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Supplementary Note 1: Biogeochemical ocean reanalysis 1 
 2 

To understand the interaction between persistent marine heatwaves (PMHWs) and the 3 

air-sea CO2 flux density (FCO2) in the North Pacific CO2 sink, we use a biogeochemical 4 

reanalysis of the global ocean based on a Global Ocean hydrodynamic-biogeochemical model, 5 

implemented and operated by the Copernicus Marine Environment Monitoring Service 6 

(CMEMS) Global Monitoring and Forecasting Center1. It features the offline coupled NEMO–7 

PISCES model2, with a 1/4° horizontal resolution, daily temporal resolution from 2009 to 2017 8 

and 50 vertical levels (with 22 levels in the upper 100 m, the vertical resolution is 1 m near the 9 

surface and decreases to 450 m resolution near the bottom). The daily fields were averaged into 10 

monthly fields.  11 

 12 

The biogeochemical model PISCES v22 features 24 prognostic variables and includes 13 

five nutrients that limit phytoplankton growth (nitrate, ammonium, phosphate, silicate and iron) 14 

and four living compartments: two phytoplankton groups (nanophytoplankton and diatoms) and 15 

two zooplankton size classes (microzooplankton and mesozooplankton, resp. small and large); 16 

the bacterial pool is not explicitly modelled. PISCES distinguishes three non-living pools for 17 

organic carbon (semi-labile dissolved organic carbon, small sinking particles, and large sinking 18 

particles), particles of calcium carbonate and biogenic silicate. Additionally, the model 19 

simulates the carbonate system and dissolved oxygen. PISCES has been successfully used in a 20 

variety of biogeochemical studies, both at regional and global scale 3–10. 21 

 22 

The dynamical component is the latest Mercator Ocean global 1/12° high-resolution 23 

ocean model system, extensively described and validated in Lellouche et al.11,12. This system 24 

provides daily and 1/4°-coarsened fields of horizontal and vertical current velocities, vertical 25 

eddy diffusivity, mixed layer depth, sea ice fraction, potential temperature, salinity, sea surface 26 

height, surface wind speed and net surface solar shortwave irradiance that drive the transport 27 

of biogeochemical tracers. This system also features a reduced-order Kalman filter based on 28 

the Singular Evolutive Extended Kalman filter (SEEK) formulation introduced by Pham et al. 29 
13, that assimilates, on a 7-day assimilation cycle, along-track altimeter data, satellite Sea 30 
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Surface Temperature and Sea-Ice Concentration from OSTIA14, and in situ temperature and 1 

salinity vertical profiles from the CORA 4.2 in situ database15. 2 

The biogeochemical component of the coupled system also embeds a reduced order 3 

Kalman filter (similar to the above mentioned) that operationally assimilates daily L4 remotely 4 

sensed surface chlorophyll. In parallel, a climatological-damping is applied to nitrate, 5 

phosphate, oxygen, silicate - with World Ocean Atlas 2013 - to dissolved inorganic carbon and 6 

alkalinity - GLODAPv2 climatology16- and to dissolved organic carbon and iron - with a 4000-7 

year PISCES climatological run. This relaxation is set to mitigate the impact of the physical 8 

data assimilation in the offline coupled hydrodynamic-biogeochemical system, engendering 9 

significant rises of nutrients in the Equatorial Belt area, and resulting in an unrealistic drift of 10 

various biogeochemical variables e.g. chlorophyll, nitrate, phosphate17,18. The time-scale 11 

associated with this climatological damping is set to 1 year and allows a smooth constraint to 12 

reduce the model drift. 13 

 14 
 15 
Supplementary Note 2. Comparison with observation-based products of 16 
FCO2 17 
 18 

We evaluate the skill of the biogeochemical (BGC) reanalysis through the estimation 19 

of FCO2 anomalies associated with PMHWs in the North Pacific against an ensemble of 5 20 

observation-based products of FCO2 (see method section). The period of analysis is from 2009 21 

to 2017 and has been chosen to encompass the period coverage of the six datasets. All 22 

products estimate positive FCO2 anomalies during PMHWs in the North Pacific CO2 sink 23 

(Figure S1). The average reduction in FCO2 during PMHWs ranges from 0.011+/-0.10 24 

molC/m2/year (mean +/- 95% confidence interval) to 0.352 +/-0.10  molC/m2/year (the 25 

reanalysis). The difference between the reanalysis and the observation-based products is 26 

within the same order of magnitude than the observation-based products inter-difference. This 27 

in turn provides good confidence that the reanalysis is as skilful as the observation-based 28 

products to estimate FCO2 anomalies due to PMHWs in the North Pacific CO2 sink. 29 

 30 
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 1 
Figure S1. Average FCO2 anomalies during PMHWs in the North Pacific CO2 sink estimated 2 

using the BGC reanalysis and an ensemble of 5 observation-based products of FCO2 for the 3 

2009-2017 period. The calculation is performed on the SST grid points that have experienced 4 

at least 3 PMHWS from 1985 to 2017, as explained in the main text. The error bars 5 

correspond to 95 % confidence intervals. An additional 12 % uncertainty resulting from 6 

uncertain gas exchange 19 has been added to the 95 % confidence interval of the observations-7 

based products.  8 
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Supplementary Note 3. Comparison with BGC-Argo floats observations 1 
 2 

We further test the skill of the BGC reanalysis in reproducing anomalies in the four 3 

oceanic drivers known to control FCO2 (temperature, salinity, dissolved inorganic carbon,  4 

(DIC)  and alkalinity,  (ALK)) during PMHWs through a comparison to observations from 6 5 

BGC-Argo floats that profiled north of the ocean region impacted by the 2013/2015 ‘warm 6 

blob’ PMHW (Fig. S2) 20,21.  7 

 8 

DIC  and  ALK are not measured by BGC-Argo floats, but they are well estimated 9 

(with a mean uncertainty of 7.1 µmol/kg and 6.3 µmol/kg respectively)  from the neural 10 

network CANYON-B 22 coupled with BGC-Argo floats “Delayed Mode” measurements of 11 

floats pressure, temperature, salinity and oxygen associated with the geolocation and date of 12 

sampling  (“Delayed Mode” is referring to the highest quality of data possible in the Argo 13 

data system)23. We used the observations from 6 BGC-Argo floats that sampled the Gulf of 14 

Alaska in a region of similar water mass from January 2009 to December 2017.  The float 15 

data were downloaded from the Argo Global Data Assembly Centre in France 16 

(ftp://ftp.ifremer.fr/argo/). The CTD and trajectory data were quality controlled using the 17 

standard Argo protocol24, and the oxygen measurements according to Thierry et al. 25,26. 18 

 19 

The monthly reanalysis outputs were collocated in time and the closest to the BGC-20 

Argo profiles positions. The matchups were generated by interpolating the model data to the 21 

sampling pressure of the float data. The reanalysis oxygen data were transformed from mmol 22 

m-3 into µmol kg-1 (native units of BGC-Argo oxygen measurements) using the reanalysis 23 

temperature and salinity.  The monthly anomalies were computed as follow. First, vertical 24 

profiles of temperature, salinity, DIC and ALK collected with the BGC-Argo floats and 25 

estimated with the ocean reanalysis were depth-averaged from the surface to z= - 47 m; the 26 

latter corresponding to the average mixing layer observed during PMHWs in the reanalysis. 27 

Then, the anomalies were constructed by removing a monthly mean climatology computed 28 

from 2009 to 2017. Finally, the anomalies were monthly-averaged. 29 

 30 

The region sampled by the float was not impacted by PMHWs as per our definition 31 

(mean surface temperature greater than 2.3 °C and for a period longer than 38 days), it was 32 

nevertheless subject to an important increase in sea surface temperature for an extended 33 

period of time (~1.5°C  for almost 2 years). The ocean region impacted by PMHWs is located 34 
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roughly 1660 km south of the floats location, in the ‘warm blob region’ defined by Bond et al. 1 
27(black box in Fig. S2a).  2 

 3 

The time series of temperature and salinity anomalies estimated by the ocean 4 

reanalysis compare well to the float observations with a mean bias of 0.04 °C and -0.001 psu 5 

respectively from November 2013 to October 2015 (Fig. S2c). The timing and the intensity of 6 

the negative DIC and ALK anomalies are correctly represented by the reanalysis. The 7 

reanalysis tends to slightly underestimate the negative DIC and ALK anomalies, with a small 8 

negative of bias of 2.2 µmol/kg and -0.9 µmol/kg, which however remains within the 9 

uncertainties of the observed DIC and ALK, i.e., 7.1 µmol/kg and 6.3 µmol/kg 22.  10 

 11 

Moreover, consistent with our results from all PMHWs in the North Pacific CO2 sink 12 

(Figure S1), there is a positive FCO2 anomaly (Figure S2a) from 2014 to 2015 in the ‘warm 13 

blob’ region.  PMHWs were the most abundant in this region from November 2013 to 14 

October 2015 (Figure S2b). Thus, these results demonstrate that the reanalysis is skilled to 15 

represent the ocean processes that lead to positive FCO2 anomaly during the ‘warm blob’ and 16 

hence during PMHWs in the North Pacific. 17 

  18 
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 1 

 2 
 Figure S2 . (a) Mean 2014-2015 FCO2 anomalies derived from the ocean reanalysis. The 3 

black box (-155 - -135°W, 40 - 50 °N ) indicates the ‘warm blob’ region as defined  in Bond 4 

et al.27. The positions of the 6 BGC-Argo floats from 2009 to 2017 used to assess the quality 5 

of the ocean reanalysis are also indicated (colored dots). The numbers represent the World 6 

Meteorological Organization number of the BGC-Argo floats. (b) Percentage of the ‘warm 7 

blob’ region impacted by PHMWS each day. (c) Time series of monthly 0-50 m depth-8 

averaged DIC, ALK, temperature and salinity anomalies estimated from the BGC-Argo floats 9 

observations (black lines) and from the ocean reanalysis at the floats' locations (blue lines). 10 

Dashed lines represent standard error of the monthly mean climatologies. The vertical lines in 11 

(b) and (c) represent the period during which PMHWs were the most abundant in the ‘warm 12 

blob’ region, i.e.  from  November 2013 to October 2015. 13 

  14 
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 2 
Figure S3. (a) Average dissolved inorganic carbon (DIC) and alkalinity (ALK) anomalies at 3 

the first level of the ocean reanalysis (z ~ - 0.50 m) during PMHWs in the North Pacific CO2 4 

sink derived from the BGC reanalysis for the 2009-2017 period. The calculation is performed 5 

on the SST grid points that have experimented at least 3 PMHWS from 1985 to 2017, as 6 

explained in the main text. The error bars correspond to 95 % confidence intervals. The panel 7 

(b) represents the spatial distribution of the DIC and ALK anomalies for the 2009-2017 8 

period.  Note that the spatial repartition of ALK anomalies is somewhat more heterogeneous 9 

than for DIC anomalies.  Even though, the average over the entire domain is positive, there 10 

are few local places where ALK anomalies are negative, as for example in the North-eastern 11 

part of the basin. This explain why the ALK anomalies observed by the BGC-Argo floats are 12 

negative (Figure S2c). However, given the small contribution of ALK anomalies to FCO2 13 

anomalies during PMHWs in the North Pacific CO2 sink, this small heterogeneity is 14 

inconsequential for the conclusions of the study.  15 

 16 

  17 
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 1 
Figure S4. Annual average PMHWs intensity in the North Pacific CO2 sink, (a), and in the 2 

Tropical Pacific CO2 source, (b), from 1985 to 2017. The calculation is performed on the SST 3 

grid points that have experimented at least 3 PMHWS from 1985 to 2017, as explained in the 4 

main text. The annual average PMHW intensity corresponds to PMHW intensities (i.e., mean 5 

sea surface temperature anomalies averaged over the PMHW duration) averaged over all 6 

PMHWs that occur for a given year from 1985 to 2017. The blue line and the gray shading 7 

represent the linear trend and its 95 % confidence interval.  8 

 9 

  10 
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 1 
Figure S5. Number of PMHWs per year, and near-globally, i.e. between 60°S and 60°N, 2 

from 1985 to 2017. 3 

  4 



 10 

Table S1. Results of the Yuen’s trimmed mean test that assesses the significance of the 1 
trimmed average percent FCO2 anomalies reported in Figure 1b. 2 
 3 
 4 

critical CO2 
sink/source 
regions 

Yuen’s 
trimmed mean 
test 

Observational-based products 
CMEMS CSIR JENA MPI 

Tropical 
Pacific CO2 
source 

Trimmed 
average 

-33.9 -36.7 -52.2 -38.4 

95 % 
confidence 
interval 

-34.4 / -33.4 -37.3 / -36.2 -52.8 / -51.7 -38.9 / -37.8 

P < .001 < .001 < .001 < .001 
North Pacific  
CO2 sink 

Trimmed 
average 

-42.5 -23.6 -21.3 -30.2 

95 % 
confidence 
interval 

-44.0 / -41.0 -24.4 / -22.7 -22.9 / -19.7 -31.3 / -29.0 

P < .001 < .001 < .001 < .001 
North Atlantic 
CO2 sink 

Trimmed 
average 

-5.2 - 5.4 2.0 -7.4 

95 % 
confidence 
interval 

-6.2 / -4.1 -6.7 / -4.1 0.9 / 3.1 -8.5 / -6.3 

P < .001 < .001 < .001 < .001 
Mid-high 
latitude 
southern oceans 
CO2 sink 

Trimmed 
average 

4.7 6.2 -4.2 1.2 

95 % 
confidence 
interval 

4.3 / 5.1 5.9 / 6.5 -4.5/ -3.9 0.9/ 1.4 

P < .001 < .001 < .001 < .001 

  5 
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