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Species Distribution Models (SDMs) are essential tools for predicting climate

change impact on species’ distributions and are commonly employed as an

informative tool on which to base management and conservation actions.

Focusing only on a part of the entire distribution of a species for fitting

SDMs is a common approach. Yet, geographically restricting their range can

result in considering only a subset of the species’ ecological niche (i.e.,

niche truncation) which could lead to biased spatial predictions of future

climate change effects, particularly if future conditions belong to those parts

of the species ecological niche that have been excluded for model fitting.

The integration of large-scale distribution data encompassing the whole

species range with more regional data can improve future predictions but

comes along with challenges owing to the broader scale and/or lower quality

usually associated with these data. Here, we compare future predictions

obtained from a traditional SDM fitted on a regional dataset (Switzerland) to

predictions obtained from data integration methods that combine regional

and European datasets for several bird species breeding in Switzerland. Three

models were fitted: a traditional SDM based only on regional data and thus

not accounting for niche truncation, a data pooling model where the two

datasets are merged without considering differences in extent or resolution,

and a downscaling hierarchical approach that accounts for differences in

extent and resolution. Results show that the traditional model leads to much

larger predicted range changes (either positively or negatively) under climate

change than both data integration methods. The traditional model also

identified different variables as main drivers of species’ distribution compared

to data-integration models. Differences between models regarding predicted

range changes were larger for species where future conditions were outside

the range of conditions existing in the regional dataset (i.e., when future

conditions implied extrapolation). In conclusion, we showed that (i) models
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calibrated on a geographically restricted dataset provide markedly different

predictions than data integration models and (ii) that these differences are

at least partly explained by niche truncation. This suggests that using data

integration methods could lead to more accurate predictions and more

nuanced range changes than regional SDMs through a better characterization

of species’ entire realized niches.

KEYWORDS

birds, climate change, predictions, range, spatial niche truncation, species
distribution model (SDM), data integration

Introduction

Species distribution models (SDMs), also called ecological
niche models (ENMs), have been widely used to study the
environmental drivers of species occurrences (Guisan et al.,
2017), to investigate the impact of various anthropogenic factors
(e.g., climate change) on species distribution (Engler et al.,
2011), or to predict the likelihood of establishment of invasive
species in new areas (Mateo et al., 2015; Srivastava et al., 2019).
SDMs represent powerful tools to manage and conserve species
and their habitats and have already proved useful to inform
measures and actions at regional and national scales (Jetz et al.,
2012; Guisan et al., 2013; Knaus et al., 2018; Zurell et al.,
2022). Climate change has strong implications for biodiversity
with reported effects on species distributional ranges through
poleward/altitudinal shifts (Tingley et al., 2012, 2009; Clement
et al., 2016; Lenoir et al., 2020), but also on phenological events
through the creation of mismatches between species and their
necessary resources (Descombes et al., 2016; Iler et al., 2021).
Additionally, climate change can interact with other threats
(e.g., land use) to reinforce the pressure experienced by species
in some locations (He et al., 2019; Vincent et al., 2019; Román-
Palacios and Wiens, 2020). The current availability of different
scenarios of future climate conditions makes it possible to
predict how climate change could impact species distributions
(Maggini et al., 2011). This knowledge can then be used to
foster the development and application of measures to mitigate
local extinction risk (Sinclair et al., 2010; Guisan et al., 2013)
or to limit the propagation or the settlement of invasive species
(Mateo et al., 2015; Srivastava et al., 2019).

Despite their increasing use and application for informing
stakeholders and managers (Guisan et al., 2013; Tulloch
et al., 2016; Sofaer et al., 2019), SDMs present several issues
that may impact predictions (Thibaud et al., 2014; Warren
et al., 2021), with potentially important consequences such
as improper applications of conservation measures (Araújo
et al., 2019; Santini et al., 2021). These issues could be
related to different methodological and conceptual aspects
including the accuracy/bias of the data (Bean et al., 2012;

Tessarolo et al., 2014), the creation and use of pseudo-absences
(Mateo et al., 2010; Barbet-Massin et al., 2012), or the extent
and resolution of the data used for calibrating SDMs (Guisan
et al., 2007; Barve et al., 2011; Suárez-Seoane et al., 2014; Niamir
et al., 2016; Scherrer et al., 2021). Nowadays, many of these
potential problems have been resolved and different roadmaps
are available (Guisan et al., 2017; Araújo et al., 2019; Zurell
et al., 2020). However, a crucial aspect remains unresolved: the
fact that still many future climate change predictions are biased
because they are based on regional SDMs only capturing a subset
of species’ ecological niches (i.e., niche truncation; Thuiller et al.,
2004; Petitpierre et al., 2016; Mateo et al., 2019a; Chevalier et al.,
2021; Scherrer et al., 2021; Moran et al., 2022).

Niche truncation is common in ecological modeling
exercises (Chevalier et al., 2021; Scherrer et al., 2021). For
instance, as management is usually performed at regional
or local scales, SDMs studies often rely on regional/national
datasets collected by administrations or NGOs whose range of
action is defined by restricted geographical or political borders
(i.e., country or even provinces’ administrations). This implies
that the entire niche of the species is usually not considered (i.e.,
the niche is truncated), and thus, that the model underestimates
the environmental conditions that the species can withstand.
This is not a problem if predictions are made in conditions that
are similar to the ones used for model calibration (Webber et al.,
2011; Chevalier et al., 2021). However, when this is not the case,
misestimated response curves and inaccurate projections of
species distributions can result in time (Thuiller et al., 2004) and
space (Sánchez-Fernández et al., 2011), owing to extrapolation
to conditions not used to fit the model. Currently, the fact
that many SDM’s forecasts are based on spatially truncated
datasets implies that the predicted effect of climate change
on biodiversity may be inaccurate, precluding their use for
management actions (Guisan et al., 2013; Santini et al., 2021).

Trying to cope with this issue comes with more
considerations. The availability of global biodiversity
information (e.g., from GBIF) has exploded over the last two
decades, through the digitization of museum and herbarium
specimens, initiatives of NGOs and administrations, and the
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development of citizen science (Anderson et al., 2016; Araújo
et al., 2019; Heberling et al., 2021). However, these data usually
come at a coarse resolution (e.g., IUCN range maps, atlases;
Hurlbert and Jetz, 2007; Rocchini et al., 2011), can present
spatial sampling bias (e.g., GBIF; Beck et al., 2014), and are
not free of species identification errors which can lead to false
absences/presences (Chevalier et al., 2021). Regional and local
databases usually tend to present these issues to a lesser extent
if the sampling strategy is adequate (Hirzel and Guisan, 2002;
Knaus et al., 2018). However, they present the disadvantage that
only a subset of the ecological conditions (ecological niche)
experienced by species across their range is considered (i.e.,
niche truncation; Thuiller et al., 2004; Petitpierre et al., 2016;
Mateo et al., 2019a; Chevalier et al., 2021). Modelers therefore
face a trade-off: (1) either considering the full species niche
to predict species distribution but only at a coarse resolution
and with the potential that predictions are affected by various
data issues, or (2) consider a subset of the species niche to
derive fine-grain predictions but with extrapolation issues and
potentially inaccurate forecasts.

Recently developed data integration methods, such as
hierarchical niche models (HNMs; Mateo et al., 2019a,b), can
be used to circumvent the problems associated with the sole use
of these two datasets by harnessing the information contained in
both through different options (see Mateo et al., 2019a), notably
the joint likelihood approach (Dorazio, 2014; Koshkina et al.,
2017; Pacifici et al., 2017; Miller et al., 2019). Data integration
can thus be used to model both precise but environmentally
truncated data (fine-grain regional data) together with coarse
data that cover the full extent of species ranges (coarse-
grain global data; Miller et al., 2019; Isaac et al., 2020). This
philosophy is in line with some recent claims stating that the
ideal hierarchical modeling framework should apply the concept
of “hierarchical filters” in community ecology (de Bello et al.,
2013; Hattab et al., 2014), and should incorporate the different
scale dependent drivers of species distributions (Mateo et al.,
2019a). The spatial distribution patterns of species are driven
by different aspects at different scales (McGill, 2010) and thus,
the spatial (ecological) scale is an important aspect to consider
in order to properly categorize the ecological niche of species
during SDMs calibration (Thuiller et al., 2004; Guisan et al.,
2017). Therefore, SDMs calibrated at multiple scales should be
able to better account for diverse scale-dependent drivers of
species distributions (Vicente et al., 2014; Petitpierre et al., 2016;
Mateo et al., 2019a).

Different methodological options can be used to perform
data integration. Here, we will focus on two methods: the
first one is a form of data-pooling that fits a similar model
(e.g., generalized linear model (GLM) with quadratic effects)
for each of the two datasets, whereas the second method
implements a downscaling approach for the coarse-grain dataset
where predictions are downscaled to the resolution of the
regional dataset by making use of fine-grain environmental
information (Keil et al., 2014). Both methods rely on a

joint-likelihood approach, where some predictors (climate)
and their associated coefficients are common between the
two models, implying that their estimate is influenced by
both datasets. While in the first method the two datasets
are merged without considering differences in extent or
resolution (a form of data-pooling though additional predictors
are included in the regional model), the second method
accounts for those differences between the two datasets
(Fletcher et al., 2019).

In this study, our overarching objective is to highlight
the importance of accounting for niche truncation in SDMs,
especially regarding climate change or other temporal forecasts,
and emphasize the potential of data integration methods to
deal with this problem. We hypothesized that niche truncation
would lead to differences in the extent of range changes
predicted regarding the effect of climate change on species
distribution. For this purpose, we used various measures to
compare inferences obtained from a traditional SDM fitted on
a regional dataset (Switzerland) to those obtained from data
integration methods that combine the information contained
in two datasets (Switzerland and European) for 79 bird
species breeding in Switzerland. We expect differences between
models to be related to some properties of the species and
datasets, particularly, the extent to which the climatic conditions
experienced by the species within the regional dataset covers
the ones in the European dataset (i.e., how much the species
niche is truncated).

Materials and methods

Datasets

Species data
Two bird datasets were considered: a regional (Switzerland)

fine-grain (1 km2) atlas and a large (European) coarse-grain
(50 km2) atlas.

The regional dataset was originally produced for the Swiss
breeding bird atlas (Knaus et al., 2018). The aim of the atlas
project was to provide a unique overview of the distribution
and current state of population of birds breeding in Switzerland.
During the period 2013–2016, 2,318 randomly distributed 1
km2 sample quadrats were surveyed on 3 occasions (2 when
the quadrats were above the treeline) during a single breeding
season using the method of territory mapping (Bibby et al.,
2020). The number of territories were counted for each species
and then aggregated to presence-absence data for each quadrat.
Altogether more than 1,000 volunteers were involved in this
part of the atlas.

The larger-scale dataset consisted of the European Breeding
Bird Atlas (EBBA2; Keller et al., 20201) project that was

1 https://ebba2.info
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carried out by the EBCC (European Bird Census Council) over
the whole of Europe. In total, around 120,000 fieldworkers
contributed data to the atlas, the great majority of them on
a voluntary basis, making EBBA2 one of the biggest citizen
science projects on biodiversity ever. The main time frame for
EBBA2 fieldwork was the period 2013–2017. Presence-absence
data come in the form of a grid of 50 km resolution. The variety
of methods used to collect the data required common standards
and validations at the European level for a proper integration of
the data. A detailed explanation can be found in the atlas itself
and in Herrando et al. (2014).

To ensure robust parameter estimation at the two scales,
only species with at least 5% occurrence in the two datasets were
used for model fitting (i.e., 89 species).

Environmental data
We extracted environmental information for 19 bioclimatic

variables (denoted Bio01 to Bio19) from CHELSA (Karger et al.,
2017) at a 1-km resolution. To obtain coarse-environmental
information, we upscaled the fine-grain information to the
desired resolution (50 km2) by computing the average over
all fine-grain cells contained within a coarse-grid cell. Future
predictions for these 19 variables consisted of downscaled
CMIP5 climatologies for 2,050 under the emission scenario
RCP4.5 and the model ACCESS1-0. Because Switzerland is
mainly composed of rugged landscapes (mountains), three
additional covariates were considered to model fine-grain
data: the topographic position index (Topo; describing the
position of sites in a gradient from ridge to hollow),
the slope (Slp), and the potential amount of annual solar
radiation (Srad). These local scale variables are considered
stable in the future.

Models

Three models were considered. The first model (traditional
model) is a classical SDM based on a GLM calibrated on the
regional dataset only (YF

i
):

YF
i ∼ Bernoulli(ψF

i ) (1)

logit
(
ψF

i
)
= α+

22∑
z=1

βzXF
iz + γzXF2

iz (2)

whereψF
i ψ i denotes the suitability values in fine-grain (denoted

with the superscript F) cell i, α is the intercept representing
average suitability, XF

iz represents the value of covariate z in
fine-grain cell i (z includes the 19 bioclimatic variables plus
the three local scale and thus varies from 1 to 22), βz is
the slope coefficient associated with covariate z and γz the
associated quadratic coefficient. Note that we here use the term
“suitability value” instead of “occurrence probability” because

our models do not account for imperfect detection. Yet, since
we are not using abundance but presence/absence data, the
probability of completely missing a species in a 50 km square
(or even in the 1 km for the Swiss data) after several visits is
likely really low.

The two other models are making use of both datasets and
rely on data integration performed through a joint likelihood
approach to estimate model coefficients. In both models, fine-
grain occurrence data are modeled in the same way as in the
traditional model. They, however, differ regarding how coarse-
grain data are modeled (denoted with the superscript C; YC

j ).
For the second model (data pooling model), a GLM, similar to
the one used to model fine-grain data, is used to model coarse-
grain data but this time using coarse-environmental values
as predictors (XC

iz ). This GLM therefore includes the same
bioclimatic variables as in the fine-grain GLM but excludes the
three local scale variables (hence z varies from 1 to 19 for the
coarse-grain model):

YF
i ∼ Bernoulli(ψF

i ) (3)

logit
(
ψF

i
)
= α+

22∑
z=1

βzXF
iz + γzXF2

iz (4)

YC
j ∼ Bernoulli(ψC

j ) (5)

logit
(
ψC
j

)
= α+

19∑
z=1

βzXC
jz + γzXC2

iz (6)

where ψC
j denotes the suitability values in coarse grain cell j.

Since the coefficients are the same for the variables that are
common between the two scales, the information is shared
across the two models and coefficients are therefore influenced
by both datasets (i.e., joint likelihood approach).

For the third model (downscaling model; see Keil and Jetz,
2014), coarse-grain data are modeled through a downscaling
procedure where coarse-grain suitability values are downscaled
to fine-grain suitability values using fine-grain environmental
information:

YF
i ∼ Bernoulli(ψF

i ) (7)

logit
(
ψF

i
)
= α+

22∑
z=1

βzXF
iz + γzXF2

iz (8)

YC
j ∼ Bernoulli(ψC

j ) (9)

logit
(
ψC
j

)
= α+

19∑
z=1

βzXF
iz + γzXF2

iz (10)

ψC
j = 1−

∏
i∈Ij

(1− ψC
i ) (11)

where i ∈ Ij means that cell i lies within cell j and where
ψC

i represents the fine grain suitability values within the
coarse grain cell C.
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Parameter estimation

All models were fitted within a Bayesian framework using
MCMC sampling with the software JAGS (Plummer, 2003) and
the package R2jags (Su and Yajima, 2015). Three chains were
run for each analysis with a burn-in of 5,000 iterations and
an additional 55,000 iterations. Chains were thinned every 50
iterations, providing 1,000 samples for each chain. Because the
large number of covariates included in the models may result
in overfitting and collinearity issues, we used shrinkage priors
(a form of penalized regression technique) to guard against
overfitting and to select the most relevant variables to predict
species distributions (van Erp et al., 2019). Specifically, we used
an elastic net penalization (Zou and Hastie, 2005). The elastic
net can be seen as a combination of the ridge and lasso and its
prior is obtained with a scale mixture of normal distributions
(see Li and Liny, 2010 for details). This prior was applied to
all coefficients associated with predictors (i.e., the β ’s). For the
intercept, we used a normal distribution with a mean of zero
and a standard deviation of 3. Convergence was assessed using
the potential scale reduction factor with a threshold fixed to 1.1
(Gelman and Rubin, 1992). JAGS model codes are provided in
Supplementary Figure 1.

Validation

We evaluated model performance using the maximization
approach (Guisan et al., 2017) of the true skill statistic (TSS;
Allouche et al., 2006), max.TSS, where the threshold used
to binarize suitability values into presence and absence is
selected to maximize both the sensitivity (the proportion
of correctly predicted presences) and the specificity (the
proportion of correctly predicted absences). Only species with
a max.TSS above 0.4 were considered for model comparison
(i.e., 79 species).

Model comparison

Differences between models regarding evaluation metrics
and estimated range changes were assessed using Kruskal-Wallis
non-parametric analysis of variance.

We evaluated the contribution of each predictor on the
predicted suitability values. Variable importance was calculated
in the same way as in the Biomod2 R package (Thuiller et al.,
2009). Briefly, for a given predictor, the principle is to shuffle
the values of the predictor and then to make predictions with
this shuffled predictor. The variable importance is then assessed
by computing one minus the Pearson’s correlation between
reference predictions and shuffled predictions. The higher the
value, the more influence the variable has on the model whereas

a value of zero indicates no influence of the predictor on
model predictions.

To assess how and to what extent models differed regarding
their assessment of future changes in species distribution,
we predicted presences and absences for all 1-km pixels
over Switzerland using 100 random draws from a Bernoulli
distribution based on the suitability values predicted by the
model (median of the posterior distribution). These binarized
predictions were obtained under both current and future
environmental conditions. For each draw, we then computed
the relative difference between the two binarized maps as
follows:

Range.change =
Nfuture− Ncurrent

Ncurrent
× 100

where Ncurrent and Nfuture are the number of predicted presences
under current and future conditions, respectively. From the
100 predicted range changes, we extracted the average and the
associated standard deviation.

To assess differences regarding the assessment of how
species richness will evolve under climate change for each
model, we summed the suitability values predicted by the
models for each species over the study area. Summing suitability
values of individual SDM predictions usually gives better
estimates of species richness than stacked SDM based on
binarized predictions (Dubuis et al., 2011; Calabrese et al.,
2014). Predicted species richness were obtained both under
current and future conditions and the difference between the
two computed to reflect changes under climate change for
the three models.

Determinants of differences between
models

We considered different metrics to assess whether the
differences observed between models regarding the predicted
range changes can be explained by niche truncation. There is
currently no existing framework to quantify niche truncation in
ecological modeling resulting from the use of a geographically
restricted dataset. Hence, we employed various measures to
describe different aspects of niche truncation.

Niche overlap—we used the Schoener’s D coefficient
(Broennimann et al., 2012) to measure the overlap between
species ecological niches estimated from the regional
and the European datasets. This was achieved using the
function ecospat.niche.overlap in the ecospat R package
(Di Cola et al., 2017).

Geographic range cover—we measured the proportion of
the geographic species range captured by the regional dataset by
dividing the area covered by presences in the regional dataset by
the area covered by presences in the European dataset.

Frontiers in Ecology and Evolution 05 frontiersin.org

https://doi.org/10.3389/fevo.2022.944116
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-944116 July 29, 2022 Time: 15:45 # 6

Chevalier et al. 10.3389/fevo.2022.944116

Niche size difference—we measured the difference between
the sizes of ecological niches estimated from the two datasets.
Specifically, for each dataset, we estimated environmental niches
using a kernel density estimator (Blonder et al., 2014) applied
to species occurrences projected within a two-dimensional
space obtained from a principal component analysis
performed on the 19 bioclimatic variables characterizing
environmental conditions in the two datasets (note that
niche overlap is also measured within this two-dimensional
space). The area of each kernel was then used as an estimate
of niche size.

Average difference in climatic coverage—we estimated
the difference regarding the range of climatic conditions
occupied by species between the two datasets, considering
separately the two ends of the climatic gradient (i.e., differences
regarding minimum and maximum values). Specifically, for
each bioclimatic variable, we computed the minimum and
maximum values across species occurrences for each dataset.
We then computed the difference between the two minimums
and the two maximums and averaged differences (in absolute
values) across all variables. We also computed a global measure
of differences by summing the two values. Overall, these three
measures (global, minimum, and maximum) indicate how
far (or more specifically “how nested within” given that we
expect the regional dataset to be nested within the European
dataset) the range of conditions occupied by species in the
regional dataset is from the one occupied by the species in the
European dataset.

Degree of extrapolation—we conducted a multivariate
environmental similarity surface (MESS) analysis (Elith et al.,
2010) to measure the similarity in the analyzed variables
between the projection dataset (future environmental
conditions in Switzerland) and the reference (calibration)
dataset. For the traditional model, the calibration dataset is
the regional dataset whereas for data integration models, the
calibration dataset is a combination of both the regional and
European datasets. This analysis returns a value for all localities
(i.e., pixels) in the projection dataset with negative values
indicating localities that are environmentally dissimilar (i.e.,
extrapolation) from the calibration dataset. We conducted
this analysis separately for each calibration dataset using the
ecospat.mess function from the ecospat R package (Di Cola
et al., 2017). From this analysis, we extracted the sum of
negative values corrected by the total number of predictors
(i.e., the MESSw metric). From these values, we computed
four different statistics. First, we computed the Spearman
correlation between the future suitability values predicted
by each model and the MESSw obtained from the regional
dataset. Second, for each calibration dataset, we averaged
MESSw in three ways: considering all pixels, considering only
presence pixels and considering only absence pixels. From these
averages, we computed the absolute difference between the two
calibration datasets.

Difference in dataset’s global properties—besides niche
truncation, the performance of SDMs can be affected by various
properties of the data (Jiménez-Valverde et al., 2009). To
investigate this, we extracted from each dataset the number
of presences and absences along with the relative proportion
of presences relative to absences (i.e., the prevalence). For
each metric, we then computed the difference between
the two datasets.

For all of the above-mentioned metrics (except the
correlation between predicted future suitability and MESSw;
see below), we expected larger differences between datasets to
entail larger differences in model projection, except for the
measure of niche overlap and for the proportion of geographic
range covered where negative relationships are expected (a low
overlap and a low proportion of geographic cover are assumed
to entail a larger niche truncation). Differences between models
were computed for each species as the absolute difference in
average predictive range changes (similar results were obtained
when considering the difference in suitability changes; see
Supplementary Figures 5, 6). We tested the effect of each metric
on model differences using Spearman correlations. Regarding
the correlation between future suitability values and MESSw,
we expect the correlation to be higher for models whose
predictions are affected by extrapolation issues, as expected
for the traditional model. We tested this effect between each
model using Wilcoxon-paired tests. Owing to multiple testing,
significance was assessed at an alpha level set to 0.01. Effects
with p-values comprised between 0.01 and 0.05 were considered
marginally significant.

Results

Model performance

Both traditional and data-integration methods showed
good predictive performance according to the three metrics
considered (max.TSS, max.Sensitivity and max.Specificity) and
presented very similar results (Figure 1), showing no significant
differences (Kruskall-Wallis; p > 0.05 in all cases). This
suggests that (1) niche truncation is not a problem as long
as predictions are made on the calibration area with current
climatic conditions and (2) that we cannot rely only on
validation metrics to distinguish if a particular model is better
than another one to extrapolate to other climatic conditions, as,
regarding the input data, they all perform similarly.

Variable contribution and response
curves

The two models accounting for niche truncation presented
similar variable importance but gave different results than the
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FIGURE 1

Boxplots representing the distribution of values obtained for max.TSS, max.Sensitivity, and max.Specificity for all bird species (those with a
max.TSS > 0.4) and each of the considered models: traditional, data-pooling and downscaling. For each metric the Kruskall-Wallis statistic and
its associated p-value are shown, with “*” marking significant differences between models.

FIGURE 2

Barplot representing the estimated variable importance under the different models. The height of each bar represents the average importance
across species while the vertical black bar represents the associated standard error.

traditional model (Figure 2 and Supplementary Figure 2).
Specifically, the mean temperature of the warmest quarter
(Bio10) appears clearly as the most important variable associated
with bird distribution for the two data integration methods,

whereas for the traditional model the contribution of this
variable appears reduced and with values similar to those of
Bio01 (the annual mean temperature) and Bio05 (the maximum
temperature of the warmest month). Similarly, while the
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response curves representing species-environment relationships
for the two data integration methods are almost identical,
their shape was remarkably different for the traditional model,
particularly regarding the variables that contributed little to
the predictions obtained under data-integration methods (e.g.,
Bio02-Bio04; Supplementary Figure 3).

Predicted range changes

The traditional model predicted significantly higher
variations in range change (Kruskall-Wallis; p < 0.01 in both
cases, Figure 3) than the two data-integration models, mostly
inflating the effects of climate change on habitat suitability,
either positively or negatively (Supplementary Table 1). Very
similar results were obtained between the two data integration
methods (Figure 3 and Supplementary Table 1). Overall, 42
species were predicted to have a range decrease under the
traditional model with a percentage change equaling −67%
on average (SD = 31) whereas 27 species were predicted to

have a range increase (mean percentage change = +188%;
SD = 223). In contrast, both data integration methods predicted
that 34 species would decrease in range (mean percentage
change = −1%; SD = 65) whereas 36 were predicted to have a
range increase (mean percentage change = 15%; SD = 56).

Spatial pattern in species richness

Under present environmental conditions all models
predicted similar species richness (Figure 4), though with
some differences with e.g., a tendency for the traditional model
to predict lower species richness in the lowlands but higher
species richness in the mountains relative to data integration
methods (Supplementary Figure 4). In line with results
obtained for each species, data integration methods predicted
much lower changes in species richness in the future than the
traditional model, with an estimated change in species richness
ranging from −8 to +15 for the former and from −15 to
+16 for the latter.

FIGURE 3

Boxplots representing the distribution of the predicted range changes (average over the 100 draws from the Bernouilli distribution) under
climate change for all bird species under the three models (traditional, data-pooling, downscaling). To better reflect differences between
models, we considered separately losses (negative values) and gains (positive values). For each group the Kruskall-Wallis statistic and its
associated p-value are shown, with “∗” marking significant differences between models. Below each box we also show the number of species
(sample size) predicted to reduce (negative) or increase (positive) their range.
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FIGURE 4

Spatial representation of species richness predicted under current and future environmental conditions for all 1-km pixels over Switzerland
along with the difference between them for the three considered models. Species richness was computed by summing the predicted suitability
values for all bird species.

Determinants of differences between
models

Because the predictions obtained from the two data
integration methods were highly similar, the results presented
below are the same whether differences were computed between
the traditional and the data-pooling model or between the
traditional and the downscaling model.

Differences between models regarding average predicted
range changes were not related to the degree of niche overlap
(rho = −0.10; p > 0.34) or the difference in niche size
(rho = 0.04; p = 0.69). Similarly, we found no effect of the
difference in the range of conditions occupied by species
between the two datasets either globally (rho = 0.07; p = 0.50)
or regarding minimum (rho = 0.06; p = 0.87) and maximum
(rho = 0.07; p = 0.61) environmental values. Differences between
the number of presences (rho = 0.18; p = 0.09) and absences
(rho = −0.01; p = 0.93) also had no effects on the difference
between models. In contrast, the degree of global extrapolation
showed a marginal significant and positive effect on model
differences (rho = 0.25; p = 0.02). This positive effect turned
negative (still marginally significant) when MESSw values were
averaged over absences (rho = −0.23; p = 0.03), whereas no
effect was detected when averaging over presences (rho = 0.18;
p = 0.09). We further found a negative effect of the proportion
of the species range covered by the regional dataset relative to
the European dataset (rho = −0.38; p < 0.01) together with a
positive effect of the difference in species prevalence (rho = 0.38;
p < 0.01). Finally, we found a tendency (Wilcoxon-paired
test: W = 3659.5; p = 0.06) for future suitability values to be

more strongly correlated with MESSw (average rho = 0.51)
for the traditional model than for data integration models
(average rho = 0.4).

These effects slightly differed depending on whether the
difference between models was negative (more pessimistic
predictions of the traditional model) or positive (more
optimistic predictions of the traditional model). Indeed, while
the degree of global extrapolation (rho = 0.35; p = 0.04), the
difference in species prevalence (rho = 0.46; p < 0.01) and the
proportion of geographic range covered (rho =−0.44; p< 0.01)
also had an effect when differences were positive, these effects
were reduced and at best marginally significant when differences
were negative [rho = (0.10, 0.27,−0.28); p = (0.48, 0.06, 0.04)].

Discussion

Owing to their popularity, SDMs are experiencing
continuous and relentless analyses and review, exploring
their shortfalls and developing new methodologies intended
to improve their performance and usefulness (Moudrý and
Šímová, 2012; Araújo et al., 2019; Zurell et al., 2020). There is
an urgent need to produce robust and accurate predictions,
especially given that these models are increasingly intended
to be used to support specific decision-making processes for
conservation and management of species and their habitats
(Guisan et al., 2013; Guillera-Arroita et al., 2015). This study
highlights the importance of considering the entire climatic
niche of a species when predicting in conditions that belong to
the species niche but that are not found in the calibration area
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(i.e., accounting for niche truncation caused by a too restricted
geographic extent).

Due to uncertainty associated with future climate scenarios
(Shiogama et al., 2016), we cannot determine which model
provides the best forecasts. Yet, some factors such as the use
of an inappropriate resolution have been shown to increase the
uncertainty in future climate projections (Tang et al., 2018).
Here, for the first time, we show that the traditional approach
that consists in calibrating SDMs using a regional model based
on an environmentally truncated dataset (fine-grain regional
dataset) gives markedly different predictions relative to data
integration methods that integrate other sources of information
from larger scales (coarse-grain global dataset) to better
characterize the entire species’ realized niche. Importantly,
these differences occurred despite similar model performance,
suggesting that we cannot rely only on validation metrics to
distinguish if a model provides different and potentially better
forecasts than another one. In the context of future changes, the
truth is unknown, making it difficult to prove that one method
(data integration) provides better predictions than another
one (traditional SDM fitted on regional data). Hindcasting or
simulation-based studies can be used for this purpose. For
instance, Chevalier et al. (2021) used simulations to demonstrate
the superiority of data integration methods over the traditional
approach when extrapolating to novel climatic conditions in
both space and or time. At the minimum, the results presented
here indicate that niche truncation has important effects when
predicting the extent to which species distributions would
change under climate change, which can potentially lead to
inappropriate recommendations for managers and stakeholders
(Guisan et al., 2013). Yet, while we cannot determine which
model provides the best forecasts, the magnitude of the changes
obtained with the traditional model is rather extreme with
regards to the climatic scenario considered (RCP 4.5). For
instance, under the traditional model, 20 species are predicted
to lose more than 90% of their range whereas the maximum
predicted decline under data integration models was 83%.
Similarly, 14 species are predicted to increase their range
by more than 100% (with a maximum increase of 731%)
for the traditional model compared to only four for data
integration models (with a maximum increase of 360%). These
extreme values suggest that, at least for some species, caution
is advised when predicting using a model fitted on a spatially
truncated dataset.

Our results indicate that the differences existing between
the traditional model and data integration models depend on
various factors describing differences between regional and
global data. Yet, most of the factors supposed to describe niche
truncation (e.g., niche overlap, niche differences, difference
in the range of climatic conditions) did not explain model
differences. Presumably, this absence of effect could either relate
to the fact that these metrics were not appropriate to catch these
model differences, or that niche truncation is not necessarily a
problem if a large proportion of the conditions in the projection

dataset do not belong to those parts of the niche that have not
been considered for model fitting (i.e., that do not belong to the
truncated part of the niche). Indeed, if the model omits the very
cold conditions of the species niche, this may not be a problem
given that temperatures are predicted to increase in the future.
The fact that we found an effect of the degree of extrapolation
on model differences tends to support this hypothesis and
indicates that predictions obtained from data integration models
are less affected by extrapolation. The predictor that had the
most effect on model differences was the difference in species
prevalence between the two datasets. Specifically, the positive
effect recorded indicates larger differences between models
when the prevalence is low in the regional dataset but high in
the global dataset. This suggests that caution is advised when
the species is rare in the regional dataset but common in other
places. Such situations can occur for several reasons including
spatial variation in sampling efficiency or if the regional dataset
only captures the margins of the species geographical range
or of the species environmental space. Interestingly, the effect
of extrapolation and species prevalence on model differences
appeared stronger when the traditional model predicted larger
range increase compared to data integration models suggesting
that the large increase reported for 14 species under the
traditional model is questionable. While we detected a separate
effect of several factors on model differences, it should be
noted that these factors can possibly interact to reinforce
differences between models. For instance, for species with
large niche truncation and also showing a high degree of
extrapolation, larger differences between models is expected
with predictions from the traditional model likely inflated
relative to data integration models. Overall, combined with the
simulation study of Chevalier et al. (2021), our findings suggest
that it is particularly urgent to consider the niche truncation
issue in all climate change forecasts and related applications,
especially when results are then incorporated in regional or
global biodiversity assessments such as those by IPCC and
IPBES (Araújo et al., 2019).

Currently, many predictions derived from SDM-based
studies are likely to suffer from the niche truncation problem
owing to the large tendency to only consider a subset of species
ranges for model calibration (Scherrer et al., 2021). While
this niche truncation problem had been raised for quite some
time (Thuiller et al., 2004; Barbet-Massin et al., 2010; Mateo
et al., 2019b), few studies attempted to deal with the problem
and when they did, the approach considered was likely of
limited value. For instance, some studies used data pooling
to better reflect the species’ realized niche (Broennimann and
Guisan, 2008; Nogués-Bravo et al., 2016), but data sources
often presented various sampling designs, types of bias, and
response variables with different attributes (e.g., spatial extent,
resolution), such that it is unclear to which extent integrating
these data helped improve predictions (Fletcher et al., 2019).
It is only recently that methodological developments, notably
data integration methods and the associated joint likelihood
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approaches (Fletcher et al., 2019; Miller et al., 2019; Isaac
et al., 2020), provided a glimpse toward a resolution of
the problem. This hierarchical niche approach (Mateo et al.,
2019a,b) is particularly interesting because it can account for
variation in spatial coverage and resolution and can allow
for different predictors to be included for each data source
(Miller et al., 2019).

Our results confirm that not accounting for niche truncation
has large effects on model inference (see also Koshkina et al.,
2017; Pacifici et al., 2017). Beyond differences regarding model
forecasts, models differed regarding the most important variable
driving species distributions, but also regarding how species
respond along the different environmental gradients (Willis
and Whittaker, 2002). These could have strong implications
in conservation ecology given that inaccurate predictions
and the mis-identification of the main drivers may imply
spending resources into inefficient but costly restoration plans
or missing populations of conservation concern (Guisan et al.,
2013). Our study demonstrates that considering additional
sources of information that cover a larger spatial extent (e.g.,
European scale), even if they come at a coarser resolution
(e.g., 50 km2), leads to more nuanced changes, dampening the
effect that climate change might have on species distributions
reflecting the fact that many modeled species can indeed tolerate
environmental conditions outside the area used to calibrate
the models (Scherrer et al., 2021). This occurred regardless
of the data integration method used to harness information
from the two datasets. Thanks to the development of remote
sensing techniques providing climatic data at high resolutions
(Zellweger et al., 2019), along with the increasing availability of
species range maps, atlases, and other citizen science data (Isaac
et al., 2020), data integration and HNMs appear as promising
tools to improve our ability to anticipate future changes and
set-up pro-active management strategies. Nevertheless, it is
important to note that species distribution can also be driven
by non-climatic or biotic factors, and that their response to these
factors may change over space and time, especially for migratory
species such as birds (Fink et al., 2010).

Beyond their ability to harness information from different
datasets that can potentially improve predictions (Koshkina
et al., 2017), HNMs are flexible tools that can be used to
model scale-dependent effects on species distributions (Pearson
et al., 2004; Kéry and Royle, 2015; Fletcher et al., 2019). For
instance, here, we used the European sub-model to improve the
characterization of the species’ realized niche while accounting
for the climatic and ecological drivers that are relevant at a
regional scale with the Swiss sub-model. This likely resulted
in a better description of the species’ realized niche than what
would have been obtained from models fitted separately on
each dataset (see also Koshkina et al., 2017). Furthermore, the
regional sub-model accounted for the effect of landscape and
topographic features that can have important regional effects
(Randin et al., 2009). Using this approach resulted in less

severe predicted effects of climate change on most bird species,
presumably because the future climatic conditions predicted
to occur in Switzerland were already found in other areas
where species are currently breeding. For example, according
to the traditional model the Eurasian wryneck (Jynx torquilla)
is predicted to lose all good habitats in the country under
future climatic conditions (Supplementary Table 1). Yet, this
species currently inhabits warm areas from the Iberian to the
Scandinavian Peninsula, covering most of Europe. Accordingly,
and contrary to the traditional model, both data integration
models predict a vast increase in the species range, likely because
these models were able to identify that this species can sustain
warmer climatic conditions.

Conclusion

Many SDM-based forecasts are likely affected by the niche
truncation problem (Thuiller et al., 2004; Barbet-Massin et al.,
2010). Using a large dataset on birds, we found that inferences
based on a truncated overview of species’ realized niches usually
inflates the predicted effect climate change can have on species
ranges. Given the multiplicity of studies reporting common
responses to climate change with e.g., poleward/altitudinal
distribution shifts, it is clear that species distributions are
affected by climate change. Yet, this study suggests that
the magnitude of the reported responses could have been
overestimated. In line with previous findings (e.g., Fletcher
et al., 2019; Mateo et al., 2019a; Chevalier et al., 2021), our
results suggest that data integration methods could be used to
circumvent the problem of niche truncation. Combined with
the increasing availability of large-scale datasets, these methods
should be more routinely considered in SDM-based studies if we
are to provide stakeholders and managers accurate predictions
to mitigate the effect of future environmental changes on
species (Araújo et al., 2019), or to prevent species invasion risks
(Petitpierre et al., 2016).
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