FN Archimer Export Format PT J TI Mechanically Enhanced Salmo salar Gelatin by Enzymatic Cross-linking: Premise of a Bioinspired Material for Food Packaging, Cosmetics, and Biomedical Applications BT AF Buscaglia, Manon Guérard, Fabienne Roquefort, Philippe Aubry, Thierry Fauchon, Marilyne Toueix, Yannick Stiger-Pouvreau, Valerie Hellio, Claire Le Blay, Gwenaëlle AS 1:1;2:1;3:2;4:2;5:1;6:1;7:1;8:1;9:1; FF 1:;2:;3:;4:;5:;6:;7:;8:;9:; C1 Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France UMR CNRS 6027, IRDL, Université de Bretagne Occidentale, 29200, Brest, France C2 UBO, FRANCE UBO, FRANCE UM LEMAR IN WOS Cotutelle UMR copubli-france copubli-univ-france IF 3 TC 4 UR https://archimer.ifremer.fr/doc/00787/89929/95754.pdf LA English DT Article DE ;Cross-linking;Marine biomaterial;Microbial transglutaminase;Rheology;Salmon gelatin AB Marine animal by-products of the food industry are a great source of valuable biomolecules. Skins and bones are rich in collagen, a protein with various applications in food, cosmetic, healthcare, and medical industries in its native form or partially hydrolyzed (gelatin). Salmon gelatin is a candidate of interest due to its high biomass production available through salmon consumption, its biodegradability, and its high biocompatibility. However, its low mechanical and thermal properties can be an obstacle for various applications requiring cohesive material. Thus, gelatin modification by cross-linking is necessary. Enzymatic cross-linking by microbial transglutaminase (MTG) is preferred to chemical cross-linking to avoid the formation of potentially cytotoxic residues. In this work, the potential of salmon skin gelatin was investigated, in a comparative study with porcine gelatin, and an enzymatic versus chemical cross-linking analysis. For this purpose, the two cross-linking methods were applied to produce three-dimensional, porous, and mechanically reinforced hydrogels and sponges with different MTG ratios (2%, 5%, and 10% w/w gelatin). Their biochemical, rheological, and structural properties were characterized, as well as the stability of the material, including the degree of syneresis and the water-binding capacity. The results showed that gelatin enzymatically cross-linked produced material with high cross-linking densities over 70% of free amines. The MTG addition seemed to play a crucial role, as shown by the increase in mechanical and thermal resistances with the production of a cohesive material stable above 40 °C for at least 7 days and comparable to porcine and chemically cross-linked gelatins. Two prototypes were obtained with similar thermal resistances but different microstructures and viscoelastic properties, due to different formation dynamics of the covalent network. Considering these results, the enzymatically cross-linked salmon gelatin is a relevant candidate as a biopolymer for the production of matrix for a wide range of biotechnological applications such as food packaging, cosmetic patch, wound healing dressing, or tissue substitute. PY 2022 PD AUG SO Marine Biotechnology SN 1436-2228 PU Springer Science and Business Media LLC VL 24 IS 4 UT 000834696900001 BP 801 EP 819 DI 10.1007/s10126-022-10150-y ID 89929 ER EF