study 
aims to provide an accurate wind product capable of improving the 
existing data and provide accurate local resource estimation using two 
of the most accurate sources of wind data, numerical models and sat
ellite data. 

For this purpose, in this work, surface wind observations, retrieved 
from several satellite scatterometer and radiometer measurements, are 
combined with a 9-year (2004–2012) wind hindcast produced by the 
WRF model, resulting in new time series of blended wind estimates. The 
main strength of this method is that it uses the most suitable model 
configuration for the area of interest in combination with accurate sat
ellite data that can correct the known deficiencies of NWP models such 
as wind magnitude bias. After validating the blended winds against a 
dataset of wind measurements obtained from a network of meteoro
logical buoys, the temporal and spatial variability along the Iberian 
coast is examined in more detail. 

The annual and seasonal variability as well as the mean extreme 
wind speed thresholds are also presented. The statistical characteriza
tion of wind power errors is performed. In this framework, the extreme 
wind speed in a given return period is used as a reference for surviv
ability studies of the floating wind devices. The statistical percentile 
technique (90%, 95%, and 99%) and maxima over a specific period are 
some of the most commonly employed approaches to determine such a 
reference value [40]. To that end, the spatial distribution of the 99th 
percentile of the yearly wind speed is also mapped. The final aim is to 
build a new dataset of winds to produce high-resolution wind maps that 

can be used as a site selection tool for offshore and coastal projects. 
This paper is organized in the following manner: section 2 briefly 

discusses the WRF model, the satellite analyses, buoy data and its 
agreement with observations; section 3 provides information about the 
Iberian coast wind patterns, the seasonal and intra-annual variations 
and extreme distribution of the wind. A comprehensive analysis of 
renewable energy follows in section 4 along with energy maps able to 
describe the available resources. Finally, a brief discussion of the results 
is presented in section 5. 

2. Data 

2.1. In-situ wind measurements 

The main source of surface wind used is from buoys located in the 
Atlantic Ocean along the North of Spain (South of Biscay Bay), western 
areas of Spain and Portugal, and Southwest of Spain (Table 1). Buoy data 
are provided by Puertos Del Estado (Spain), Xunta De Galicia (Spain), 
and Instituto Hidrográfico (Portugal). They are made available as 
Copernicus Marine Environment Monitoring Service CMEMS (marine. 
copernicus.eu) products. More specifically, buoy data are retrieved from 
the CMEMS platform “European Marine Observation and Data Network” 
(EMODnet) [41]. 

Most of the buoy data (>98%) are available in hourly estimates. In 
addition to wind speed and direction information, both provided at 
anemometer heights (3 m), buoy measurements of required atmospheric 
and oceanic parameters such as temperatures and relative humidity are 
also provided. The use of quality control flags, available with data, allow 
the consistent assessment of reliable wind speed time series. To avoid 
the use of inhomogeneous (erroneous) data, not detected through the 
standard quality control process, or to reject correct data, each buoy 
time series is investigated individually, and proper selected statistical 
criteria are determined and applied. More specifically, for each month of 
the study period and each buoy, monthly-averaged buoy wind estimates, 
and the associated standard deviations, are calculated from the available 
buoy wind measurements. Buoy data exceeding three standard de
viations monthly values are investigated individually. Hourly buoy 
winds are converted to 10 m neutral winds using COARE3.0 parame
terizations [42]. 

Table 1 summarizes the main statistics allowing the characterization 
of wind speed at each buoy location (Fig. 2). As expected, the highest 
wind speed conditions are found at buoys located northwest of Spain, 
while the lowest winds are depicted near coast locations or in the Gulf of 
Cadiz. The three statistical conventional moments (standard deviation 
(STD), skewness (Skew), and kurtosis (Kur)) indicate that surface wind 
speed exhibit significant local characteristics. The latter would be 
further assessed through the estimation of temporal scale variability of 
wind speed from each buoy. Fig. 1 shows the autocorrelation of wind 
speed as a function time lag varying between 1 h and 36 h. It results that 
most of the wind speeds exhibit significant autocorrelation exceeding 
0.80 at 95% confidence level, for time lag lower than 6 h. Therefore, the 
satellite surface wind analyses, used in this study, are estimated from 
remotely sensed data as 6-hourly averages at synoptic times (0000 UTC, 
0006 UTC, 0012 UTC, 1800 UTC) over a gridded map of 0.125◦ in 
latitude and longitude. 

2.2. WRF model wind estimates 

WRF is a FLOSS (free libre open source software) model, fully 
compressible and non-hydrostatic, with a variety of capabilities that 
meets the needs of both operational forecasting and academic commu
nities at a variety of spatial scales. It supports multiple dynamical cores, 
real-data and idealized simulations, data assimilation capabilities, a 
broad spectrum of physics and dynamic options as well as multiple types 
of nesting [43]. Details of the model setup are summarized in Table 2. 

Within the context of this work, WRF version 3.9 was used to 
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downscale the Era-Interim forecasts with 0.75◦ of horizontal resolution 
to a 9 km mesh grid on a 1:3 nesting configuration. The NWP model 
produces weather data with a 6-h temporal resolution and 47 vertical 
levels. The computational grid covers the Iberian Peninsula and part of 
the Atlantic Ocean. Fig. 2 illustrates the full operational setup of the 
WRF forecasting system along with the location of the marine buoys that 
supported the quantitative verification of the results. 

2.3. Satellite retrieval of surface wind 

The remotely sensed data used in this study is described in various 
papers (e.g. Refs. [44,45]). Satellite data used here are those available 
during the period 2004–2012. The reader may refer to the websites, 
shown in Table 3, providing details about instruments, wind processing, 
and relevant publications and reports. Briefly, the main sources of 
remotely sensed wind data are from scatterometers onboard QuikSCAT 
(1999–2009), Metop-A (2007 – present), and Metop-B (2012 – present). 
Ancillary remotely sensed data are derived from radiometers: Special 
Sensor Microwave Imager Sounder (SSMI/S) onboard the Defense 
Meteorological Satellite Program (DMSP) F16 (2003 – present) and F17 
(2006 – present), and from WindSat onboard Coriolis satellite (2003 – 
present). 10 m wind speed and direction retrievals from SAR onboard 
Sentinel-1A (2014 – Present) and –1B (2016 – Present) are also of 
concern. They are mainly used for estimating the spatial variation at 
local scales [44]. 

Scatterometer and radiometer data used in this study are Level 2 
(known as L2b product) wind retrievals available on wind vector cell 
(WVC) grid within the radar and radiometer ground swath, i.e., suitable 
areas (depending on radar/radiometer characteristics). Scatterometer 
and WindSat provide both wind speed and direction at 10 m height, 

while SSMI/S provide only 10 m wind speed. The WVC grid size varies 
among different wind products. QuikSCAT WVC grids are of 12.5 km ×
12.5 km, while ASCAT WVC is of 25 km × 25 km until 2009, and of 12.5 
km x 12.5. Scatterometer beams measure the normalized radar cross- 
section (NRCS), also known as backscatter coefficient (σ0), from the 
wind-roughened sea surface, which is mainly a function of wind con
dition (speed and direction). Backscatter σ0 data represent a dimen
sionless property of the surface, describing the ratio of the effective 
echoing area per unit area illuminated. Scatterometer wind retrievals 
are obtained from σ0 measurements through an inversion procedure 

Table 1 
Buoy information including buoy WMO code, coordinates (latitude, longitude), period of data availability, mean 10 m wind speed (Mean), standard deviation (STD, 
skewness (Skew), kurtosis (Kur), 5% (P05) and 95% (P95) quartiles.  

WMO Code Latitude Longitude Period Mean (m/s) STD (m/s) Skew Kur P05 (m/s) P95 (m/s) 

6200191 41.1500◦N 9.5800◦W 2010–2019 7.61 3.87 0.37 2.87 1.78 14.25 
6200192 39.5100◦N 9.6400◦W 2009–2019 7.45 3.70 0.60 3.69 2.00 13.80 
6200199 39.5600◦N 9.2100◦W 2010–2019 6.17 3.38 0.60 2.96 1.34 12.29 
6201031 41.9011◦N 8.8993◦W 2010–2019 7.30 3.62 0.42 3.15 1.83 13.49 
6201038 42.6295◦N 8.7804◦W 2007–2019 5.39 3.05 0.49 2.89 0.94 10.73 
6201040 42.1719◦N 8.9063◦W 2008–2019 5.97 3.81 1.17 5.87 1.08 12.71 
6201062 42.5500◦N 8.9475◦W 2011–2019 6.92 4.76 1.47 6.19 1.09 14.75 
62025 43.7419◦N 6.1679◦W 1997–2019 6.03 3.64 0.67 3.07 1.07 12.71 
62082 44.0896◦N 7.6428◦W 1996–2019 7.80 4.02 0.56 3.73 1.67 14.49 
62083 43.4963◦N 9.2134◦W 1998–2019 7.81 4.16 0.29 2.53 1.39 14.96 
62084 42.1225◦N 9.4142◦W 1998–2019 7.11 3.93 0.30 2.41 1.31 13.78 
62085 36.4953◦N 6.9650◦W 1996–2019 6.30 3.33 0.55 3.07 1.43 12.24  

Fig. 1. Autocorrelations of wind speeds derived from buoys (Table 1) estimated 
from all available hourly measurements. 

Fig. 2. WRF domain and location of the offshore buoys from EMOD
NET database. 
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based on the use of Geophysical Model Functions (GMF). Scatterometer 
wind retrievals are provided over swaths of 1800 km (QuikSCAT), and 2 
× 600 km (ASCAT). The links shown in Table 3 provide technical details 
related to scatterometer wind processing. References such as [42–44] 
provide results related to the accuracy of scatterometer wind retrievals. 

The ancillary remotely sensed wind data used in this study are 
retrieved from the special sensor microwave imager (SSM/I) and 
sounder (SSMI/S) brightness temperature measurements (TB). Only 
surface wind speed at 10 m height can be derived from SSMI and SSMI/S 
TB based on the use of an empirical model fitting the relationship be
tween surface wind speed and TB through the radiative transfer equation 
(RTE). They are provided by a remote sensing system (RSS) [46]. SSM/I 
and SSMI/S wind data are available over swath (1400 km width) at wind 
cell of 0.25◦ in latitude and longitude over global oceans. 

Sentinel-1A and –1B SAR wind speed and direction retrievals, used in 
this study, are known as level 2 ocean (L2OCN) products, acquired in 
interferometric wide (IW) swath mode. Data are available over a swath 
of 250 widths, with a moderate geometric resolution of 5 m × 20 m. 
Details about SAR winds and the related accuracy are available in the 
literature [44]. 

Several publications provide useful information related to improving 
the accuracy of the remotely sensed winds (see for instance Ref. [47]). 
For this study, the accuracy, at the regional scale, of the remotely sensed 
winds is briefly assessed through comprehensive comparisons with buoy 
measurements used in this study. To achieve the comparison, buoy and 
satellite wind retrievals are collocated based on the spatial and temporal 
criteria, 25 km and 1 h, respectively. Table 4 summarizes some statis
tical parameters aiming at the characterization of the comparisons of 
buoy and satellite retrieval wind speeds, zonal components, and 
meridional components. The resulting statistical parameters shown in 
Table 4 are also required for the calculation of blended winds (see 
hereafter). 

The resulting statistics (Table 4) are determined assuming that buoy 
and satellite winds are both non-error-free. Only those obtained for 
scatterometers QuikSCAT and ASCAT are shown. Both are similar to 
those obtained from scatterometer accuracy determination based on the 
use of buoy networks such as National Data Buoy Centre (NDBC) and 
Météo-France and U.K. Met Office buoys [48]. Biases are small, RMS 

wind speed differences do not exceed 1.40 m/s, and correlation exceeds 
0.90 at 95% confidence. RMS differences of QuikSCAT zonal and 
meridional wind components exceed 2 m/s, while those estimated for 
ASCAT are about 1.70 m/s. It results from the difference in collocated 
buoy/QuikSCAT and buoy/ASCAT low wind speed (<5 m/s) distribu
tions. They account for almost 27%, and 22% of the total length of 
collocated data, respectively. Excluding wind speeds lower than 5 m/s, 
lead to similar statistics for QuikSCAT and ASCAT wind components 
(not shown). 

Table 4 also shows statistics aiming at the characterization of the 
comparison between a buoy and SAR IW winds. They are only required 
for the determination, from SAR IW retrievals, of the spatial structures of 
surface wind speed, zonal, meridional wind components along the area 
of interest (see section 2.4). Buoy and SAR IW agree well. However, SAR 
IW wind speed tends to be underestimated compared to buoy mea
surements [49]. Briefly, it relies on GMF used for retrieving wind speed 
and direction from the SAR backscatter coefficient. 

2.4. Blended WRF and satellite wind fields 

The method aiming at the determination of regular space and time 
surface wind fields, named surface wind analyses, over the oceanic area 
of interest, from remotely sensed observations, is described in previous 
papers (e.g. Ref. [49]). It is an objective method based on the kriging 
technique with the external drift method as described in the afore
mentioned reference. External drift is from the WRF model. Briefly, the 
scatterometer and radiometer winds are used to estimate 6-hourly 
averaged wind speed and direction over all grid cells of 0.125◦ in lati
tude and longitude (except grid cells over land). 

The contribution of each remotely sensed data requires knowledge of 
the associated weight. The latter accounts for the spatial and temporal 
separations of the analysis. Weight determination requires the knowl
edge of the spatial and temporal variability function (named variogram) 
of wind speed, zonal, and meridional components. Variograms illustrate 
the spatial and temporal scales of the variable, which are highly related 
to the space and time covariance functions. In practice, the variogram is 
determined as a parametric function, requiring the determination of 
three parameters. Two parameters, called variogram spatial and tem
poral ranges, indicate respectively the spatial and temporal lags beyond 
where no significant spatial and temporal correlation between wind 
variables are drawn. The third parameter (called sill) is the variogram 
value associated with the variogram ranges. 

Table 2 
WRF system configuration and parameterization options.  

Horizontal Resolution (km) 9 
Temporal resolution (hours) 6 
Grid Dimension 96 × 148 
Vertical Grid dimension 47 eta levels 
Radiation CAM scheme for both short and long wave radiation 
PBL Physics Yonsei University scheme 
Land Surface Unified Noah Land Surface Model 
Microphysics WRF Single-Moment 6-class scheme 
Cumulus Kain-Fritsch scheme  

Table 3 
Relevant websites providing information about radars and radiometers used in 
this study.  

Satellite Period Website 

QuikSCAT 1999–2009 https://podaac.jpl.nasa.gov/dataset/QSCAT_L 
EVEL_2B_OWV_COMP_12, 

ASCAT 2006 – 
Present 

projects.knmi.nl/scatterometer/ascat_osi_12_prod 

SSMI/S F16 2003 - 
Present 

http://data.remss.com/ssmi/f16/bmaps_v07/ 

SSMI/S F17 2007 - 
Present 

http://data.remss.com/ssmi/f17/bmaps_v07/ 

WindSat 2003 - 
Present 

http://data.remss.com/windsat/bmaps_v07.0.1/ 

Sentinel 
SAR 

2014 - 
Present 

https://sentinel.esa.int/web/sentinel/missions 
/sentinel-1/data-products  

Table 4 
Comparison of statistical parameters of collocated 10 m wind speed, zonal, and 
meridional components from buoys and QuikSCAT, ASCAT retrievals, and WRF 
model analyses for 2004–2012. Bias is defined as the mean difference between 
buoy and product winds (in this order). RMS, bs, as, and ρ, indicate root mean 
difference, regression coefficients (slope and intercept), and scalar correlation 
coefficient, respectively. Length is the number of collocated buoy and satellite 
wind data. Similar statistics are also shown for Sentinel-1a SAR IW winds. The 
former is estimated from buoy and SAR collocated data for 2015–2018.   

Wind Speed 

Length Bias(m/s) RMS(m/s) bs as (m/s) ρ 

QuikSCAT 29911 − 0.17 1.39 0.90 0.72 0.95 
ASCAT 18252 0.06 1.27 0.91 0.57 0.95 

SAR 3887 0.45 1.65 0.86 0.49 0.91 
Zonal wind component 
QuikSCAT 29390 0.21 2.54 1.20 − 0.20 0.92 
ASCAT 18115 0.03 1.66 1.15 − 0.02 0.96 

SAR 3719 0.13 1.83 1.07 − 0.12 0.93 
Meridional wind component 
QuikSCAT 29572 − 0.50 2.21 1.14 0.38 0.91 
ASCAT 18080 − 0.13 1.68 1.15 − 0.02 0.96 

SAR 3787 − 0.42 2.04 1.05 0.37 0.92  
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Fig. 3 shows the spatial scales (in km) of wind speed of the related 
wind components. They are determined from SAR IW retrievals based on 
the use of the method described in Ref. [45]. Briefly, for each hour of the 
day and each point on a 0.125◦ × 0.125◦ grid, SAR-based wind co
variances are estimated as a function of distance δh for 1 km≤ δh ≥ 300 
km at 5 km steps. The hourly statistics is estimated only if the sampling 
length of SAR retrievals is significant (≥30). Space distribution of the 
spatial scales reflects the nature of local air–sea-land interactions and 
generally aligns with local topography. The presence of sharp land
masses (such as capes) would introduce apparent inhomogeneities to 
spatial scale maps. Local air–sea-land interactions are also reflected in 
the spatial distribution of wind scale patterns that tend to be aligned 
with regional coastal configuration and topography. 

Wind speed (Fig. 3a) exhibits small spatial scales, laying between 10 
km and 30 km, over coastal areas (<100 km of coastlines), while over 
offshore areas, these scales are mostly higher than 50 km. As expected, 
regarding spatial wind patterns, the coastal wind speed scale exhibits a 
significant zonal pattern. Similar results are found for the zonal wind 
component (Fig. 3b) and meridional wind component (Fig. 3c). How
ever, their spatial scales are larger than those found for wind speed and 
generally exceed 30 km, except at a few locations. 

The determination of the variogram temporal range is based on the 
use of the results drawn from the buoy temporal autocorrelation be
haviours (Fig. 1). The former indicates that the wind temporal scale 
would be lower than 12 h. 

The resulting variograms are then used as inputs of the objective 
method components aiming at the determination of regional satellite 
wind analyses at synoptic times. The latter is also referred to as blended 
satellite winds or 6-hourly satellite wind analyses. An example of these 
wind analyses is shown in Fig. 4. It shows four consecutive 6-hourly 
analyses of February 27, 2010. It assesses the spatial and temporal 
variability of wind speed as well as wind direction, associated with 

southeast-northeast high wind condition development. 
Fig. 5 shows an example of the differences across the two datasets, 

the WRF and blended winds, for the strong wind episode occurring on 
February 27th. It can be seen that the WRF model can reproduce the 
wind pattern generally well. Areas of increased wind speed in the 
northwest corner are visible in both maps although it is clear that WRF 
underestimates high wind speeds between the 37◦ and 43◦ parallels. The 
general tendency for WRF to underpredict strong winds is well known 
and has previously been discussed [39]. In contrast, across the area of 
the highest concentration of strong winds, at the northwest corner of 
Galicia, WRF overestimates the maximum observed winds. This was 
confirmed by comparison with buoy measurements in that area not 
presented in this section The use of the blended product allows cor
recting the model bias further improving the accurate reproduction of 
the local meteorological phenomena. 

The resulting satellite 6-hourly analyses are first compared to 
remotely sensed wind data. It assesses the ability of satellite analyses to 
restore the observed surface wind characteristics. To achieve such 
comparisons, satellite wind analyses and WRF wind estimates are 
collocated in space and time with satellite observations. The collocation 
spatial and temporal criteria are 25 km, and 3 h, respectively. Fig. 6 
shows the time series of statistical parameters (mean difference (bias), 
the standard deviation of the difference, and correlation), estimated at a 
regional scale, aiming the characterization of the comparison between 
satellite wind speed observations and, on one hand, satellite analyses, 
and on other hand WRF estimates. It is concluded that satellite wind 
analyses improve the results of the comparisons. Indeed, Bias as STD is 
reduced and correlation increases, compared to results found for WRF. 

Nine years (2004–2012) of satellite wind analyses are calculated. 
Their accuracy is determined through comprehensive comparisons with 
6-hourly averaged buoy (Table 1) wind speed and direction. The latter is 
estimated from valid 10 m hourly wind data available within 3 h of 
synoptic times. Only 6-hourly buoy data estimated at least with 3 hourly 
measurements are selected for comparison purposes. Buoy and satellite 
6-hourly winds available at the same synoptic times and located within 
12.5 km of each other, are selected as collocated data, and used for the 
determination of satellite analysis accuracy. A similar procedure is used 
for collocating in space and time buoy and WRF winds. 

Fig. 7 shows a comparison between buoy and satellite (left column 
panels) and between buoys and WRF (right column panels). Both WRF 
and satellite exhibit good agreement with buoy data. However, satellite 
analysis improves the comparisons, especially for wind speed (Fig. 7 a 
and b). The scatter of the satellite wind speed analysis is reduced for 
almost all wind speed ranges. More specifically, the RMS of the differ
ence between buoy and satellite, and between buoy and WRF are 1.71 
m/s, and 1.97 m/s, respectively. Although satellite zonal (Fig. 7 c)) and 
meridional (Fig. 7 e)) wind components exhibit better comparison re
sults, compared to WRF results (Fig. 7 d) and f)), the improvements are 
quite limited. For instance, the RMS difference values of the zonal 
component are 2.06 m/s and 2.19 m/s for satellite and WRF, respec
tively (Fig. 8). 

It is worth mentioning that the performance metrics presented here 
are in-line with those published in similar studies. Other authors 
compared WRF simulations against the same network of buoys used in 
this work, obtaining analogous results for the same statistical scores 
[36]. Similarly, the authors in another study obtained analogous RMSE 
values in comparisons of WRF against 8 mast and lidar sites across 
northern Europe [50]. This is an important result since these were the 
results of the validation that preceded the creation of the New European 
Wind Atlas. Still, WRF model has been tuned and tested in the region 
that motivated this study turning it into a better choice for on-site 
resource assessment. 

Fig. 3. Spatial wind patterns of a) wind speed (m/s), b) zonal wind component 
(m/s), and c) meridional wind component (m/s), estimated from Sentinel SAR 
wind retrievals. They are determined at each grid cell (0.125◦ × 0.125◦) off 
Portugal and Spain’s Atlantic coasts. The x-axis and y-axis represent the 
longitude and latitude of the domain. The colour shows the spatial scale value 
(in km). 
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3. Validation of the dataset 

3.1. Wind speed 

In this section, the spatial and temporal wind patterns are analysed in 
more detail using the blended winds described in the previous section. 
To gain further insight into the spatial pattern of the mean wind speed, a 
wind map is drawn and displayed in Fig. 9 (left panel). As it is observed, 
two main characteristic patterns are evident from the colour distribution 
analysis. The wind speed is higher in the northern regions, most 
particularly in the northwest corner of the Iberian Peninsula, where 
wind speed is above 8.5 m/s on average. 

This region of Galicia is affected by strong west winds that come from 
the Atlantic low-pressure systems. As expected, winds rapidly increase 
with the distance to the coast varying between 5 and 6 m/s along the 
western coast and rapidly increasing up to 8.5 m/s in the northern re
gions. In the south, the lowest wind speeds occur, with magnitudes of 
around 4–5.5 m/s near the coast though they still represent attractive 
conditions for wind projects. Overall, winds vary between 6 and 7.5 m/s 
in the west side of the Iberian Peninsula, most affected by western 

Fig. 4. Examples of four consecutive 10 m blended satellite wind analyses occurring on February 27, 2010 at the synoptic time a)00 h:00, b)06 h:00, c)12 h:00, and 
d)18 h:00 UTC. The x-axis and y-axis represent the longitude and latitude of the domain. Colour indicates wind speed values, while the black arrows indicate 
wind direction. 

Fig. 5. Example of the difference between WRF 10 m wind speed (left) and 
blended wind maps for the high wind episode occurring on February 27, 2010 
at synoptic time 18:00. 
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Atlantic winds, indicating good overall conditions for building wind 
parks taking into account the average water depth and distance to shore 
of offshore wind farms [51]. 

In addition to the annual means, extreme winds are calculated using 
the statistical percentile procedure (Fig. 9, right panel). In this paper, the 
threshold chosen to define the extremes was the 99th percentile. The 
map at the upper percentile level (right panel of Fig. 9) shows that the 
lowest extreme winds occur in the south, not exceeding 14 m/s on 
average. This is also valid near the coast throughout most of the domain, 
though rapidly increasing up to 17 m/s in the northmost regions and 
with the distance from the coast. This is suitable for most wind turbines 
which have a typically rated speed of 11–17 m/s and cut off speed of 25 
m/s [52,53]. 

3.2. Annual wind variability 

To access the inter-annual variability, Fig. 10 shows the normalized 
wind speed from 2004 to 2012. The deviations from the mean are 
calculated by dividing each year’s average wind speed records by long- 
term mean throughout the 9 years u = U/U. These numbers allow 
analysing the variability for the 9 years and to estimate the deviations 
from the long term mean value during that period. 

The results show that the annual wind speed ranges from a low of 
85–90% of the 9-yearly mean wind speed to a high of 125% of the 
average intensity. An increasing trend is noticed throughout 2010 
though preceded by lower the intensity year of 2009. According to the 
wind analysis, the years 2008 and 2010 show the higher average in
tensity up to nearly 115% of the medium-term mean contrasting with 
the years of 2004 and 2007 that show lower intensity winds. For the year 
2010 in particular, the distinct pattern is likely related to the strong 
signature of North Atlantic Oscillation [54]. These maps give a general 
overview of the spatial and temporal patterns of the wind in the selected 
region, however, a thorough analysis must be done in specific regions for 
wind turbine implementation. 

Fig. 6. Time series (January 1st - March 31st, 2010) of statistical parameters 
(mean (bias) (panel on top) and standard deviation (STD) (middle) wind speed 
difference, and the related correlation coefficient (in bottom)) characterizing 
the comparisons between satellite wind speed observations and analyses 
(shown in red colour), and between satellite wind speed observations and WRF 
estimates (in blue colour). 

Fig. 7. Comparison of 6-hourly buoy and satellite analyses (left column), and between buoys and WRF (right column). Panels in the top (a) and b)), middle (c) and 
d)), and bottom e) and f)) show wind speed, zonal, and meridional comparisons, respectively. Coloured contours indicate the sampling length of collocated data 
associated with wind bins of 0.50 m/s width. Only contours associated with sampling length exceeding 30 are shown. 
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3.3. Seasonal wind variability 

The seasonal distribution of winds for the study area is shown in 
Fig. 11. As expected, the winter represents the most energetic season 
with winds of greater magnitude occurring more frequently, especially 
above the 7 m/s threshold and exceeding 9 m/s in the northern regions. 
Conversely, lower magnitude winds occur more frequently in the spring 
and summer even though the difference is more noticeable in the 
northwest corner of the domain. Along the coast, winds still exceed on 
average 6 m/s which still represents attractive conditions. This is due to 
the strong winds that occur during summer in Portugal, created by a 
thermal low over the Iberian Peninsula and the Azores high-pressure 
system [55]. These blow mostly from North-Northeast directions and 
contribute to the potential for wind exploitation during these months. 

Fig. 12 shows the spatial distribution of winds exceeding the 99th 
percentile. The winds exhibit similar spatial characteristics to the 
average wind displayed in Fig. 11. Overall, extreme winds range from 11 
to 19 m/s over the selected domain throughout the year. All seasons 
have their largest winds in the northwest corner of the domain, in 
agreement with the median wind maps. Similarly, summer is the period 

with the lowest magnitude winds. It is also interesting to notice that for 
the winter and fall seasons, the spatial distribution of the extreme wind 
differs in how it compares with the median wind pattern. Although the 
winds are stronger on average during the winter season between the 37 
and 41◦ parallels, fall months are subject to larger magnitude extreme 
winds in this subsection of the domain. 

4. Wind energy 

One of the potential benefits of an accurate wind product is an ac
curate estimation of wind energy. The energy resources at selected re
gions of interest have been determined using the blended wind product. 
The wind power density (WPD) is calculated over the entire area and 
further in detail for the three proposed locations for wind turbine 
implementation. The wind power density is calculated considering the 
wind speed frequency of occurrence in 1 m/s intervals, using the 
following expression: 

WPD =
1
2

ρ v3 (6)  

Fig. 8. Root mean square differences (RMSD) between buoy and satellite (a), and between buoys and WRF wind speed (b), shown at buoy locations.  

Fig. 9. Annual average 10 m blended wind speed (m/s) for the 9-year period (left) and 99th percentile (right).  

N. Salvação et al.                                                                                                                                                                                                                               



Renewable Energy 198 (2022) 283–295

291

where the air density ρ (kg/m3) is taken as 1.225 kg/m3. 
From the seven wind power classes defined [56], class 3 and above 

are considered suitable for most wind power projects. This corresponds 
to a WPD of 150/200 W/m2 at 10 m height or the equivalent 5.1/5.6 m/s 
mean wind speed. Fig. 13 shows the spatial pattern of the wind power 
density obtained from the satellite analyses. The northern region de
notes the highest potential while the southern areas have more modest 
values available for exploitation. Still, there is an overall high amount of 
energy along the entire coast with great dependence upon the distance 
to the coast. Nearly 350–400 W/m2 (class 6) are available in average for 

extraction offshore the north and central coast and 250–300 W/m2. 
The pronounced seasonal variations of the energy density in the 

Iberian Peninsula offshore area are depicted in Fig. 14. Three sites are 
marked to identify the most energetic region across the country. Porto, 
Ericeira and Albufeira are some of the potential sites, a choice that was 
based on a preliminary inspection of physical and environmental limi
tations among other constraints [57]. 

The maps illustrate how the winds are maximum during winter 
months and less intense during the rest of the year in agreement with 
what was presented in subsection 3.4. Summer is the least energetic 

Fig. 10. Normalized wind speed (m/s) for 2004–2012. The deviations from the mean are calculated by dividing each year average wind speed records by the 9- 
yearly mean wind speed.u = U/U*100 

Fig. 11. Wind speed seasonal variations (m/s). From left to right (spring, summer, fall, winter).  

Fig. 12. 99th percentile wind speed (m/s). From left to right (spring, summer, fall, winter).  
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season, but the potential progressively increases until it reaches its 
maximum value during the winter season. In terms of overall potential, 
the values vary around 300–600 W/m2 during the winter season 
decreasing to 100–300 W/m2 during the summer. It is interesting to 
notice that during summer the spatial variability is remarkably 
decreased when compared with the other seasons. Still, even during the 
least energetic seasons, the observed potential corresponds to a wind 
class 5. 

Figs. 15 and 16 show the 10 m wind speed time series for two wind 
energy test sites. The two datasets are compared: wind data obtained 
from WRF model and the new blended winds. Additionally, the results 
obtained from wind speed derived from the new European wind atlas is 
also summarized in Table 5. Figs. 15 and 16 show a generally good 
agreement between the two datasets as expected though WRF derived 
winds are consistently higher throughout the year which can lead to an 
overestimation of the available resource at a particular site. In addition, 
an inspection of Table 5, shows that even a small difference in the 
average wind speed can translate into power density differences of 
roughly 200 W/m2 annually. The opposite is also true. 

As an example, at Albufeira, despite the similar average wind power 
density estimated for the year 2012, the average wind speed differs by 
only 1 m/s. But oppositely, at Aguçadoura, 1.6 m/s difference in the 
average wind translate into nearly 200 W/m2 of available power while 
0.3 m/s difference from the wind Atlas dataset derived wind, in turn, 
would mean an additional 250 W/m2 yearly. Looking at the wind Atlas 
annual values we can see they are quite similar even though the two 
regions have considerable differences in the actual wind resource. To 
give an example of the implications of such differences, at Albufeira 
considering the WRF results, a wind turbine with a cut-in wind speed of 
4 m/s would operate 354 days per year while using the blended winds 
the forecast is 339 working days. This has strong implications, especially 
when assessing a realistic maximum yield of offshore wind as the 
numbers will dictate investment needs and designing strategies to 
maximize the net energy flux. If we take into account the validation of 
the blended winds, and consider them accurate, this will affect the wind 
energy projections. Still, a comparison with observations such as buoy or 

Fig. 13. Average Wind power density (W/m2) in the Iberian Peninsula coast 
from 2004 to 2012; winds obtained from the satellite analyses. 

Fig. 14. Wind power density seasonal variations (W/m2). From left to right (spring, summer, fall, winter).  

Fig. 15. 10 m wind speed (m/s) offshore Aguçadoura during the month of August of 2012.  
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mast data would be of utmost importance in the initial stages of a wind 
project. 

5. Discussion and conclusions 

The main goal of the work presented in this paper is to develop a new 
wind product capable of addressing the main limitations of two of the 
most commonly used methods for generating the existing wind datasets: 
satellite data and numerical weather prediction models. For this pur
pose, wind data from scatterometers, radiometers, Synthetic-aperture 
radar and a wind forecasting model are combined and the potential 
improvements of the new analyses were assessed by comparison with a 
network of offshore buoys moored along the Iberian Peninsula coast. 
The results show that blended winds improve the agreement with wind 
observations, reducing the bias and improving every statistical score 
evaluated. The scatter of the satellite wind speed analysis is reduced for 
almost all wind speed ranges further reducing the magnitude of the wind 
power estimation error. 

Several wind atlases are already publicly available and have been 
used for site selection and for designing energy harnessing systems 
worldwide. These use data mainly from reanalysis datasets or satellite 
information. However, these tools can still introduce uncertainty from 
its main components: mesoscale and microscale modelling. Similarly, 
several studies have already provided reasonably accurate estimates of 
the wind speed and energy resources in the region that concerns this 
work by using numerical models. The main strength of the dataset 
presented is the fact that since the WRF model has been used in this area 
in several studies, the combination of physical parameterizations used 
here with satellite data aims at providing better results than the ones we 
would obtain from the existing reanalysis and wind maps. 

The main strength of this research is that it uses the existing 
knowledge obtained from the multiple sensitivity and assessment 
studies in this geographical area in combination with skilful satellite 
data to create improved wind information for the Portuguese coast. 

The second part of this work presents an example of an application of 
this new wind dataset: an improved regional wind atlas to identify 
suitable areas for wind parks. 

To give an example of the applications of this product a spatial and 
temporal analysis of the wind patterns is also carried out. The results 

show that a significant percentage of the winds vary from 5.5 to 8.5 m/s 
and despite some seasonal and interannual variations, the conditions are 
very attractive for new wind projects. As expected from a location in the 
northern hemisphere, winter presents a more energetic season with 
stronger winds over the entire domain and a higher probability of 
occurrence of extreme events. 

Though locations close to the shoreline are still economically prof
itable, it is shown that the wind rapidly increases with the distance to the 
coast. Analyzing the energy projections, it can be concluded that 
northern regions concentrate most of the energy consistently throughout 
the seasons. Overall, the energy hot spots are located in the central and 
northern regions with the energy attaining its maximum at the north
west corner of the Peninsula. Still, the wind power class is above the 
threshold of three for all seasons and years which confirms the economic 
feasibility at this preliminary assessment stage. At Porto and Ericeira, 
two promising areas to harness energy in its vicinity, around 350–400 
W/m2 are available for extraction, on average, during the 2004–2012 
period. When comparing the results against the data from wind atlas, 
differences up to 200 W/m2 from the estimated wind power can be 
detected, which provides additional support that the choice of the 
dataset is of utmost importance for site selection. 

Looking into the results provided by the newly generated wind maps 
shows that the entire area is promising for renewable energies, but a 
high wind energy site alone is not the only requirement for building 
wind parks. The next step would be combining the results of this study 
with the existing knowledge on the limitations imposed by physical and 
environmental constraints such as distance to shore, biodiversity pro
tection, shipping routes, military areas, human activity, oil and gas 
exploration and tourist zones [58]. 

Finally, the new blended winds can be used to generate time series 
for promising sites around the world along with the estimation of the 
maximum wind energy yield for use in renewable energy system models. 
The techniques described in this paper can be applied to any test site and 
help correct numerical model bias, improving future wind integration 
studies. 
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Fig. 16. 10 m wind speed (m/s) offshore Albufeira during August of 2012.  

Table 5 
Mean Wind speed and power density values for two selected wind energy test 
sites.  

Source Area Aguçadoura Albufeira 

WRF Wind Speed (m/s) 4.10 6.34 
WPD (W/m2) 243 278 

Blended data Wind Speed (m/s) 5.74 5,31 
WPD (W/m2) 459 285 

Wind Atlas Wind Speed (m/s) 5.48 5.90 
WPD (W/m2) 214 220  
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