# Science Advances

## Supplementary Materials for

### Diving into the vertical dimension of elasmobranch movement ecology

Samantha Andrzejaczek et al.

Corresponding author: David J. Curnick, david.curnick@zsl.org

*Sci. Adv.* **8**, eabo1754 (2022) DOI: 10.1126/sciadv.abo1754

#### The PDF file includes:

Figs. S1 to S3 Tables S1 and S2, S4 and S5 References

#### Other Supplementary Material for this manuscript includes the following:

Table S3



**Fig. S1.** Elbow plot used to determine the optimum number of clusters (n = 4) for the hierarchical cluster analysis performed on measures of vertical overlap between elasmobranch species. The plot displays the within-cluster sum of squares against the number of clusters.



**Fig. S2.** Mean sea surface temperature (SST; °C) at the location of tag deployment for each species. SST was the National Oceanic and Atmospheric Administration's Multi-scale Ultra-High Resolution (NOAA MUR) level 4 analysis on a 0.01 degree spatial resolution and averaged across the seven days following deployment to correspond with INLA models.



**Fig. S3.** The hourly median depth distributions of all elasmobranch species with time-series, determined from median hourly depths from each satellite-tagged individual within each species. Violin plots represent the full distribution of the data, with colours relating to family. Boxplots depict the lower quartile, upper quartile (and thus the interquartile range) and median within the data, with whiskers extending from the shallowest to the deepest depth observed within each species.



**Fig. S4.** Depth distributions for 26 elasmobranch species binned at 10 m intervals. Italicized lettering next to each species name indicates the habitat type of each species (c = coastal, t = transient, o = oceanic). The dendrogram and clusters on the right side of the figure resulted from hierarchical cluster analysis performed on dissimilarity of Bhattacharyya's coefficient. Numbered clusters represent species grouped according to similarity in vertical habitat use.



**Fig. S5.** Food and Agriculture Organization (FAO) Major Fishing Area sourced from https://www.fao.org/fishery/en/area/search. Areas by numbered box are: 18 Arctic Sea; 21 Atlantic, Northwest; 27 Atlantic, Northeast; 31 Atlantic, Western Central; 34 Atlantic, Eastern Central; 37 Mediterranean and Black Sea; 41 Atlantic, Southwest; 47 Atlantic, Southeast; 48 Atlantic, Antarctic; 51 Indian Ocean, Western; 57 Indian Ocean, Eastern; 58 Indian Ocean, Antarctic and Southern; 61 Pacific, Northwest; 67 Pacific, Northeast; 71 Pacific, Western Central; 77 Pacific, Eastern Central; 81 Pacific, Southwest; 87 Pacific, Southeast and; 88 Pacific, Antarctic.



**Fig. S6.** Region-specific vertical metrics for basking sharks *Cetorhinus maximus* (n = 66). (A) Deployment (black) and pop-up (red) locations of tagged basking sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions where >4 tags were deployed. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO regions (i.e. FAO region where tag(s) were deployed) for basking sharks: 21: Atlantic, Northwest; 27: Atlantic, Northeast.



**Fig. S7.** Region-specific vertical metrics for blacktip sharks *Carcharhinus limbatus* (n = 10). (A) Deployment (black) and pop-up (red) locations of tagged blacktip sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >4 tags. \*indicates a significant difference (p<0.05). aStart FAO region (i.e. FAO region where tag(s) were deployed) for blacktip sharks: 31: Atlantic, Western Central; 87: Pacific, Southeast.



**Fig. S8.** Region-specific vertical metrics for blue sharks *Prionace glauca* (n = 101). (A) Deployment (black) and pop-up (red) locations of tagged blue sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >4 tags. \*indicates a significant difference (p<0.05). aStart FAO region (i.e. FAO region where tag(s) were deployed) for blue sharks: 21: Atlantic, Northwest; 27: Atlantic, Northeast; 34: Atlantic, Eastern Central; 47: Atlantic, Southeast; 57: Indian Ocean, Eastern; 67: Pacific, Northeast; 77: Pacific, Eastern Central; 81: Pacific, Southwest.



**Fig. S9.** Region-specific vertical metrics for bull sharks *Carcharhinus leucas* (n = 11). (A) Deployment (black) and pop-up (red) locations of tagged bull sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. <sup>a</sup>Start FAO regions (i.e. FAO region where tag(s) were deployed) for bull sharks: 31: Atlantic, Western Central; 47: Atlantic, Southeast; 51: Indian Ocean, Western.



**Fig. S10.** Region-specific vertical metrics for Galapagos sharks *Carcharhinus galapagensis* (n = 10). (A) Deployment (black) and pop-up (red) locations of tagged Galapagos sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. <sup>a</sup>Start FAO regions (i.e. FAO region where tag(s) were deployed) for Galapagos sharks: 47: Atlantic, Southeast; 71: Pacific, Western Central; 87: Pacific, Southeast.



Fig. S11. Region-specific vertical metrics for Greenland sharks *Somniosus microcephalus* (n = 28). (A) Deployment (black) and pop-up (red) locations of tagged Greenland sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >4 tags. \*indicates a significant difference (p<0.05). \*Start FAO regions (i.e. FAO region where tag(s) were deployed) for Greenland sharks: 18: Arctic Sea; 21: Atlantic, Northwest.



**Fig. S12.** Region-specific vertical metrics for oceanic manta rays *Mobula birostris* (n = 11). (A) Deployment (black) and pop-up (red) locations of tagged oceanic manta rays. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for oceanic manta rays: 77: Pacific, Western Central; 81: Pacific, Southwest; 87: Pacific, Southeast.



**Fig. S13.** Region-specific vertical metrics for oceanic whitetip sharks *Carcharhinus longimanus* (n = 22). (A) Deployment (black) and pop-up (red) locations of tagged oceanic whitetip sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for oceanic whitetip sharks: 34: Atlantic, Eastern Central; 41: Atlantic, Southwest; 47: Atlantic, Southeast; 77: Pacific, Eastern Central.



**Fig. S14.** Region-specific vertical metrics for porbeagle sharks *Lamna nasus* (n = 64). (A) Deployment (black) and pop-up (red) locations of tagged porbeagle sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for porbeagle sharks: 21: Atlantic, Northwest; 27: Atlantic, Northeast; 81: Pacific, Southwest.



**Fig. S15.** Region-specific vertical metrics for reef manta rays *Mobula alfredi* (n = 64). (A) Deployment (black) and pop-up (red) locations of tagged reef manta rays. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for reef manta rays: 51: Indian Ocean, Western; 57: Indian Ocean, Eastern; 71: Pacific, Western Central; 77: Pacific, Eastern Central.



Scalloped hammerhead shark (n = 17)

**Fig. S16.** Region-specific vertical metrics for scalloped hammerhead sharks *Sphyrna lewini* (n = 17). (A) Deployment (black) and pop-up (red) locations of tagged scalloped hammerhead sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for scalloped hammerhead sharks: 31: Atlantic, Western Central; 34: Atlantic, Eastern Central; 51: Indian Ocean, Western; 77: Pacific, Eastern Central.



**Fig. S17.** Region-specific vertical metrics for school sharks *Galeorhinus galeus* (n = 17). (A) Deployment (black) and pop-up (red) locations of tagged school sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for school sharks: 27: Atlantic, Northeast; 41: Atlantic, Southwest; 57: Indian Ocean, Eastern.



**Fig. S18.** Region-specific vertical metrics for shortfin mako sharks *Isurus oxyrinchus* (n = 57). (A) Deployment (black) and pop-up (red) locations of tagged shortfin mako. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for shortfin mako sharks: 21: Atlantic, Northwest; 27: Atlantic, Northeast; 31: Atlantic, Western Central; 34: Atlantic, Eastern Central; 77: Pacific, Eastern Central.



**Fig. S19.** Region-specific vertical metrics for silky sharks *Carcharhinus falciformis* (n = 37). (A) Deployment (black) and pop-up (red) locations of tagged silky sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for silky sharks: 34: Atlantic, Eastern Central; 47: Atlantic, Southeast; 51: Indian Ocean, Western; 71: Pacific, Western Central; 77: Pacific, Eastern Central; 87: Pacific, Southeast.



**Fig. S20.** Region-specific vertical metrics for silvertip sharks *Carcharhinus albimarginatus* (n = 11). (A) Deployment (black) and pop-up (red) locations of tagged silvertip sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for silvertip sharks: 51: Indian Ocean, Western; 77: Pacific, Eastern Central.



**Fig. S21.** Region-specific vertical metrics for tiger sharks *Galeocerdo cuvier* (n = 55). (A) Deployment (black) and pop-up (red) locations of tagged tiger sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for tiger sharks: 31: Atlantic, Western Central; 41: Atlantic, Southwest; 47: Atlantic, Southeast; 71: Pacific, Western Central; 81: Pacific, Southwest.

![](_page_22_Figure_0.jpeg)

**Fig. S22.** Region-specific vertical metrics for whale sharks *Rhincodon typus* (n = 61). (A) Deployment (black) and pop-up (red) locations of tagged whale sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). <sup>a</sup>Start FAO region (i.e. FAO region where tag(s) were deployed) for whale sharks: 34: Atlantic, Eastern Central; 57: Indian Ocean, Eastern; 71: Pacific, Western Central; 87: Pacific, Southeast.

![](_page_23_Figure_0.jpeg)

**Fig. S23.** Region-specific vertical metrics for white sharks *Carcharodon carcharias* (n = 187). (A) Deployment (black) and pop-up (red) locations of tagged white sharks. (B) Sample size and mean deployment duration for each FAO region. Sample size for all represents total number of tags in the database, sample size for time-series represents the number of tags with time-series data available. (C) Violin plots of vertical metrics for each FAO region. Dot-and-whisker plot display mean and standard deviation for each FAO region. Note that not all metrics are available from all tags. (D) Results of Kruskal-Wallis tests comparing vertical metrics between FAO regions. Note that tests were only applied for FAO regions with >5 tags. \*indicates a significant difference (p<0.05). aStart FAO region (i.e. FAO region where tag(s) were deployed) for white sharks: 21: Atlantic, Northwest; 31: Atlantic, Western Central; 47: Atlantic, Southeast; 77: Pacific, Eastern Central; 81: Pacific, Southwest.

| Species<br>(common)          | Trophi<br>c level | Sourc<br>e | Max<br>specie<br>s<br>body<br>size<br>(kg) | Source | Female size at maturity | Sourc<br>e | Male size at maturity | Sourc<br>e | Primary habitat   | Source |
|------------------------------|-------------------|------------|--------------------------------------------|--------|-------------------------|------------|-----------------------|------------|-------------------|--------|
| Pelagic<br>thresher<br>shark | 4.2               | (81)       | 62                                         | (82)   | 272                     | (83)       | 245.6                 | (83)       | Oceanic           | (84)   |
| Bigeye<br>thresher<br>shark  | 4.2               | (81)       | 363.8                                      | (85)   | 140                     | (86)       | 120                   | (86)       | Coastal transient | (84)   |
| Common<br>thresher<br>shark  | 4.2               | (81)       | 348                                        | (85)   | 226                     | (87)       | 184                   | (87)       | Coastal transient | (84)   |
| Arctic skate                 | 4.3               | (85)       | 5.2                                        | (88)   | 70.5                    | (89)       | 66.8                  | (89)       | Oceanic           | (90)   |
| Big skate                    | 3.9               | (85)       | 91                                         | (85)   | 126                     | (91)       | 124                   | (91)       | Coastal transient | (90)   |
| Silvertip<br>shark           | 4.2               | (81)       | 162.2                                      | (85)   | 208.9                   | (92)       | 174.7                 | (92)       | Coastal           | (84)   |
| Grey reef<br>shark           | 4.1               | (81)       | 33.7                                       | (85)   | 195                     | (93)       | 170                   | (93)       | Coastal           | (68)   |
| Bronze<br>whaler<br>shark    | 4.2               | (81)       | 304.6                                      | (85)   | 270                     | (94)       | 224                   | (94)       | Coastal           | (84)   |
| Silky shark                  | 4.2               | (81)       | 346                                        | (85)   | 210                     | (95)       | 175                   | (95)       | Oceanic           | (26)   |
| Galapagos<br>shark           | 4.2               | (81)       | 85.5                                       | (85)   | 215                     | (96)       | 205                   | (96)       | Coastal transient | (68)   |
| Bull shark                   | 4.3               | (81)       | 316.5                                      | (85)   | 225                     | (97)       | 210                   | (97)       | Coastal           | (68)   |
| Blacktip<br>shark            | 4.2               | (81)       | 122.8                                      | (85)   | 150                     | (97)       | 130                   | (97)       | Coastal           | (68)   |
| Oceanic<br>whitetip<br>shark | 4.2               | (81)       | 167.4                                      | (85)   | 190                     | (98)       | 172                   | (98)       | Oceanic           | (84)   |
| Caribbean<br>reef shark      | 4.5               | (85)       | 69.9                                       | (85)   | 182.6                   | (99)       | 180.8                 | (99)       | Coastal           | (68)   |
| White shark                  | 4.5               | (81)       | 2530                                       | (100)  | 454                     | (101)      | 332                   | (87)       | Coastal transient | (68)   |
| Basking<br>shark             | 3.2               | (81)       | 4000                                       | (85)   | 810                     | (102)      | 500                   | (102)      | Coastal transient | (68)   |

| Tiger shark                     | 4.1 | (81) | 807.4 | (85)                             | 330  | (103)               | 292  | (103)               | Coastal transient | (68)  |
|---------------------------------|-----|------|-------|----------------------------------|------|---------------------|------|---------------------|-------------------|-------|
| School<br>shark                 | 4.2 | (81) | 44.7  | (85)                             | 125  | (104)               | 108  | (104)               | Coastal transient | (68)  |
| Bluntnose<br>sixgill shark      | 4.3 | (81) | 590   | (85)                             | 394  | (105)               | 300  | (105)               | Coastal transient | (68)  |
| Lutz's<br>stingray*             | 3.5 | (85) | 135.6 | (85)                             | 70   | (106)               | 58   | (106)               | Coastal           | (107) |
| Shortfin<br>mako shark          | 4.3 | (81) | 505.8 | (85)                             | 258  | (108)               | 179  | (108)               | Coastal transient | (109) |
| Longfin<br>mako shark           | 4.3 | (81) | 566   | (110)                            | 230  | (111)               | 215  | (111)               | Oceanic           | (112) |
| Salmon<br>shark                 | 4.5 | (85) | 175   | (85)                             | 205  | (113)               | 158  | (113)               | Coastal transient | (84)  |
| Porbeagle<br>shark              | 4.2 | (81) | 230   | (85)                             | 170  | (114)               | 140  | (114)               | Coastal transient | (84)  |
| Reef manta<br>ray               | 3.6 | (85) | 1200  | Manta<br>Trust,<br>pers<br>comms | 351* | (115)<br>(mean<br>) | 283* | (115)<br>(mean<br>) | Coastal           | (116) |
| Oceanic<br>manta ray            | 3.5 | (85) | 2000  | Manta<br>Trust,<br>pers<br>comms | 431* | (115)<br>(mean<br>) | 365* | (115)<br>(mean<br>) | Coastal transient | (116) |
| Spinetail<br>devil ray          | 3.4 | (85) | 300   | (117)                            | 216* | (115)<br>(mean<br>) | 210* | (115)<br>(mean<br>) | Coastal transient | (90)  |
| Munk's<br>pygmy devil<br>ray    | 3.8 | (85) | 25    | (118)                            | 94*  | (115)<br>(mean<br>) | 90*  | (115)<br>(mean<br>) | Coastal           | (90)  |
| Sicklefin<br>devil ray          | 3.8 | (85) | 400   | Manta<br>Trust,<br>pers<br>comms | 259* | (115)<br>(mean<br>) | 225* | (115)<br>(mean<br>) | Oceanic           | (17)  |
| Starry<br>smooth-<br>hound      | 3.7 | (81) | 4.8   | (85)                             | 87   | (119)               | 78   | (119)               | Coastal           | (84)  |
| Broadnose<br>sevengill<br>shark | 4.7 | (81) | 107   | (85)                             | 210  | (120)               | 190  | (120)               | Coastal           | (121) |

| Blue shark              | 4.1 | (81) | 205.9 | (85)                                 | 172  | (122) | 170  | (122) | Oceanic           | (112) |
|-------------------------|-----|------|-------|--------------------------------------|------|-------|------|-------|-------------------|-------|
| Common<br>sawshark      | 4.2 | (85) | 1.9   | (123)                                | 90   | (93)  | 80   | (123) | Coastal transient | (41)  |
| Pelagic<br>stingray     | 4.4 | (85) | 49    | (124)<br>(captiv<br>e<br>though<br>) | 48   | (125) | 41   | (125) | Oceanic           | (90)  |
| Whale shark             | 3.5 | (81) | 34000 | (85)                                 | 900  | (126) | 800  | (126) | Coastal transient | (68)  |
| Greenland<br>shark      | 4.2 | (81) | 775   | (85)                                 | 419  | (127) | 284  | (127) | Coastal transient | (68)  |
| Scalloped<br>hammerhead | 4.1 | (81) | 152.4 | (85)                                 | 155  | (128) | 136  | (128) | Coastal transient | (129) |
| Cuban<br>dogfish        | 4.2 | (81) | 6.1   | (130)                                | 44.5 | (131) | 42.7 | (131) | Oceanic           | (132) |

**Table S1.** Biological and ecological traits for each species included in the study compiled from the published literature. Traits include trophic level, maximum species body size, female size at maturity, male size at maturity and primary habitat type (i.e. oceanic, coastal transient or coastal), and are listed alongside respective references.

| Species                | Measurem | TL Conversion                                              | Reference |
|------------------------|----------|------------------------------------------------------------|-----------|
|                        | ent      |                                                            |           |
| Blacktip shark         | CPL      | PCL = (0.74493)TL - 23.13766                               | (133)     |
| Blue shark             | FL       | TL = 1.631+1.201*FL                                        | (134)     |
| Blue shark             | PCL      | TL = 3.549+1.313*PCL                                       | (134)     |
| Common<br>thresher     | FL       | FL = (0.5474)TL + 7.0262                                   | (87)      |
| Cuban dogfish          | FL       | FL = -1.94 + 0.88  STL                                     | (135)     |
| Porbeagle shark        | FL       | TL = 0.742 + 1.147 * FL                                    | (134)     |
| Shortfin mako<br>shark | FL       | TL = 0.000 + 1.127 * FL                                    | (134)     |
| Silky shark            | FL       | FL = (0.8388)TL - 2.6510                                   | (87)      |
| Silky shark            | FL       | FL = (0.8761)TL-13.3535                                    | (87)      |
| Whale shark            | FL       | TL = 1.063 FL + 26.491                                     | (136)     |
| White shark            | FL       | FL = (0.9442)TL-5.7441                                     | (87)      |
| Salmon shark           | FL       | FL = 1.0813 * PCL + 6.9137 & TL = 1.1529 *<br>PCL + 15.186 | (137)     |
| Oceanic<br>whitetip    | FL       | FL = (0.8602)TL - 7.2885                                   | (138)     |
| Longfin mako           | CPL      | PCL = 0 + 0.918*FL & FL = 0 + 0.888 * TL                   | (102)     |
| Longfin mako           | FL       | FL = 0 + 0.888 * TL                                        | (101)     |
| Galapagos<br>shark     | FL       | TL = 0 + 1.237 * FL                                        | (105)     |

**Table S2.** Length-length conversions and associated references used to convert body length to total length (TL) for species where alternate measurements were taken.

See auxillary csv file for Table S3.

**Table S3.** The individual count of each species across marine biogeographic realms (as defined by (46)). Counts are broken up by starting realm (i.e. deployment location) and track end realm (i.e. tag detachment location). Note that tag detachment locations were not available for all individuals.

| Species_commo               | Species_latin            | Top2 | Top2m | Top5 | Top5m | Top1 | Top10 | Top5 | Top50 | Top1 | Top100 | Top2 | Top250 |
|-----------------------------|--------------------------|------|-------|------|-------|------|-------|------|-------|------|--------|------|--------|
| n                           |                          | m    | _SD   | m    | _SD   | 0m   | m_SD  | 0m   | m_SD  | 00m  | m_SD   | 50m  | m_SD   |
| Arctic skate                | Amblyraja                | 0    | 0     | 0    | 0     | 0    | 0     | 0    | 0     | 0    | 0      | 0    | 0      |
|                             | hyperborea               |      |       |      |       |      |       |      |       |      |        |      |        |
| Basking shark               | Cetorhinus               | 10.7 | 8.5   | 14.6 | 11.3  | 17.3 | 12.3  | 43.3 | 24.4  | 58.2 | 31.8   | 84   | 22.9   |
|                             | maximus                  |      |       |      |       |      |       |      |       |      |        |      |        |
| Big skate                   | Beringraja<br>binoculata | 1.7  | 2.4   | 3.2  | 4.5   | 6.5  | 9.1   | 39.4 | 36.4  | 59.6 | 34.3   | 97.8 | 3.1    |
| Bigeye thresher             | Alopias                  | 0    | 0     | 0    | 0     | 0    | 0.1   | 10.5 | 6.4   | 30.1 | 5.4    | 59   | 12     |
| shark                       | superciliosus            |      |       |      |       |      |       |      |       |      |        |      |        |
| Blacktip shark              | Carcharhinus<br>limbatus | 13.3 | 2.3   | 21.6 | 13    | 40.4 | 19.4  | 99.1 | 1.1   | 100  | 0      | 100  | 0      |
| Blue shark                  | Prionace glauca          | 16.6 | 11.6  | 31.2 | 18.6  | 37.8 | 19.2  | 61.3 | 21    | 76.2 | 14.7   | 92.3 | 7      |
| Bluntnose sixgill shark     | Hexanchus griseus        | 0    | 0     | 0    | 0     | 0    | 0     | 0    | 0     | 0    | 0      | 13.8 | 9.7    |
| Broadnose                   | Notorynchus              | 4.4  | 5.1   | 0.5  | 0.7   | 22.9 | 21.6  | 74   | 7.4   | 95.1 | 4.2    | 100  | 0      |
| sevengill shark             | cepedianus               |      |       |      |       |      |       |      |       |      |        |      |        |
| Bronze whaler               | Carcharhinus             | 8.8  | 8     | 16.6 | 13.9  | 27.2 | 19    | 88.7 | 15.3  | 99.2 | 1.8    | 100  | 0      |
| shark                       | brachyurus               |      |       |      |       |      |       |      |       |      |        |      |        |
| Bull shark                  | Carcharhinus             | 10.2 | 14.3  | 20.3 | 22.6  | 30.1 | 27.1  | 89.4 | 10.9  | 99.6 | 0.6    | 100  | 0      |
| 0 11                        | leucas                   | 1    | 1.4   | 2.2  | 4.4   | 10.0 | 15.0  | 07.0 | 10.1  | 00.2 | 1.0    | 100  | 0      |
| Caribbean reef              | Carcharhinus             | 1    | 1.4   | 3.2  | 4.4   | 10.8 | 15.8  | 87.8 | 18.1  | 98.3 | 1.8    | 100  | 0      |
| Silark<br>Chiloon douil rou | perezi<br>Mobula         | 0    | 6.1   | 12.4 | 4.2   | 15 1 | 4.1   | 41.7 | 80    | 68.0 | 10.4   | 01   | 4.0    |
| Chinean devir ray           | taranacana               | 9    | 0.1   | 12.4 | 4.2   | 13.1 | 4.1   | 41.7 | 0.2   | 08.9 | 10.4   | 91   | 4.9    |
| Common                      | Pristonhorus             | 0    | 0     | 0    | 0     | 0    | 0     | 61   | 93    | 71.1 | 25.1   | 100  | 0      |
| sawshark                    | cirratus                 | 0    | 0     | 0    | 0     | U    | 0     | 0.1  | 7.5   | /1.1 | 23.1   | 100  | 0      |
| Common                      | Alopias vulpinus         | NA   | NA    | 30.1 | 3.9   | 51.9 | 16.1  | 90.3 | 7.3   | 97.2 | 4.8    | 100  | 0      |
| thresher shark              |                          |      |       |      |       |      |       |      |       |      |        |      | -      |
| Cuban dogfish               | Squalus cubensis         | 0    | 0     | 0    | 0     | 0    | 0     | 0    | 0     | 0    | 0      | 0    | 0      |
| Galapagos shark             | Carcharhinus             | 2.8  | 1.9   | 7.1  | 4.1   | 11.6 | 7     | 51   | 20.5  | 95.6 | 3.6    | 100  | 0.1    |
| 10                          | galapagensis             |      |       |      |       |      |       |      |       |      |        |      |        |
| Greenland shark             | Somniosus                | 0    | 0.1   | 0    | 0.1   | 0.1  | 0.2   | 1.1  | 3.6   | 1.9  | 5      | 18.1 | 12.7   |
|                             | microcephalus            |      |       |      |       |      |       |      |       |      |        |      |        |
| Grey reef shark             | Carcharhinus             | 2    | 1.8   | 6.6  | 3.2   | 22.5 | 13.7  | 85.1 | 10.1  | 100  | 0      | 100  | 0      |
|                             | amblyrhynchos            |      |       |      |       |      |       |      |       |      |        |      |        |
| Longfin mako<br>shark       | Isurus paucus            | 1.1  | 0     | 6.7  | 4.6   | 6.6  | 4.8   | 24.8 | 5.3   | 41.4 | 14.3   | 60.9 | 12.9   |

| Munk's devil ray          | Mobula munkiana                | 7.7  | 0    | 24.8 | 0    | 55.4 | 0    | 98.7 | 0    | 100  | 0    | 100  | 0    |
|---------------------------|--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Oceanic manta<br>ray      | Mobula birostris               | 22.4 | 22.4 | 28.7 | 26.3 | 35.2 | 28.6 | 68.2 | 22.6 | 92.8 | 5.2  | 99.6 | 0.4  |
| Oceanic whitetip shark    | Carcharhinus<br>longimanus     | 10.5 | 7.4  | 12.9 | 6.1  | 23.8 | 9.6  | 77.3 | 8.9  | 97.2 | 2    | 100  | 0    |
| Pelagic stingray          | Pteroplatytrygon<br>violacea   | 0    | 0    | 0.2  | 0    | 0.3  | 0    | 10.1 | 0    | 49.6 | 0    | 99.3 | 0    |
| Pelagic thresher<br>shark | Alopias pelagicus              | 1.8  | 3.1  | 2.9  | 2.9  | 6    | 4.4  | 34.1 | 20.3 | 59.5 | 16.4 | 86.3 | 8.3  |
| Porbeagle shark           | Lamna nasus                    | 10.3 | 9    | 13.6 | 14.7 | 19.4 | 18.8 | 44.6 | 28.7 | 60.1 | 27   | 87.5 | 15.8 |
| Reef manta ray            | Mobula alfredi                 | 15.1 | 9.2  | 24.7 | 11.9 | 38.4 | 15.7 | 84.8 | 13.9 | 97.1 | 6.1  | 100  | 0.1  |
| Salmon shark              | Lamna ditropis                 | 9.5  | 7.7  | 24.9 | 10.3 | 35.9 | 11.9 | 68.6 | 16.4 | 82.6 | 11.5 | 95.9 | 6.5  |
| Scalloped<br>hammerhead   | Sphyrna lewini                 | 4.2  | 6.5  | 8.8  | 11.7 | 16.7 | 21.5 | 54.8 | 20.5 | 90.7 | 8.4  | 97.4 | 4.3  |
| School shark              | Galeorhinus<br>galeus          | 3.9  | 6.8  | 7.8  | 12.2 | 17.6 | 24.5 | 57.8 | 36.8 | 79.2 | 25.6 | 96.7 | 6.9  |
| Shortfin mako<br>shark    | Isurus oxyrinchus              | 15.3 | 14.3 | 37.5 | 17   | 46.8 | 20   | 80   | 20.4 | 90.8 | 12.3 | 97.7 | 3.6  |
| Silky shark               | Carcharhinus<br>falciformis    | 5.9  | 5.9  | 9.4  | 8    | 16.3 | 12.1 | 68.6 | 22.8 | 97.2 | 5.5  | 100  | 0    |
| Silvertip shark           | Carcharhinus<br>albimarginatus | 0.7  | 1    | 4.1  | 4.2  | 7.3  | 6.4  | 76.2 | 10.5 | 98.8 | 0.7  | 99.8 | 0.4  |
| Southern stingray         | Hypanus<br>americanus          | 62.1 | 16.1 | 93.8 | 0    | 82.2 | 16.8 | 99.6 | 0.6  | 100  | 0    | 100  | 0    |
| Spinetail devil ray       | Mobula mobula                  | 56.8 | 0    | 55.9 | 22.8 | 82.4 | 16.6 | 92.4 | 8.1  | 96.5 | 4.8  | 99.9 | 0    |
| Starry smooth-<br>hound   | Mustelus asterias              | 0.3  | 0.5  | 2    | 1.7  | 9.3  | 6.6  | 85.4 | 14.6 | 99.9 | 0.2  | 100  | 0    |
| Tiger shark               | Galeocerdo cuvier              | 15.1 | 10.9 | 25.3 | 13.7 | 37.1 | 18.3 | 72.8 | 17.9 | 89.6 | 10.8 | 98.7 | 2.5  |
| Whale shark               | Rhincodon typus                | 15   | 12   | 24.8 | 14.3 | 35.3 | 13.9 | 72.9 | 17.8 | 88.4 | 11.8 | 98   | 2.3  |
| White shark               | Carcharodon<br>carcharias      | 21.5 | 14.5 | 31.8 | 13.2 | 43.7 | 15.4 | 76.5 | 19.7 | 84.5 | 15   | 92.1 | 8.3  |

**Table S4.** Mean (and SD) percentage of time at liberty spent by each tagged elasmobranch species within the top 5 m, top 10 m, top 100 m and top 250 m.

| Nam<br>e | Response variable   | Fixed effects                                                          | Hierarchical | effect (iid     | 1)      |                   |                      |             | WAIC   | ΔWAI<br>C | Effective parameters |
|----------|---------------------|------------------------------------------------------------------------|--------------|-----------------|---------|-------------------|----------------------|-------------|--------|-----------|----------------------|
| m8       |                     | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level |              | spatial<br>term | species | species*real<br>m |                      | species*sst | 211.23 | 0.00      | 82.74                |
| m8b      |                     | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level | phylogeny    | spatial<br>term | species | species*real<br>m |                      | species*sst | 211.80 | 0.57      | 82.78                |
| m9       |                     | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level |              | spatial<br>term | species | species*real<br>m | species*maturit<br>y | species*sst | 212.54 | 1.31      | 85.84                |
| m7       | log(medd<br>epth+1) | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level | phylogeny    | spatial<br>term | species | species*real<br>m | species*maturit<br>y |             | 212.96 | 1.73      | 84.35                |
| m9b      |                     | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level | phylogeny    | spatial<br>term | species | species*real<br>m | species*maturit<br>y | species*sst | 213.09 | 1.86      | 85.80                |
| m1       |                     | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level | phylogeny    | spatial<br>term | species | species*real<br>m |                      |             | 213.17 | 1.94      | 81.76                |
| m3*      |                     | Intercept,<br>habitat,<br>maturity, max<br>size, sst,<br>trophic level |              | spatial<br>term | species | species*rea<br>lm |                      |             | 213.20 | 1.97      | 81.41                |

| m7b | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level |           | spatial<br>term | species | species*real<br>m | species*maturit<br>y | 213.31 | 2.08   | 84.62 |
|-----|------------------------------------------------------------------------|-----------|-----------------|---------|-------------------|----------------------|--------|--------|-------|
| m3c | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level |           | spatial<br>term |         | species*real<br>m |                      | 218.24 | 7.01   | 84.18 |
| m3e | Intercept, max<br>size, sst, trophic<br>level                          |           | spatial<br>term | species | species*real<br>m |                      | 222.01 | 10.78  | 83.18 |
| m6  | Intercept                                                              | phylogeny | spatial<br>term | species | species*real<br>m |                      | 228.53 | 17.30  | 84.26 |
| m4  | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level | phylogeny | spatial<br>term | species |                   |                      | 241.95 | 30.72  | 77.68 |
| m4b | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level |           | spatial<br>term | species |                   |                      | 242.01 | 30.78  | 78.03 |
| m2  | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level | phylogeny |                 | species | species*real<br>m |                      | 284.06 | 72.83  | 58.66 |
| m3b | Intercept,<br>habitat,<br>maturity, max<br>size, sst, trophic<br>level |           |                 | species | species*real<br>m |                      | 284.17 | 72.94  | 58.61 |
| m5  | Intercept,<br>habitat, maturity                                        | phylogeny |                 | species |                   |                      | 468.63 | 257.40 | 28.74 |

**Table S5.** Model selection table for Bayesian regression models examining the median depths of tagged elasmobranchs from 38 species within the first seven days of tracking (excluding the first day of deployment) using Integrated Nested Laplace Approximation (INLA). Models compared using Watanabe Akaike Information Criteria (WAIC; (*139*)). Asterisk denotes the best model.

#### **REFERENCES AND NOTES**

- 1. R. I. Holbrook, T. Burt de Perera, Three-dimensional spatial cognition: Freely swimming fish accurately learn and remember metric information in a volume. *Anim. Behav.* **86**, 1077–1083 (2013).
- N. Levin, S. Kark, R. Danovaro, Adding the third dimension to marine conservation. *Conserv. Lett.* 11, 1–14 (2018).
- B. Block, I. Jonsen, S. Jorgensen, A. Winship, S. Shaffer, S. J. Bograd, E. L. Hazen, D. G. Foley, G. A. Breed, A. L. Harrison, J. E. Ganong, A. Swithenbank, M. Castleton, H. Dewar, B. R. Mate, G. L. Shillinger, K. M. Schaefer, S. R. Benson, M. J. Weise, R. W. Henry, D. P. Costa, Tracking apex marine predator movements in a dynamic ocean. *Nature* 475, 86–90 (2011).
- 4. N. Queiroz, N. E. Humphries, A. Couto, M. Vedor, I. da Costa, A. M. M. Sequeira, G. Mucientes, A. M. Santos, F. J. Abascal, D. L. Abercrombie, K. Abrantes, D. Acuña-Marrero, A. S. Afonso, P. Afonso, D. Anders, G. Araujo, R. Arauz, P. Bach, A. Barnett, D. Bernal, M. L. Berumen, S. B. Lion, N. P. A. Bezerra, A. V. Blaison, B. A. Block, M. E. Bond, R. Bonfil, R. W. Bradford, C. D. Braun, E. J. Brooks, A. Brooks, J. Brown, B. D. Bruce, M. E. Byrne, S. E. Campana, A. B. Carlisle, D. D. Chapman, T. K. Chapple, J. Chisholm, C. R. Clarke, E. G. Clua, J. E. M. Cochran, E. C. Crochelet, L. Dagorn, R. Daly, D. D. Cortés, T. K. Doyle, M. Drew, C. A. J. Duffy, T. Erikson, E. Espinoza, L. C. Ferreira, F. Ferretti, J. D. Filmalter, G. C. Fischer, R. Fitzpatrick, J. Fontes, F. Forget, M. Fowler, M. P. Francis, A. J. Gallagher, E. Gennari, S. D. Goldsworthy, M. J. Gollock, J. R. Green, J. A. Gustafson, T. L. Guttridge, H. M. Guzman, N. Hammerschlag, L. Harman, F. H. V. Hazin, M. Heard, A. R. Hearn, J. C. Holdsworth, B. J. Holmes, L. A. Howey, M. Hoyos, R. E. Hueter, N. E. Hussey, C. Huveneers, D. T. Irion, D. M. P. Jacoby, O. J. D. Jewell, R. Johnson, L. K. B. Jordan, S. J. Jorgensen, W. Joyce, C. A. K. Daly, J. T. Ketchum, A. P. Klimley, A. A. Kock, P. Koen, F. Ladino, F. O. Lana, J. S. E. Lea, F. Llewellyn, W. S. Lyon, A. MacDonnell, B. C. L. Macena, H. Marshall, J. D. McAllister, R. McAuley, M. A. Meÿer, J. J. Morris, E. R. Nelson, Y. P. Papastamatiou, T. A. Patterson, C. Peñaherrera-Palma, J. G. Pepperell, S. J. Pierce, F. Poisson, L. M. Quintero, A. J. Richardson, P. J. Rogers, C. A. Rohner, D. R. L. Rowat, M. Samoilys, J. M. Semmens, M. Sheaves, G. Shillinger, M. Shivji, S. Singh, G. B. Skomal, M. J. Smale, L. B. Snyders, G. Soler, M. Soria, K. M. Stehfest, J. D. Stevens, S. R. Thorrold, M. T. Tolotti, A. Towner, P. Travassos, J. P. Tyminski, F. Vandeperre, J. J. Vaudo, Y. Y. Watanabe, S. B. Weber, B. M. Wetherbee, T. D. White, S. Williams,

P. M. Zárate, R. Harcourt, G. C. Hays, M. G. Meekan, M. Thums, X. Irigoien, V. M. Eguiluz, C. M. Duarte, L. L. Sousa, S. J. Simpson, E. J. Southall, D. W. Sims, Global spatial risk assessment of sharks under the footprint of fisheries. *Nature* **572**, 461–466 (2019).

- N. K. Dulvy, N. Pacoureau, C. L. Rigby, R. A. Pollom, R. W. Jabado, D. A. Ebert, B. Finucci, C. M. Pollock, J. Cheok, D. H. Derrick, K. B. Herman, C. S. Sherman, W. J. VanderWright, J. M. Lawson, R. H. L. Walls, J. K. Carlson, P. Charvet, K. K. Bineesh, D. Fernando, G. M. Ralph, J. H. Matsushiba, C. Hilton-Taylor, S. V. Fordham, C. A. Simpfendorfer, Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. *Curr. Biol.* **31**, 4773–4787.e8 (2021).
- 6. D. J. McCauley, H. S. Young, R. B. Dunbar, J. A. Estes, B. X. Semmens, F. Micheli, Assessing the effects of large mobile predators on ecosystem connectivity. *Ecol. Appl.* **22**, 1711–1717 (2012).
- N. Hammerschlag, O. J. Schmitz, A. S. Flecker, K. D. Lafferty, A. Sih, T. B. Atwood, A. J. Gallagher, D. J. Irschick, R. Skubel, S. J. Cooke, Ecosystem function and services of aquatic predators in the anthropocene. *Trends Ecol. Evol.* 34, 369–383 (2019).
- H. Murua, S. P. Griffiths, A. J. Hobday, S. C. Clarke, E. Cortés, E. L. Gilman, J. Santiago, H. Arrizabalaga, P. de Bruyn, J. Lopez, A. M. Aires-da-Silva, V. Restrepo, Shark mortality cannot be assessed by fishery overlap alone. *Nature* 595, E4–E7 (2021).
- N. Queiroz, N. E. Humphries, A. Couto, M. Vedor, I. da Costa, A. M. M. Sequeira, G. Mucientes, A. M. Santos, F. J. Abascal, D. L. Abercrombie, K. Abrantes, D. Acuña-Marrero, A. S. Afonso, P. Afonso, D. Anders, G. Araujo, R. Arauz, P. Bach, A. Barnett, D. Bernal, M. L. Berumen, S. B. Lion, N. P. A. Bezerra, A. V. Blaison, B. A. Block, M. E. Bond, R. Bonfil, R. W. Bradford, C. D. Braun, E. J. Brooks, A. Brooks, J. Brown, B. D. Bruce, M. E. Byrne, S. E. Campana, A. B. Carlisle, D. D. Chapman, T. K. Chapple, J. Chisholm, C. R. Clarke, E. G. Clua, J. E. M. Cochran, E. C. Crochelet, L. Dagorn, R. Daly, D. D. Cortés, T. K. Doyle, M. Drew, C. A. J. Duffy, T. Erikson, E. Espinoza, L. C. Ferreira, F. Ferretti, J. D. Filmalter, G. C. Fischer, R. Fitzpatrick, J. Fontes, F. Forget, M. Fowler, M. P. Francis, A. J. Gallagher, E. Gennari, S. D. Goldsworthy, M. J. Gollock, J. R. Green, J. A. Gustafson, T. L. Guttridge, H. M. Guzman, N. Hammerschlag, L. Harman, F. H. V. Hazin, M. Heard, A. R. Hearn, J. C. Holdsworth, B. J. Holmes, L. A. Howey, M. Hoyos, R. E. Hueter, N. E. Hussey, C. Huveneers, D. T. Irion, D. M. P. Jacoby, O. J. D. Jewell, R. Johnson, L. K. B. Jordan, W. Joyce, C. A.

K. Daly, J. T. Ketchum, A. P. Klimley, A. A. Kock, P. Koen, F. Ladino, F. O. Lana, J. S. E. Lea, F. Llewellyn, W. S. Lyon, A. MacDonnell, B. C. L. Macena, H. Marshall, J. D. McAllister, M. A. Meÿer, J. J. Morris, E. R. Nelson, Y. P. Papastamatiou, C. Peñaherrera-Palma, S. J. Pierce, F. Poisson, L. M. Quintero, A. J. Richardson, P. J. Rogers, C. A. Rohner, D. R. L. Rowat, M. Samoilys, J. M. Semmens, M. Sheaves, G. Shillinger, M. Shivji, S. Singh, G. B. Skomal, M. J. Smale, L. B. Snyders, G. Soler, M. Soria, K. M. Stehfest, S. R. Thorrold, M. T. Tolotti, A. Towner, P. Travassos, J. P. Tyminski, F. Vandeperre, J. J. Vaudo, Y. Y. Watanabe, S. B. Weber, B. M. Wetherbee, T. D. White, S. Williams, P. M. Zárate, R. Harcourt, G. C. Hays, M. G. Meekan, M. Thums, X. Irigoien, V. M. Eguiluz, C. M. Duarte, L. L. Sousa, S. J. Simpson, E. J. Southall, D. W. Sims, Reply to: Shark mortality cannot be assessed by fishery overlap alone. *Nature* 595, E8–E16 (2021).

- 10. R. Coelho, J. Fernandez-Carvalho, M. N. Santos, Habitat use and diel vertical migration of bigeye thresher shark: Overlap with pelagic longline fishing gear. *Mar. Environ. Res.* **112**, 91–99 (2015).
- E. Gilman, M. Chaloupka, P. Bach, H. Fennell, M. Hall, M. Musyl, S. Piovano, F. Poisson, L. Song, Effect of pelagic longline bait type on species selectivity: A global synthesis of evidence. *Rev. Fish Biol. Fish.* **30**, 535–551 (2020).
- N. M. Whitney, K. O. Lear, J. J. Morris, R. E. Hueter, J. K. Carlson, H. M. Marshall, Connecting post-release mortality to the physiological stress response of large coastal sharks in a commercial longline fishery. *PLOS ONE* 16, e0255673 (2021).
- A. J. Hobday, J. R. Hartog, T. Timmiss, J. Fielding, Dynamic spatial zoning to manage southern bluefin tuna (*Thunnus maccoyii*) capture in a multi-species longline fishery. *Fish. Oceanogr.* 19, 243– 253 (2010).
- 14. J. Thorburn, P. J. Wright, E. Lavender, J. Dodd, F. Neat, J. C. A. Martin, C. Lynam, M. James, Seasonal and ontogenetic variation in depth use by a critically endangered benthic elasmobranch and its implications for spatial management. *Front. Mar. Sci.* 8, 656368 (2021).
- L. C. Ferreira, K. Mansfield, M. Thums, M. G. Meekan, in *Shark Research: Emerging Technologies* and Applications for the Field and Laboratory, J. C. Carrier, M. R. Heithaus, C. A. Simpfendorfer, Eds. (CRC Press, 2019), pp. 357–377.

- F. G. Carey, J. V. Scharold, A. J. Kalmijn, Movements of blue sharks (*Prionace glauca*) in depth and course. *Mar. Biol.* **106**, 329–342 (1990).
- S. R. Thorrold, P. Afonso, J. Fontes, C. D. Braun, R. S. Santos, G. B. Skomal, M. L. Berumen, Extreme diving behaviour in devil rays links surface waters and the deep ocean. *Nat. Commun.* 5, 1–7 (2014).
- 18. P. A. Klimley, S. C. Beavers, T. H. Curtis, S. J. Jorgensen, Movements and swimming behavior of three species of sharks in La Jolla Canyon, California. *Environ. Biol. Fishes* **63**, 117–135 (2002).
- 19. S. Andrzejaczek, A. C. Gleiss, C. B. Pattiaratchi, M. G. Meekan, Patterns and drivers of vertical movements of the large fishes of the epipelagic. *Rev. Fish Biol. Fish.* **29**, 335–354 (2019).
- C. D. Braun, M. C. Arostegui, S. R. Thorrold, Y. P. Papastamatiou, P. Gaube, J. Fontes, P. Afonso, The functional and ecological significance of deep diving by large marine predators. *Ann. Rev. Mar. Sci.* 14, 129–159 (2021).
- D. J. Madigan, A. J. Richardson, A. B. Carlisle, S. B. Weber, J. Brown, N. E. Hussey, Water column structure defines vertical habitat of twelve pelagic predators in the South Atlantic. *ICES J. Mar. Sci.* 78, 867–883 (2021).
- M. J. Costello, P. Tsai, P. S. Wong, A. K. L. Cheung, Z. Basher, C. Chaudhary, Marine biogeographic realms and species endemicity. *Nat. Commun.* 8, 1057 (2017).
- M. G. Meekan, L. A. Fuiman, R. Davis, Y. Berger, M. Thums, Swimming strategy and body plan of the world's largest fish: Implications for foraging efficiency and thermoregulation. *Front. Mar. Sci.* 2, 1–8 (2015).
- 24. D. Bernal, J. K. Carlson, K. J. Goldman, C. G. Lowe, in *Biology of Sharks and Their Relatives*, J. C. Carrier, J. A. Musick, M. R. Heithaus, Eds. (CRC Press, 2012), pp. 211–237.
- 25. M. Thums, M. Meekan, J. Stevens, S. Wilson, J. Polovina, Evidence for behavioural thermoregulation by the world's largest fish. *J. R. Soc. Interface* **10**, 20120477 (2013).

- 26. S. J. Jorgensen, A. P. Klimley, A. F. Muhlia-Melo, Scalloped hammerhead shark *Sphyrna lewini*, utilizes deep-water, hypoxic zone in the gulf of California. *J. Fish Biol.* **74**, 1682–1687 (2009).
- 27. D. J. Curnick, S. Andrzejaczek, D. M. P. Jacoby, D. M. Coffey, A. B. Carlisle, T. K. Chapple, F. Ferretti, R. J. Schallert, T. White, B. A. Block, H. J. Koldewey, B. Collen, Behavior and ecology of silky sharks around the Chagos Archipelago and evidence of Indian Ocean wide movement. *Front. Mar. Sci.* 7, 596619 (2020).
- S. Andrzejaczek, T. K. Chapple, D. J. Curnick, A. B. Carlisle, M. Castleton, D. M. P. Jacoby, L. R. Peel, R. J. Schallert, D. M. Tickler, B. A. Block, Individual variation in residency and regional movements of reef manta rays *Mobula alfredi* in a large marine protected area. *Mar. Ecol. Prog. Ser.* 639, 137, 153 (2020).
- 29. B. J. Holmes, J. G. Pepperell, S. P. Griffiths, F. R. A. Jaine, I. R. Tibbetts, M. B. Bennett, Tiger shark (*Galeocerdo cuvier*) movement patterns and habitat use determined by satellite tagging in eastern Australian waters. *Mar. Biol.* 161, 2645–2658 (2014).
- 30. J. P. Tyminski, R. de la Parra-Venegas, J. González Cano, R. E. Hueter, Vertical movements and patterns in diving behavior of whale sharks as revealed by pop-up satellite tags in the Eastern Gulf of Mexico. *PLOS ONE* 10, 1–25 (2015).
- S. Andrzejaczek, R. J. Schallert, K. Forsberg, N. S. Arnoldi, M. Cabanillas-Torpoco, W. Purizaca, B. A. Block, Reverse diel vertical movements of oceanic manta rays off the northern coast of Peru and implications for conservation. *Ecol. Solut. Evid.* 2, 1–13 (2021).
- 32. A. D. Marshall, M. B. Bennett, The frequency and effect of shark-inflicted bite injuries to the reef manta ray *Manta alfredi*. *African J. Mar. Sci.* **32**, 573–580 (2010).
- 33. S. E. Campana, A. Dorey, M. Fowler, W. Joyce, Z. Wang, D. Wright, I. Yashayaev, Migration pathways, behavioural thermoregulation and overwintering grounds of blue sharks in the Northwest Atlantic. *PLOS ONE* **6**, e16854 (2011).

- 34. G. Biais, Y. Coupeau, B. Séret, B. Calmettes, R. Lopez, S. Hetherington, D. Righton, Return migration patterns of porbeagle shark (*Lamna nasus*) in the Northeast Atlantic: Implications for stock range and structure. *ICES J. Mar. Sci.* 74, 1268–1276 (2017).
- 35. J. Thorburn, F. Neat, I. Burrett, L. A. Henry, D. M. Bailey, C. S. Jones, L. R. Noble, Ontogenetic variation in movements and depth use, and evidence of partial migration in a benthopelagic elasmobranch. *Front. Ecol. Evol.* 7, 1–14 (2019).
- 36. G. B. Skomal, S. I. Zeeman, J. H. Chisholm, E. L. Summers, H. J. Walsh, K. W. McMahon, S. R. Thorrold, Transequatorial migrations by basking sharks in the Western Atlantic Ocean. *Curr. Biol.* 19, 1019–1022 (2009).
- 37. M. L. Dicken, N. E. Hussey, H. M. Christiansen, M. J. Smale, N. Nkabi, G. Cliff, S. P. Wintner, Diet and trophic ecology of the tiger shark (*Galeocerdo cuvier*) from South African waters. *PLOS ONE* 12, 1–25 (2017).
- U. H. Thygesen, T. A. Patterson, Oceanic diel vertical migrations arising from a predator-prey game. *Theor. Ecol.* 12, 17–29 (2019).
- S. S. Urmy, K. J. Benoit-Bird, Fear dynamically structures the ocean's pelagic zone. *Curr. Biol.* 31, 5086–5092 (2021).
- 40. G. C. Hays, A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. *Hydrobiologia* **503**, 163–170 (2003).
- 41. D. W. Sims, E. J. Southall, G. A. Tarling, J. D. Metcalfe, Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. *J. Anim. Ecol.* **74**, 755–761 (2005).
- 42. P. J. Burke, J. Mourier, T. F. Gaston, J. E. Williamson, Novel use of pop-up satellite archival telemetry in sawsharks: Insights into the movement of the common sawshark *Pristiophorus cirratus* (Pristiophoridae). *Anim. Biotelemetry* 8, 1–11 (2020).

- 43. L. R. Peel, G. M. W. Stevens, R. Daly, C. A. K. Daly, S. P. Collin, J. Nogués, M. G. Meekan, Regional movements of reef manta rays (Mobula alfredi) in Seychelles Waters. *Front. Mar. Sci.* 10, 10.3389/fmars.2020.00558 (2020).
- 44. F. R. A. Jaine, C. A. Rohner, S. J. Weeks, L. I. E. Couturier, M. B. Bennett, K. A. Townsend, A. J. Richardson, Movements and habitat use of reef manta rays off eastern Australia: Offshore excursions, deep diving and eddy affinity revealed by satellite telemetry. *Mar. Ecol. Prog. Ser.* 510, 73–86 (2014).
- 45. W. J. Chivers, A. W. Walne, G. C. Hays, Mismatch between marine plankton range movements and the velocity of climate change. *Nat. Commun.* **8**, 14434 (2017).
- 46. M. Espinoza, M. Cappo, M. R. Heupel, A. J. Tobin, C. A. Simpfendorfer, Quantifying shark distribution patterns and species-habitat associations: Implications of Marine Park zoning. *PLOS ONE* 9, e106885 (2014).
- 47. M. Cachera, F. Le Loc'h, Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes). *Ecol. Evol.* **7**, 6292–6303 (2017).
- 48. R. W. Stein, C. G. Mull, T. S. Kuhn, N. C. Aschliman, L. N. K. Davidson, J. B. Joy, G. J. Smith, N. K. Dulvy, A. O. Mooers, Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. *Nat. Ecol. Evol.* 2, 288–298 (2018).
- 49. D. Hasegawa, H. Yamazaki, R. G. Lueck, L. Seuront, How islands stir and fertilize the upper ocean. *Geophys. Res. Lett.* **31**, 2–5 (2004).
- 50. R. Bonfil, in *Sharks of the Open Ocean: Biology, Fisheries and Conservation*, M. D. Camhi, E. K. Pikitch, E. A. Babcock, Eds. (Blackwell Publishing Ltd., 2008), pp. 114–127.
- 51. D. Ramírez-Macías, N. Queiroz, S. J. Pierce, N. E. Humphries, D. W. Sims, J. M. Brunnschweiler, Oceanic adults, coastal juveniles: Tracking the habitat use of whale sharks off the Pacific coast of Mexico. *PeerJ.* 2017, 1–23 (2017).

- 52. A. S. Afonso, F. H. V. Hazin, Vertical movement patterns and ontogenetic niche expansion in the tiger shark, *Galeocerdo cuvier*. *PLOS ONE* **10**, 1–26 (2015).
- 53. S. Andrzejaczek, A. C. Gleiss, L. K. B. Jordan, C. B. Pattiaratchi, L. A. Howey, E. J. Brooks, M. G. Meekan, Temperature and the vertical movements of oceanic whitetip sharks, *Carcharhinus longimanus*. Sci. Rep. 8, 1–12 (2018).
- 54. V. J. Wearmouth, D. W. Sims, Chapter 2 Sexual segregation in marine fish, reptiles, birds and Mammals. *Adv. Mar. Biol.* **54**, 107–170 (2008).
- 55. A. P. Klimley, The determinants of sexual segregation in the scalloped hammerhead shark, Sphyrna lewini. *Environ. Biol. Fishes* **18**, 27–40 (1987).
- 56. S. J. Jorgensen, N. S. Arnoldi, E. E. Estess, T. K. Chapple, M. Rückert, S. D. Anderson, B. A. Block, Eating or meeting? Cluster analysis reveals intricacies of white shark (*Carcharodon carcharias*) migration and offshore behavior. *PLOS ONE* 7, 1–10 (2012).
- 57. S. K. Lowerre-Barbieri, R. Kays, J. T. Thorson, M. Wikelski, The ocean's movescape: Fisheries management in the bio-logging decade (2018-2028). *ICES J. Mar. Sci.* **76**, 477–488 (2019).
- 58. E. L. Hazen, K. L. Scales, S. M. Maxwell, D. K. Briscoe, H. Welch, S. J. Bograd, H. Bailey, S. R. Benson, T. Eguchi, H. Dewar, S. Kohin, D. P. Costa, L. B. Crowder, R. L. Lewison, A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. *Sci. Adv.* 4, eaar3001 (2018).
- 59. A. B. Carlisle, D. Tickler, J. J. Dale, F. Ferretti, D. J. Curnick, T. K. Chapple, R. J. Schallert, M. Castleton, B. A. Block, Estimating space use of mobile fishes in a large marine protected area with methodological considerations in acoustic array design. *Front. Mar. Sci.* 6, 256 (2019).
- 60. M. Mohri, T. Nishida, Consideration on distribution of adult yellowfin tuna (*Thunnus albacares*) in the Indian Ocean based on Japanese tuna longline fisheries and survey information. *J. Natl. Fish Univ.* 49, 1–11 (2000).

- 61. D. Bromhead, S. Clarke, S. Hoyle, B. Muller, P. Sharples, S. Harley, Identification of factors influencing shark catch and mortality in the Marshall Islands tuna longline fishery and management implications. *J. Fish Biol.* **80**, 1870–1894 (2012).
- 62. P. A. Butcher, T. P. Piddocke, A. P. Colefax, B. Hoade, V. M. Peddemors, L. Borg, B. R. Cullis, Beach safety: Can drones provide a platform for sighting sharks? *Wildl. Res.* **46**, 701–712 (2019).
- 63. S. Oleksyn, L. Tosetto, V. Raoult, K. E. Joyce, J. E. Williamson, Going batty: The challenges and opportunities of using drones to monitor the behaviour and habitat use of rays. *Drones* **5**, 12 (2021).
- 64. W. D. Robbins, V. M. Peddemors, S. J. Kennelly, M. C. Ives, Experimental evaluation of shark detection rates by aerial observers. *PLOS ONE* **9**, e83456 (2014).
- 65. L. Harding, A. Jackson, A. Barnett, I. Donohue, L. Halsey, C. Huveneers, C. Meyer, Y. Papastamatiou, J. M. Semmens, E. Spencer, Y. Watanabe, N. Payne, Endothermy makes fishes faster but does not expand their thermal niche. *Funct. Ecol.* **35**, 1951–1959 (2021).
- 66. M. Vedor, N. Queiroz, G. Mucientes, A. Couto, I. da Costa, A. Dos Santos, F. Vandeperre, J. Fontes,
  P. Afonso, R. Rosa, N. E. Humphries, D. W. Sims, Climate-driven deoxygenation elevates fishing vulnerability for the ocean's widest ranging shark. *eLife* 10, e62508 (2021).
- 67. M. Whitford, A. P. Klimley, An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies. *Anim. Biotelemetry* **7**, 1–24 (2019).
- 68. C. W. Speed, I. C. Field, M. G. Meekan, C. J. A. Bradshaw, Complexities of coastal shark movements and their implications for management. *Mar. Ecol. Prog. Ser.* **408**, 275–293 (2010).
- 69. N. M. Whitney, C. F. White, A. C. Gleiss, G. D. Schwieterman, P. Anderson, R. E. Hueter, G. B. Skomal, A novel method for determining post-release mortality, behavior, and recovery period using acceleration data loggers. *Fish. Res.* 183, 210–221 (2016).
- 70. E. M. Johnston, L. G. Halsey, N. L. Payne, A. A. Kock, G. Iosilevskii, B. Whelan, J. D. R. Houghton, Latent power of basking sharks revealed by exceptional breaching events. *Biol. Lett.* 14, 20180537 (2018).

- 71. S. Lisovski, S. Bauer, M. Briedis, S. C. Davidson, K. L. Dhanjal-Adams, M. T. Hallworth, J. Karagicheva, C. M. Meier, B. Merkel, J. Ouwehand, L. Pedersen, E. Rakhimberdiev, A. Roberto-Charron, N. E. Seavy, M. D. Sumner, C. M. Taylor, S. J. Wotherspoon, E. S. Bridge, Light-level geolocator analyses: A user's guide. *J. Anim. Ecol.* **89**, 221–236 (2020).
- 72. C. D. Braun, G. B. Skomal, S. R. Thorrold, Integrating archival tag data and a high-resolution oceanographic model to estimate basking shark (*Cetorhinus maximus*) movements in the western Atlantic. *Front. Mar. Sci.* 5, 25 (2018).
- 73. P. A. Butcher, A. P. Colefax, R. A. Gorkin, S. M. Kajiura, N. A. López, J. Mourier, C. R. Purcell, G. B. Skomal, J. P. Tucker, A. J. Walsh, J. E. Williamson, V. Raoult, The drone revolution of shark science: A review. *Drones.* 5, 1–28 (2021).
- 74. D. M. Coffey, A. B. Carlisle, E. L. Hazen, B. A. Block, Oceanographic drivers of the vertical distribution of a highly migratory, endothermic shark. *Sci. Rep.* **7**, 10434 (2017).
- S. Mitchell, D. Doolette, Recreational technical diving part 1: An introduction to technical diving methods. *Undersea Hyperb. Med.* 43, 86–93 (2013).
- 76. S. K. Whitmarsh, P. G. Fairweather, C. Huveneers, What is Big BRUVver up to? Methods and uses of baited underwater video. *Rev. Fish Biol. Fish.* **27**, 53–73 (2017).
- 77. G. Carroll, K. K. Holsman, S. Brodie, J. T. Thorson, E. L. Hazen, S. J. Bograd, M. A. Haltuch, S. Kotwicki, J. Samhouri, P. Spencer, E. Willis-Norton, R. L. Selden, A review of methods for quantifying spatial predator–prey overlap. *Glob. Ecol. Biogeogr.* 28, 1561–1577 (2019).
- 78. F. Lindgren, H. Rue, Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).
- 79. D. Simpson, H. Rue, A. Riebler, T. G. Martins, S. H. Sørbye, Penalising model component complexity: A principled, practical approach to constructing priors. *Stat. Sci.* **32**, 1–28 (2017).
- 80. G. A. Fuglstad, I. G. Hem, A. Knight, H. Rue, A. Riebler, Intuitive joint priors for variance parameters. *Bayesian Anal.* **15**, 1109–1137 (2020).

- E. Cortés, Standardized diet compositions and trophic levels of sharks. *ICES J. Mar. Sci.* 56, 707–717 (1999).
- T. Otake, K. Mizue, Direct evidence for oophagy in thresher shark, *Alopias pelagicus. Japanese J. Ichthyol.* 28, 171–172 (1981).
- 83. J. C. Pérez-Jiménez, thesis, Universidad de Guadalajara (1997).
- 84. D. A. Ebert, M. Dando, S. Fowler, *Sharks of the World: A Complete Guide* (Princeton Univ. Press, 2021).
- 85. R. Froese, D. Pauly, Fishbase. World Wide Web electronic publication. FishBase (2019).
- 86. J. Mendizabal, D. Oriza, thesis, UNAM, Mexico City (1995).
- 87. N. E. Kohler, J. G. Casey, P. A. Turner, Length-length and length-weight relationships for 13 shark species from the Western North Atlantic (NOAA Tech. Memo. NMFS-NE-110, 1996).
- I. Byrkjedal, J. S. Christiansen, O. V. Karamushko, G. Langhelle, A. Lynghammar, Arctic skate *Amblyraja hyperborea* preys on remarkably large glacial eelpouts *Lycodes frigidus*. J. Fish Biol. 86, 360–364 (2015).
- 89. R. Lopez Climent, thesis, The Arctic University of Norway (2021).
- 90. P. Last, G. Naylor, B. Séret, W. White, M. de Carvalho, M. Stehmann, Eds., *Rays of the World* (CSIRO Publishing, 2016).
- 91. I. G. Taylor, V. Gertseva, A. Stephens, J. Bizzaro, Status of Big Skate (*Beringraja binoculata*) off the U.S. Pacific Coast in 2019 (Pacific Fishery Management Council, Portland, OR, 2020).
- 92. J. J. Smart, A. Chin, L. Baje, A. J. Tobin, C. A. Simpfendorfer, W. T. White, Life history of the silvertip shark *Carcharhinus albimarginatus* from Papua New Guinea. *Coral Reefs.* 36, 577–588 (2017).
- 93. P. R. Last, J. D. Stevens, Sharks and Rays of Australia (CSIRO Publishing, ed. 2, 2009).

- 94. M. Drew, P. Rogers, C. Huveneers, Slow life-history traits of a neritic predator, the bronze whaler (*Carcharhinus brachyurus*). *Mar. Freshw. Res.* **68**, 461–472 (2017).
- 95. S. J. Joung, C. T. Chen, H. H. Lee, K. M. Liu, Age, growth, and reproduction of silky sharks, *Carcharhinus falciformis*, in northeastern Taiwan waters. *Fish. Res.* **90**, 78–85 (2008).
- 96. B. M. Wetherbee, G. L. Crow, C. G. Lowe, Biology of the Galapagos shark, *Carcharhinus galapagensis*, in Hawai'i. *Environ. Biol. Fishes* 45, 299–310 (1996).
- 97. S. Branstetter, Age, growth and reproductive biology of the silky shark, *Carcharhinus falciformis*, and the scalloped hammerhead, *Sphyrna lewini*, from the northwestern Gulf of Mexico. *Environ. Biol. Fishes* **19**, 161–173 (1987).
- 98. S. J. Joung, N. F. Chen, H. H. Hsu, K. M. Liu, Estimates of life history parameters of the oceanic whitetip shark, *Carcharhinus longimanus*, in the Western North Pacific Ocean. *Mar. Biol. Res.* 12, 758–768 (2016).
- 99. R. Tavares, Fishery biology of the Caribbean reef sharks, *Carcharhinus perezi* (Poey, 1876), in a Caribbean insular platform: Los Roques Archipelago national park, *Venezuela. Panam. J. Aquat. Sci.* 4, 500–512 (2009).
- 100. H. M. Christiansen, V. Lin, S. Tanaka, A. Velikanov, H. F. Mollet, S. P. Wintner, S. V. Fordham, A. T. Fisk, N. E. Hussey, The last frontier: Catch records of white sharks (*Carcharodon carcharias*) in the northwest pacific ocean. *PLOS ONE* 9, e94407 (2014).
- 101. J. G. Casey, H. L. Pratt, Distribution of the white shark, *Carcharodon carcharias*, in the western North Atlantic. *Mem. Calif. Acad. Sci.* **9**, 48–90 (1985).
- 102. L. J. Compagno, Sharks of the world. FAO Species Cat. Fish. Purp. 4, 251-655 (1984).
- 103. N. M. Whitney, G. L. Crow, Reproductive biology of the tiger shark (*Galeocerdo cuvier*) in Hawaii. *Mar. Biol.* 151, 63–70 (2007).

- 104. L. O. Lucifora, R. C. Menni, A. H. Escalante, Reproductive biology of the school shark, *Galeorhinus galeus*, off Argentina: Support for a single south western Atlantic population with synchronized migratory movements. *Environ. Biol. Fishes* **71**, 199–209 (2004).
- 105. C. Capapé, F. Hemida, O. Guelorget, J. Barrull, I. Mate, J. Ben Soyissi, M. N. Bradaï, Reproductive biology of the bluntnose sixgill shark *Hexanchus griseus* (Bonnaterre, 1788) (Chondrichthyes: Hexanchidae) from the Mediterranean Sea: A review. *Acta Adriat.* 45, 95–106 (2004).
- 106. Gabriela-Aguilar, thesis, Universidad Nacional Autónoma de México (2007).
- 107. T. N. Schwanck, M. Schweinsberg, K. P. Lampert, T. L. Guttridge, R. Tollrian, O. O'Shea, Linking local movement and molecular analysis to explore philopatry and population connectivity of the southern stingray *Hypanus americanus*. J. Fish Biol. 96, 1475–1488 (2020).
- 108. J. D. Stevens, Observations on reproduction in the shortfin Mako *Isurus oxyrinchus*. *Copeia* **1983**, 126–130 (1983).
- 109. M. P. Francis, M. S. Shivji, C. A. J. Duffy, P. J. Rogers, M. E. Byrne, B. M. Wetherbee, S. C. Tindale, W. S. Lyon, M. M. Meyers, Oceanic nomad or coastal resident? Behavioural switching in the shortfin mako shark (*Isurus oxyrinchus*). *Mar. Biol.* **166**, 5 (2019).
- 110. R. G. Gilmore, observations on the embryos of the longfin mako, Isurus paucus, and the bigeye thresher, alopias superciliosus. *Copeia* **1983**, 375–382 (1983).
- A. Ruiz-Abierno, J. F. Márquez-Fariás, M. Trápaga-Roig, R. E. Hueter, Length at maturity of two pelagic sharks (*Isurus paucusandCarcharhinus longimanus*) found off northern Cuba. *Bull. Mar. Sci.* 97, 77–88 (2021).
- 112. N. Queiroz, N. E. Humphries, G. Mucientes, N. Hammerschlag, F. P. Lima, K. L. Scales, P. I. Miller, L. L. Sousa, R. Seabra, D. W. Sims, Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots. *Proc. Natl. Acad. Sci. U.S.A.* **113**, 1582–1587 (2016).

- 113. K. J. Goldman, J. A. Musick, Growth and maturity of salmon sharks (*Lamna ditropis*) in the eastern and western North Pacific, and comments on back-calculation methods. *Fish. Bull.* **104**, 278–292 (2006).
- 114. M. P. Francis, C. Duffy, Length at maturity in three pelagic sharks (*Lamna nasus, Isurus oxyrinchus*, and *Prionace glauca*) from New Zealand. *Fish. Bull.* **103**, 489–500 (2005).
- 115. J. D. Stewart, F. R. A. Jaine, A. J. Armstrong, A. O. Armstrong, M. B. Bennett, K. B. Burgess, L. I. E. Couturier, D. A. Croll, M. R. Cronin, M. H. Deakos, C. L. Dudgeon, D. Fernando, N. Froman, E. S. Germanov, M. A. Hall, S. Hinojosa-Alvarez, J. E. Hosegood, T. Kashiwagi, B. J. L. Laglbauer, N. Lezama-Ochoa, A. D. Marshall, F. McGregor, G. N. di Sciara, M. D. Palacios, L. R. Peel, A. J. Richardson, R. D. Rubin, K. A. Townsend, S. K. Venables, G. M. W. Stevens, Research priorities to support effective manta and devil ray conservation. *Front. Mar. Sci.* 5, 1–27 (2018).
- 116. A. D. Marshall, L. J. V. Compagno, M. B. Bennett, Redescription of the genus manta with resurrection of *Manta alfredi* (Krefft, 1868) (Chondrichthyes; Myliobatoidei; Mobulidae). *Zootaxa* 28, 1–28 (2009).
- 117. Manta Trust, Mobula mobular; mantatrust.org/mobula-mobular.
- 118. Manta Trust, Mobula munkiana; mantatrust.org/mobula-munkiana.
- 119. E. D. Farrell, S. Mariani, M. W. Clarke, Reproductive biology of the starry smooth-hound shark *Mustelus asterias*: Geographic variation and implications for sustainable exploitation. *J. Fish Biol.* 77, 1505–1525 (2010).
- 120. C. A. Awruch, S. M. Jones, M. G. Asorey, A. Barnett, Non-lethal assessment of the reproductive status of broadnose sevengill sharks (*Notorynchus cepedianus*) to determine the significance of habitat use in coastal areas. *Conserv. Physiol.* **2**, 1–14 (2014).
- 121. A. Barnett, J. D. Stevens, S. D. Frusher, J. M. Semmens, Seasonal occurrence and population structure of the broadnose sevengill shark *Notorynchus cepedianus* in coastal habitats of south-east Tasmania. J. Fish Biol. 77, 1688–1701 (2010).

- 122. M. C. Fernandez, F. Galvan-Magana, B. P. C. Vazquez, Reproductive biology of the blue shark *Prionace glauca* (Chondrichthyes: Carcharhinidae) off Baja California Sur, *México. aqua Int. J. Ichthyol.* 16, 1–10 (2011).
- 123. V. Raoult, V. Peddemors, J. E. Williamson, Biology of angel sharks (*Squatina sp.*) and sawsharks (*Pristiophorus sp.*) caught in south-eastern Australian trawl fisheries and the New South Wales sharkmeshing (bather-protection) program. *Mar. Freshw. Res.* 68, 207–212 (2017).
- 124. H. F. Mollet, J. M. Ezcurra, J. B. O'Sullivan, Captive biology of the pelagic stingray, *Dasyatis violacea* (Bonaparte, 1832). *Mar. Freshw. Res.* **53**, 531–541 (2002).
- 125. D. P. Veras, F. H. V Hazin, I. S. L. Branco, M. T. Tolotti, G. H. Burgess, Reproductive biology of the pelagic stingray, *Pteroplatytrygon violacea* (Bonaparte, 1832), in the equatorial and southwestern Atlantic Ocean. *Mar. Freshw. Res.* 65, 1035–1044 (2014).
- 126. B. M. Norman, J. D. Stevens, Size and maturity status of the whale shark (*Rhincodon typus*) at Ningaloo Reef in Western Australia. *Fish. Res.* **84**, 81–86 (2007).
- 127. J. NielsenI, R. B. Hedeholm, A. Lynghammar, L. M. McClusky, B. Berland, J. F. Steffensen, J. S. Christiansen, Assessing the reproductive biology of the Greenland shark (*Somniosus microcephalus*). *PLOS ONE* **15**, 1–22 (2020).
- 128. P. de Bruyn, S. F. J. Dudley, G. Cliff, M. J. Smale, Sharks caught in the protective gill nets off KwaZulu-Natal, South Africa. 11. The scalloped hammerhead shark *Sphyrna lewini* (Griffith and Smith). *African J. Mar. Sci.* 27, 517–528 (2005).
- 129. J. L. Y. Spaet, C. H. Lam, C. D. Braun, M. L. Berumen, Extensive use of mesopelagic waters by a Scalloped hammerhead shark (*Sphyrna lewini*) in the Red Sea. *Anim. Biotelemetry.* **5**, 1–12 (2017).
- 130. J. R. Pulver, A. Whatley, Length-weight relationships, location, and depth distributions for select gulf of Mexico reef fish species (NOAA Tech. Memo. NMFS-SEFSC-693, 2016).

- 131. A. Tagliafico, S. Rangel, M. K. Broadhurst, Maturation and reproduction of *Squalus cubensis* and *Squalus cf. quasimodo* (Squalidae, Squaliformes) in the southern Caribbean Sea. *Ichthyol. Res.* 66, 1–8 (2019).
- 132. O. Shipley, B. Talwar, D. Grubbs, E. Brooks, Isopods present on deep-water sharks *Squalus cubensis* and *Heptranchias perlo* from The Bahamas. *Mar. Biodivers.* **47**, 789–790 (2017).
- J. I. Castro, Biology of the blacktip shark, *Carcharhinus limbatus*, off the southeastern United States. *Bul. Mar. Sci.* 59, 508–522 (1996).
- 134. F. Mas, R. Forselledo, A. Domingo, Length-length relationships for six pelagic shark species commonly caught in the Southwestern Atlantic Ocean. *Collect. Vol. Sci. Pap. ICCAT* 70, 2441–2445 (2014).
- 135. L. M. Jones, W. B. Driggers, E. R. Hoffmayer, K. M. Hannan, A. N. Mathers, Reproductive biology of the cuban dogfish in the northern Gulf of Mexico. *Mar. Coast. Fish* **5**, 152–158 (2013).
- 136. S. P. Wintner, Preliminary study of vertebral growth rings in the whale shark, *Rhincodon typus*, from the east coast of South Africa. *Environ. Biol. Fishes* **59**, 441–451 (2000).
- 137. K. J. Goldman, Aspects of age, growth, demographics and thermal biology of two Lamniform shark species. *Sch. Mar. Sci. Virginia Inst. Mar. Sci.*, 220 (2002).
- 138. J. Ariz, A. Delgado de Molina, M. L. Ramos, J. C. Santana, Length-weight relationships, conversion factors and analyses of sex-ratio, by length-range, for several species of pelagic sharks caught in experimental cruises on board Spanish longliners in the South Western Indian Ocean during 2005. A Doc. Present. to Indian Ocean Tuna Comm. Work. Party Ecosyst. Bycatch 2007, 1–24 (2007).
- 139. S. Watanabe, WAIC and WBIC are information criteria for singular statistical model evaluation, in Proceedings of the Workshop on Information Theoretic Methods in Science and Engineering (2013), pp. 90–94.