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Planktonic Foraminifera are ubiquitous marine protozoa inhabiting the upper ocean.
During life, they secrete calcareous shells, which accumulate in marine sediments,
providing a geological record of past spatial and temporal changes in their community
structure. As a result, they provide the opportunity to analyze both current and historical
patterns of species distribution and community turnover in this plankton group on a global
scale. The FORCIS project aims to unlock this potential by synthesizing a comprehensive
global database of abundance and diversity observations of living planktonic Foraminifera
in the upper ocean over more than 100 years starting from 1910. The database will allow
for unravelling the impact of multiple global-change stressors acting on planktonic
Foraminifera in historical times, using an approach that combines statistical analysis of
temporal diversity changes in response to environmental changes with numerical
modeling of species response based on their ecological traits.
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INTRODUCTION

Planktonic organisms are subject to a multitude of stressors
including anthropogenic effects. Over the last decades, those
changes have affected sizably both their biodiversity and
distribution at the community level (Poloczanska et al., 2013;
Jonkers et al., 2019), but also altered individual biological
processes, such as phenology (Ji et al. , 2010), and
biomineralization (Maas et al., 2018). Concurrent with ongoing
global warming, anthropogenic fossil fuel combustion has
globally raised the atmospheric CO2 concentration to levels
similar to the Pliocene (> 3 million years ago), causing
historically unprecedented decrease in pH in the upper ocean
(de la Vega et al., 2020). Moreover, the rise of the sea surface
temperature (SST) is intensifying ocean thermal stratification
and decreasing the nutrient supply from the deeper water
column to fertilize the upper ocean (Houghton et al., 2001;
Boyd et al., 2019) (Figure 1).

The impacts of anthropogenic stressors on the current
distribution and biodiversity of planktonic organisms are
poorly understood. A better knowledge of the role of multiple
stressors on the dynamics of planktonic communities today
should help to assess future shifts of the marine ecosystem in
response to projected further changes of the global marine
environment (Hastings et al., 2020). In this context, it is
especially important to understand the effect of the multiple,
Frontiers in Marine Science | www.frontiersin.org 2
simultaneous global change stressors. For example, the effect of
global change on pelagic calcification is hard to predict, because
some of the involved stressors act antagonistically: higher
temperatures are expected to increase metabolic rates and
make calcification energetically less costly, but acidification
of surface waters will likely reduce calcification by lowering
calcite saturation state (Schiebel and Hemleben, 2017). To
understand the effects of global change stressors on marine
plankton during historical times requires extensive in-situ
observations on a global scale. Understanding these effects is
only possible by synthesizing historical datasets of plankton
community composition and combining these with records of
environmental change/parameters.

Global scale inventories of marine biodiversity based on
synoptic genomics and novel in-situ imaging techniques are
powerful emergent tools to recover the full spectrum of
biodiversity (Lombard et al., 2019). Recent studies on these
approaches revealed new challenges for the understanding of
the planktonic biodiversity, such as the role of symbiosis in
shaping biodiversity patterns (Foster and Zehr, 2019), as well as
the importance and limits of the cryptic diversity, and the
processes that control its latitudinal gradients (Schiebel et al.,
2018). Yet, to capture the processes controlling the pattern and
the evolution of biodiversity, a long-term perspective is essential.
Only long time-series may reveal the processes, which control
the adaptation and acclimation of species to the changing
FIGURE 1 | The FORCIS project compiles planktonic Foraminifera census data, analyzes the trends and their links to environmental changes, from historical and
future changes in environmental parameters such as pH [top panel, scenario SRES 8.5 & 2.5 – (IPCC, 2019)], and uses those constraints to calibrate models that will
be further used for simulations of their past and future distribution patterns.
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environment. Unfortunately, the genomics era spans less than
two decades and access to longer time series will require analyses
of observational data with classical taxonomic resolution.

Time-series of abiotic parameters like temperature have been
reconstructed over the full instrumental period (i.e., post 1850s),
using a combination of modeled and observational data. Using
these approaches, it has been demonstrated that the global ocean
has warmed by ~1°C over the last century, much of it in response
to anthropogenic CO2 release, and concurrent with surface ocean
pH decline by about 0.1 unit, i.e., 30%, on average (IPCC, 2019)
(Figure 1). Along with the measurements of physical parameters
that were used to document environmental changes of the last
century, researchers have been sampling and describing the
plankton, amassing a unique archive of coeval changes in the
plankton community, yet to be exploited. Moreover, historical
time-series of the marine biota are spatially scarce and often
limited to coastal marine stations affected by a wide range of
varying environmental forcing, and/or are limited to the North
Atlantic Ocean. No observational open ocean plankton data is
available for the preindustrial era, and the sediment record only
resolves the pre-industrial evolution of biodiversity in the marine
realm, and seldomly for the industrial period (Field et al., 2006).
PLANKTONIC FORAMINIFERA:
OCEAN TRACERS

Among the marine plankton, Foraminifera constitute an ideal tool
for documenting those changes, as they have been sampled and
counted at the species level since the early 20th century. The
taxonomy of planktonic Foraminifera, based on the
morphological features of their tests, has been generally stable
over the last century, and genetic analyses have confirmed the
robustness of the taxonomical framework (Morard et al., 2015). As
one of the main oceanic biomineralizing taxa, planktonic
Foraminifera secrete an estimated 32 to 80% of the CaCO3 fluxes
to the sediments (Schiebel, 2002). Paradoxically, the spatial patterns
of species distribution are better known from sedimentary
assemblages than from living populations in surface waters, and
the interpretation of the fossil record is impeded by a lack of
knowledge of the modern population dynamics. Conversely,
inferences based solely on the sediment record are overly
simplistic as it only provides a mixed account of the long-term
evolutionary processes in response to environmental and biological
interplays (including archiving overprints).

As planktonic Foraminifera are the most important widespread
heterotrophic carbonate producers in the open ocean (Schiebel,
2002), a better knowledge of planktonic Foraminifera ecology is
critical for three main reasons: (1) They contribute to the global
carbon cycle directly by exporting carbonate to the sea floor.
(2) Planktonic Foraminifera constitute one of the best paleo-
environmental indicators through their wide spatial and vertical
distribution in the global ocean and excellent preservation in deep-
sea sediments for over 150 million years. They encode a rich
record of ambient environmental conditions during shell
Frontiers in Marine Science | www.frontiersin.org 3
formation, providing a key tool for paleoceanographic
reconstructions and a time-window on past climate change.
Both geochemical (isotopic and trace metal) analyses of their
calcareous shells and statistical relations between foraminiferal
assemblages and the physical state and/or chemical composition of
ambient seawater are used to reconstruct paleoceanographic
conditions (CLIMAP members, 1976; de Garidel-Thoron et al.,
2005; Kucera et al., 2005). This approach is straightforward over
the last millions of years, when all modern species existed, and
becomes challenging in the more distant past, prior to evolution of
some modern species such as Globorotalia truncatulinoides in the
Atlantic Ocean around 2.2 Ma (Spencer-Cervato and Thierstein,
1997). Those reconstructions are used to evaluate climate models
dedicated to project future climates. However, lingering
uncertainties on the ecology of planktonic Foraminifera make
climate model benchmarking using those proxies non trivial. For
example, changes in the seasonal and/or vertical abundance affect
the climate signal contained in the geochemical composition
recorded in Foraminifera shells (Jonkers and Kučera, 2019).
(3) Finally, planktonic Foraminifera deposits on the sea floor
constitute one of the best records of global biodiversity
(Rutherford et al., 1999), which is largely used to interpret
evolutionary processes leading to the latitudinal gradient in
marine biodiversity. Improving our knowledge of the ecology of
planktonic Foraminifera is hence one of the major challenges, and
great opportunities of the project presented here.

Planktonic Foraminifera are unique in the surface ocean
ecosystem, acting more as ubiquitous tracers rather than
forcers, presenting a one-of-a-kind tell-tale opportunity from
an organism perspective. By this distinction, planktonic
Foraminifera are of low enough abundance that they cause
little overall effects on other organisms. Instead, they are
relatively passive in a community or ecosystem sense, which
actually serves as a unique advantage to trace biodiversity and
other measures of surface ocean ecosystem health.
AIMS AND COMMUNITY BENEFITS
OF FORCIS

Planktonic Foraminifera ecology is still understudied in the
modern ocean because of (1) low abundance in the water
column, (2) limitations in laboratory culture studies (high
mortality rates and lack of second generation), (3) the lack of
training of planktologists on the classification and diversity of
this group, (4) the intermediate size of Foraminifera in the 63-
500 µm range between nannoplankton and mesozooplankton
groups studied by planktologists, and (5) the historical focus on
geological applications in planktonic Foraminifera studies.
Altogether, this created a gap of understanding between the
marine biologists studying the modern plankton community,
micropaleontologists working on fossil assemblages, and
paleoceanographers analyzing the biogeochemical signature of
fossil tests (Jonkers et al., 2021). However, despite the difficulties
in studying living Foraminifera in experimental settings, the
richness of species-level census data from the plankton
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https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


de Garidel-Thoron et al. Modern Planktonic Foraminifera Census
available in the literature, mostly assembled by geologists,
yields an opportunity to investigate the spatial and temporal
trends of planktonic Foraminifera biodiversity in a coherent
ecological framework.

The FORCIS project aims to quantify the planktonic
Foraminifera response to Climatic Stress by compiling and
analyzing existing data on diversity and species distribution of
these organisms in the global ocean that were generated since
1910. In doing so, we aim to bridge the gap between the biology,
ecology and geology scientific fields and advance the knowledge
base, for the benefit of a more general understanding on the
response of calcifying plankton to global change stressors
(Figures 1, 2).
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Understanding the modern and predicting the future
planktonic Foraminifera response to global environmental
change will be achieved by building a global census of
planktonic Foraminifera abundances in historical plankton
samples (Figure 1). Our strategy towards the FORCIS database
has been to assemble data from publications, dissertations, cruise
reports, and repositories, often through digitizing older datasets.
In FORCIS, census data coming from four types of sampling
devices are included in the database: plankton tows, water pump
filters, continuous plankton recorder (CPR) (Johns, 2018; Hosie,
2020) and sediment traps (Figure 2), leading to the compilation
of more than 180,000 samples (i.e., one single plankton aliquot
collected within a depth range, time interval, size fraction, at a
A

B

C

FIGURE 2 | Temporal and spatial coverage of data on planktonic Foraminifera included in the FORCIS database as of November 2020. Maps illustrate (A) the first
year of sampling, (B) the number of total observations starting from the first year of sampling, and (C) sampling locations per sampling device in any 5.6° latitude by
11.25° longitude box.
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single location) including ~157,000 CPR (since 1991), ~16,500
net tow (since 1910), ~7,000 sediment trap (since 1978) and 120
pump (since 1985) samples.

Ecological models coupled to global models offer a unique
integrative approach to investigate the links between stressors
and the community response. Such models have provided an
effective way to conceptualize planktonic Foraminifera ecology at
the species level, from simple empirical temperature
parameterization of abundance (Zaric et al., 2006; Roche et al.,
2018) or growth rate (Lombard et al., 2011), up to more complex
trait-based analyses (Fraile et al., 2009; Kretschmer et al., 2018;
Grigoratou et al., 2019). These models have provided important
insights regarding the interaction between selected planktonic
Foramini fera spec ies and the i r habi ta t , but the i r
parameterization is based on a limited number of plankton
tow and sediment (trap) data. By generating a comprehensive
global database of abundance and biomass data, the FORCIS
project will allow a much more robust validation and
parametrization of the models. Simulations of foraminifer
population dynamics constrained by the new data will allow
more accurate predictions of future responses of planktonic
Foraminifera to different climate scenarios (Roy et al., 2015).
We also foresee that the planktonic Foraminifera models will
allow quantitative assessments of the total production of
foraminifera shell carbonate and organic carbon in climate
change scenarios (IPCC, 2022). Over the long term, models
addressing the vertical fluxes of planktonic Foraminifera, and the
dissolution at the specimen level (Schiebel et al., 2007) might
bridge the surface ocean signal recorded in our database with the
sedimentary record.

To fully investigate the ecology and global evolution of
diversity and abundance of foraminifers, based on the wealth of
data assembled within the FORCIS project, and in datasets not yet
included, we are open to any community suggestion and are
willing to include any scientific dataset or approach able to unravel
the processes influencing the evolution of calcifying plankton. In
the end, we hope that the FORCIS project will serve as a step
Frontiers in Marine Science | www.frontiersin.org 5
forward and will bring plankton ecologists, micropaleontologists
and biogeochemists closer together to study planktonic
foraminiferal distribution through time and space.
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