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Supplementary Methods: Species Distribution Modelling  

 

Reef and coastal grid system 

We first defined a coastal and reef grid to identify potentially valid areas for mapping species 

distributions at a 0.25° by 0.25° scale. Our general approach was to consider locations within a 0.5° 

buffer of coastal polygons, coral reef polygons, and local SCUBA surveys as valid for shallow-water 

reef fish presences. For global coastlines we used the Global Self-consistent, Hierarchical, High-

resolution Geography dataset (GSHHG) using low resolution level 1 (version 2.3.7)
1
. Additionally, to 

avoid missing coastal grid cells we inverse buffered this dataset by 0.26°. For coral reef locations we 

used the UNEP-WCMC “Global distribution of warm-water coral reefs” dataset (version 3)
2
. Finally, 

for local SCUBA surveys known to be performed in shallow water systems we used a compilation 

5,871 SCUBA transects (described below).  

 

Occurrence records and species ranges 

We obtained 12,629,945 records for 4,551 species using the AquaMaps occurrence record database 

(mainly comprised of OBIS, GBIF; personal communication K. Kaschner) (Figure 12). We removed 

3,186 fossil records, 6,277,227 duplicated geographic species records, and 442,050 open water and 

land records that were not consistent with our coastal and coral reef grid. We combined this open-

access presence only dataset with in-hand reef fish underwater visual census observations. The in-hand 

data come from curated citizen science and professional surveys, namely the Reef Life Survey
3
, Socio-

Ecological Reef Fish dataset (SERF)
4,5

 and GASPAR project dataset
6
 (see supporting information in 

Barneche et al. 2018 for full sampling description). These contained 253,834 records for 2,758 of the 

species present in the occurrence dataset at 5,871 unique locations. We filtered to include only unique 

locations to avoid overfitting resampled locations
7
, and removed species with <50 records in unique 

cells on a 0.25° global reef and coastal grid
8,9

. Our final set comprised of 2,340 species at 496,309 

unique georeferenced locations in 20,450 grid cells for analyses. We aligned all submitted taxonomic 

names across data sources using the function validate_names in rfishbase
10

 (version 3.0.4). 

 

Environmental variables 

We modelled species distributions and abundances using 6 environmental variables commonly used 

for modelling marine species
11,12,13

: maximum and minimum sea surface temperature (SST), minimum 

sea surface salinity (SSS), mean net primary productivity (NPP), minimum pH, mean degree heating 

weeks (DHW) and human gravity in a 500km
2
 area. Being ectothermic, fishes have strong metabolic 

and physiological responses to sea surface temperature. As such, occupancy limits of sea surface 

temperature correlate well with species thermal physiological limits
14

, there is correspondence 

amongst physiological and abundance optima
15,16

 and temperature also predicts well range shifts
17,18

 

and temporal change in fish assemblages
19,20

. Salinity and pH have direct effects on reef fish osmotic 

and ionic balance
21,22

 and can indirectly affect reef fish distributions by reducing the quality, amount 

and diversity of calcareous reef habitat
23,24,18

. We chose minimum salinity because of the reef fish 

assemblage diversity and biogeography are affected by freshwater flows
25,26,27

 and minimum pH 

because of the direct and indirect effects of ocean acidification on fishes
28,29

. Primary productivity 

indicates the amount of phytoplankton that form the base of many marine food chains, we included 

mean annual NPP as an indicator of annual energy available to upper trophic levels. Degree-heating 

weeks represent the accumulated thermal stress and is a strong predictor of coral bleaching
30,31,32

. 

Degree heating weeks is expressed as the unit °C-weeks. The daily degree heating week is calculated 

as the sum of temperatures above 1°C of summertime maximum temperatures for 84 days (12 weeks) 

prior, divided by 7 to give a weekly value
31

. Finally, we included the gravity of human impacts to 

control for the effect of human population on observation of species through introducing sampling 

biases
33,34

 or negatively affecting species’ populations
35,5

. We ensured our models were robust to 

variable multicollinearity which can bias range projections under climate change
36

. For each model, 

we checked that the Pearson correlation between pairs of variables were <0.7, and if not, retained the 

variable with the highest deviance explained and lowest error rate (depending on the model algorithm, 

see below). We iterated this process until we obtained a set of uncorrelated and maximally explanatory 

variables.  

 



Environmental background data 

The vast majority of our occurrence records come from unstructured surveys where species absences 

are not recorded. As such, we generated background environmental data (pseudo-absences) using a 

target-group approach
37

. Target group sampling was expected to reduce bias in our habitat suitability 

estimates by sampling background data from the available set of occurrence records. This process gave 

the background data a similar bias to the presence data and helped avoid extrapolation of absences 

beyond sampled environmental space. This approach has been demonstrated as robust in previous 

large-scale analyses of marine species distributions
38

. We assumed all our reef species form an 

appropriate target group because similar sampling tools are used to generate occurrence records (e.g., 

SCUBA underwater visual surveys). We generated ten times the number of background points 

compared to presence points
39

, sub-sampling with replacement when too few background points exist. 

To constrain the selection of background data to be within species potential ranges, we first produced 

a convex hull around species presences, retained intersecting marine provinces, and identified target 

record within this province range. We sampled 50% of background points from Spalding marine 

provinces that contain species presences, and 50% from adjacent provinces with no observed 

presences. The background data therefore balances our capacity to resolve internal range structure in 

addition to range edges
40

. To ensure models were robust to stochastic background data generation, we 

repeated the background data generation five times and refitted all models for each background 

sample.  

 

Fitting occurrence-based species distribution models 

We used a set of algorithms that represent a gradient in environmental response complexity 

(generalized linear models: GLM, generalized additive models: GAM, and random forests: RF). The 

chosen statistical algorithm is an important source of variation in species distribution model 

predictions
41

, particularly under climate change
42,36

. We fitted GLM and GAM using binomial error 

distributions and RFs as classification trees.  

 

We fitted GLMs with a binomial error distribution using least squares. We ensured models converged 

using ordered backward stepwise model selection based on model term contributions, which ensures a 

model converges before performing backward selection based on likelihood-ratio tests. Our GLMs 

represent the simplest response shapes of our model set so we fitted linear and quadratic terms only. 

We fitted GLMs in the stats R package after the optimal model structure was identified using a 

combination of packages buildmer
43

 and glmmTMB
44

 which provided efficient tools for model fitting 

and selection. 

 

We fitted GAMS with a binomial error distribution using quadratically penalized likelihood 

maximisation with the package mgcv
45,46

. We first tested that each independent covariate produces an 

identifiable model and included valid covariates in multiple regressions. We performed model 

selection using null-space penalization to reduce the effect of non-important covariates to 0 (i.e., 

setting the argument select = T)47. We used thin plate regressions splines and a basis dimension of 5 to 

allow intermediate flexibility and computational efficiency
46

.  

 

We fitted random forests using the R package randomForest
48

. Hyperparameter selection can have a 

large influence on model fit and default settings are unlikely to be optimal
49

. We tuned the number of 

variables randomly sampled at each split (mtry) and size of the sample drawn for each tree (sampsize). 

We used a grid approach to hyperparameter selection by varying mtry between the square root of the 

number of covariates, as suggested in (Breiman 2001)
50

, and the maximum number of covariates. We 

varied sampsize from 10% to 100% of the training sample in 10% increments. We balanced sampsize 

proportionate to the representation of classification groups (0,1) in the testing set using the strata 

setting. Because we varied the sample size, the optimal nodesize parameter is uninfluential and we set 

it to 1
49

. We evaluated the performance of the random forest hyperparameter grid using the true-skill 

statistic (TSS) of predicted vs. observed occurrence, and repeated the above steps 5 times to obtain a 

mean TSS due to the stochastic nature of the RF algorithm
51

. We fitted our final RF with the optimal 

hyperparameters that maximised TSS.  

 



Spatial cross-validation for model evaluation 

In evaluating model performance, spatial similarity can positively bias model evaluations. Within each 

background data set (n=5) we created a 5-fold spatially blocked cross-validation testing datasets 

(within each 5-fold pseudo-absence repetition) that were independent from training data. We used the 

spatialBlock function in the R package ‘blockCV’
52

 with systematic block selection optimised over 

500 iterations. We set the area of blocks as 10% of species occurrence area, determined as a bounding 

box of occurrences, such that each species blocking system was proportional to species’ range size. 

For occurrence-based models, we balanced folds according to the ratio of species occurrences and 

background data. We compared predicted habitat suitability to held-out presences and pseudo-absence 

data (Figure S13). We estimated the mean model true-positive rate (sensitivity), true-negative rate 

(specificity), true skill statistic (TSS), area under the curve statistic (AUC) using ecospat package in 

R
53

. In addition, for GLM and GAM we estimated model deviance squared (D
2
) as a measure of 

variation explained, for RF we also estimated model error rate as the proportion of combined false 

negatives and false positives. We estimated model predictive bias as an indicator of model overfitting. 

To do so, we evaluated the R
2
 between global model predictions (i.e., those used in the final analysis) 

and cross validation predictions (i.e., those used to evaluate our model performance). High model 

predictive bias (low R
2
) indicates model overfitting, whereby models fitted using all data are expected 

to poorly predict habitat suitability in new areas.  

 

Model projections 

We predicted habitat suitability for the present day (1985-2015) across our coastal and coral reef grid. 

We estimated habitat suitability under future climate conditions derived from six fully coupled global 

circulation models under the Coupled Model Inter-comparison Project Phase 6 (CMIP6): CNRM-

ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MPI-ESM1-2-LR, NorESM2-MM, 

UKESM1-0-LL. We selected models that provided SST, SSS, pH and NPP and forced our models 

under changes in these four variables. To match our present-day environmental variables used for 

building species distribution models, we averaged mean, minimum and maximum monthly values to 

yearly averages, and then to climatological averages between 1985-2015, 2015-2040, 2041-2070 and 

2071-2100. We used climatological averages to remove the influence of decadal climate oscillations 

(e.g., El Niño Southern Oscillation, Pacific Decadal Oscillation). We considered two Shared 

Socioeconomic Pathways: SSP1-2.6 and SSP5-8.5 which representative of high (‘fossil fuel 

development’) and low (‘sustainable’) emission futures where anthropogenic greenhouse gas 

emissions induce 2.6Wm
-2

 and 8.5Wm
-2

 increase in radiative forcing by the year 2100
54

, 

approximating Representative Concentration Pathway 2.6 and 8.5 in CMIP5. We estimated the change 

in each variable from 1985-2015 compared to future time periods, and applied this change to our 

present day spatially gridded environmental data. 

We predicted species distributions under future conditions for each species. To account for 

uncertainty arising from different model assumptions, we made a separate prediction for background 

data iterations (n=5 for distributions), earth systems models (n=6), shared socioeconomic pathways 

(n=2). To ensure predictions of suitability were robust, we first removed all models with an out-of-

sample TSS < 0.35
38

. Across model algorithms and background data iterations, we estimated the mean 

and standard deviation of suitability predictions weighted by the TSS. Next, we estimated the mean 

and standard deviation of habitat suitability predictions across all earth system model projections, 

before constraining future predictions by dispersal scenarios (see below). 

 

Dispersal 

Dispersal rates are poorly quantified and unknown for many fish species, especially at the relatively 

short time-scales considered here. Therefore, we modelled a range of dispersal scenarios (as in Warren 

et al. 2018
55

). First, we assumed no dispersal, in each new time-step species were constrained to their 

range in the previous time-step. In this scenario, extirpations from grid cells could not be recovered, 

and range expansions cannot occur. Second, we modelled dispersal informed by literature derived 

realized range shifts. Lenoir et al. (2020)
56

 report an mean latitudinal shift of 5.95±0.94km per year in 

fishes, Sunday et al. (2015)
57

 report shifts of 3.8±7 km per year, with larger ranged species tracking at 

a rate of 9.2km per year, and Fredston-Hermann et al. (2020)
58

 report shifts of cold range edges of 

6.7±0.8km per year but non-significant shifts in warm range edges. We modelled range shifts potential 



of 10km per year which is greater than the mean for most estimates because i) literature derived values 

often only consider north-south movements distances (e.g., Lenoir et al. 2020
56

), ii) depth shifts are 

unlikely to occur for many reef species considered here
59

 but often occur for the species considered in 

studies of realized range shifts, thereby literature estimates are likely to underestimate realized range 

shifts
17,19

. We did not consider dispersal differences amongst specific families or trait sets because 

evidence for strong trait-based effects on range shift magnitudes is mixed
60

. In fishes, Pinsky et al. 

(2013)
17

 find marine species capacity to track shifting climate isotherms are very weakly related to 

species traits because multiple different strategies to facilitate dispersal exist (e.g., adult movement, 

larval dispersal; but see Sunday et al. 2015
57

). Our third scenario was a ‘no-limitation’ scenario 

whereby species could migrate into all climatically suitable cells in their native province and 

additional adjacent provinces. 

  



 

 
 

 

 
Figure 1. Trait spaces (PCoA biplots) of the 2 pseudo-communities and the observed community in 

cases where data are presence/absence only. The blue circle separates pseudo-communities into 3 main 

categories according to the distribution of functional redundancy (heterogeneous: ‘Heter.’; 

homogeneous: ‘Homog.’; observed: ‘Obs.’).  

  



 

 

Figure 2. Sensitivity of AUC values to the number of disturbance series applied on communities. To 

test the effect of the number of disturbance series, 99 rarefaction curves were performed among which 

a varying number of curves (from 2 to 99) were randomly selected 100 times (n=[99-1]*100=9800 

rarefaction curves). Boxes are defines by lower and upper box boundaries 25th and 75th percentiles, 

respectively, median is defined by the line inside box. Lower and upper error lines correspond to lower 

quartile minus 1.5 times interquartile range (IQR) and upper quartile plus 1.5 times IQR, respectively. 

Points falling outside correspond to minimal and maximal values. 

 

 

  



 

 

Figure 3. Sensitivity of the vulnerability index to the grid resolution applied on the species trait space 

(applied on the North Sea fish community case study). A. Temporal dynamics of the vulnerability 

under various grid resolution (the blue line is constructed from to the median value each year; grey 

lines corresponds to vulnerability values computed from 5*5 to 50*50 cells). B. Mean difference 

between the vulnerability computed with a given grid resolution and the reference vulnerability values 

(i.e. blue curve in Figure S3.A.). Data are presented as loess predicted values ± 5(and 10)*standard 

error. Data are presented as loess predicted values ± 95% confidence interval. 

  



 

 

 

Figure 4. Effect of ‘Not Available’ (NA) data in species traits tables on final vulnerability values for 

the North Sea fishes case study. A. Temporal trend in the percentage of NA in species traits tables. B. 

Temporal trends in vulnerability values computed from the original traits table (i.e., with all NA 

considered; blue line), from the NA imputed traits table (red line) and from the traits table where all 

species with at least one NA were removed from analyses (green line). 

  



 

 

 

Figure 5. Spatial distribution of NA in marine mammals traits dataset. Background map shapefiles are 

available on the NOAA website: https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/. 

 

  



 

 

Figure 6. Spatial distribution of NA in global scale reef fishes traits dataset. Background map 

shapefiles are available on the NOAA website: 

https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/. 

  



 
 

 

Figure 7. Effects of non available data in species traits dataset on vulnerability values of the marine 

mammals’s communities. Background map shapefiles are available on the NOAA website: 

https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/. 

  



 

 

 

Figure 8. Effects of non available data in species traits dataset on vulnerability values of the global 

reef fish communities. Background map shapefiles are available on the NOAA website: 

https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/. 

 

  



 

 

 

 

 

 

 

 
 

Figure 9. Correlation between vulnerability computed from the original traits table (i.e., with all NA 

considered) and vulnerability computed from the NA imputed traits table for the global scale reef 

fishes case study (r = 0.67). 

  



 

 

 

 

Figure 10. Effect of species trait deletion on vulnerability results. Pearson’s correlation coefficient 

between reference vulnerability values (i.e. computed from all traits) and vulnerability values 

computed from subsetted traits tables for the three study cases: A. North Sea fishes, B. Marine 

mammals, and C. global scale reef fishes. Boxes are defines by lower and upper box boundaries 25th 

and 75th percentiles, respectively, median is defined by the line inside box. Lower and upper error 

lines correspond to lower quartile minus 1.5 times interquartile range (IQR) and upper quartile plus 

1.5 times IQR, respectively. Points falling outside correspond to minimal and maximal values. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 11. Global species richness of coastal fish communities at the horizon [2041-2070]. 

Background map shapefiles are available on the NOAA website: 

https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/ 

 

 

 

  



 

 

 

 
 

Figure 12. Spatial map of occurrence records used to build reef fish species distribution models. 

Background map shapefiles are available on the NOAA website: 

https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/ 

  



 

 
Figure 13. Evaluation summaries of species distribution models for occurrence-based SDMs. All 

metrics indicate out-of-sample spatially blocked cross-validations. Dark gray indicates species retained 

in models, light gray indicates species models fitted but not considered due to low performance. 

Performance metrics are first mean averaged over cross validation folds (n = 5), next over background 

pseudo-absences (n = 5), and finally over model algorithms (n = 3). TSS = true skill statistic, AUC = 

area under the receiver-operator curve. Extrapolation bias is the R
2
 between predictions of models 

calibrated on the full dataset vs. the training set and is an indicator of the % variation explained for 

novel data points not included in the model. Boxes are defines by lower and upper box boundaries 

25th and 75th percentiles, respectively, median is defined by the line inside box. Lower and upper 

error lines correspond to lower quartile minus 1.5 times interquartile range (IQR) and upper quartile 

plus 1.5 times IQR, respectively. Points falling outside correspond to minimal and maximal values.  
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