A functional vulnerability framework for biodiversity conservation

Type Article
Date 2022-09
Language English
Author(s) Auber ArnaudORCID1, Waldock Conor2, 3, Maire AnthonyORCID4, Goberville EricORCID5, Albouy CamilleORCID6, 7, Algar Adam C.ORCID8, McLean MatthewORCID9, Brind'Amour AnikORCID10, Green Alison L.11, Tupper Mark12, 13, Vigliola LaurentORCID14, Kaschner KristinORCID15, Kesner-Reyes KathleenORCID16, Beger Maria17, 18, Tjiputra JerryORCID19, Toussaint AurèleORCID20, Violle Cyrille21, Mouquet Nicolas22, 23, Thuiller Wilfried24, Mouillot DavidORCID25
Affiliation(s) 1 : IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, Boulogne-sur-Mer, France
2 : Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
3 : Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
4 : EDF R&D LNHE - Laboratoire National d’Hydraulique et Environnement, 6 quai Watier, Chatou, France
5 : Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d’Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, Cedex 05, France
6 : Ecosystems and Landscape evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
7 : Unit of Land Change Science, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
8 : Department of Biology, Lakehead University, Thunder Bay, ON, Canada
9 : Department of Biology, Dalhousie University, Halifax, NS, Canada
10 : IFREMER, unité Ecologie et Modèles pour l’Halieutique, rue de l’Ile d’Yeu, BP21105, Nantes, cedex 3, France
11 : Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
12 : Institute of Marine Science, University of Portsmouth, Ferry Reach, Portsmouth, UK
13 : CGG, Crompton Way, Crawley, UK
14 : UMR ENTROPIE, IRD-UR-UNC-IFREMER-CNRS, Centre IRD de Nouméa, Nouméa Cedex, New-Caledonia, France
15 : Department of Biometry and Environmental Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
16 : Quantitative Aquatics, G.S. Khush Hall, IRRI, Los Baños, Philippines
17 : School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
18 : Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Australia
19 : NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
20 : Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
21 : CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
22 : CESAB – FRB, Montpellier, France
23 : UMR MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, Cedex, France
24 : Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Ecologie Alpine, Grenoble, France
25 : Institut Universitaire de France, Paris, France
Source Nature Communications (2041-1723) (Springer Science and Business Media LLC), 2022-09 , Vol. 13 , N. 1 , P. 4774 (13p.)
DOI 10.1038/s41467-022-32331-y
WOS© Times Cited 6

Setting appropriate conservation strategies in a multi-threat world is a challenging goal, especially because of natural complexity and budget limitations that prevent effective management of all ecosystems. Safeguarding the most threatened ecosystems requires accurate and integrative quantification of their vulnerability and their functioning, particularly the potential loss of species trait diversity which imperils their functioning. However, the magnitude of threats and associated biological responses both have high uncertainties. Additionally, a major difficulty is the recurrent lack of reference conditions for a fair and operational measurement of vulnerability. Here, we present a functional vulnerability framework that incorporates uncertainty and reference conditions into a generalizable tool. Through in silico simulations of disturbances, our framework allows us to quantify the vulnerability of communities to a wide range of threats. We demonstrate the relevance and operationality of our framework, and its global, scalable and quantitative comparability, through three case studies on marine fishes and mammals. We show that functional vulnerability has marked geographic and temporal patterns. We underline contrasting contributions of species richness and functional redundancy to the level of vulnerability among case studies, indicating that our integrative assessment can also identify the drivers of vulnerability in a world where uncertainty is omnipresent.

Full Text
File Pages Size Access
Publisher's official version 13 15 MB Open access
Supplementary information 21 1 MB Open access
Peer Review File 16 514 KB Open access
Reporting Summary 4 1 MB Open access
Source data 106 MB Open access
Top of the page

How to cite 

Auber Arnaud, Waldock Conor, Maire Anthony, Goberville Eric, Albouy Camille, Algar Adam C., McLean Matthew, Brind'Amour Anik, Green Alison L., Tupper Mark, Vigliola Laurent, Kaschner Kristin, Kesner-Reyes Kathleen, Beger Maria, Tjiputra Jerry, Toussaint Aurèle, Violle Cyrille, Mouquet Nicolas, Thuiller Wilfried, Mouillot David (2022). A functional vulnerability framework for biodiversity conservation. Nature Communications, 13(1), 4774 (13p.). Publisher's official version : https://doi.org/10.1038/s41467-022-32331-y , Open Access version : https://archimer.ifremer.fr/doc/00791/90253/