
1. Introduction
Anthropogenic disturbance of the nitrogen (N) cycle through nitrogen loading from urbanization, industrializa-
tion, and agriculture often leads to the eutrophication of downstream receiving water environments (Eyre, 2000; 
Mayer et al., 2002; Saeck et al., 2013; Smith, 2006; Seitzinger et al., 2010). To understand and manage eutroph-
ication, it is essential to know the sources and sinks of N within a catchment and how they vary in space and 
time (Eyre et al., 2016). Quantifying the N load from a catchment is routinely performed by multiplying the 
concentration data from routine river water quality monitoring, C(t), with the river discharge rate Q(t) measured 
at the catchment outlet. While this estimate is useful for ascertaining the catchment delivery of N to downstream 
water environments, it is a coarse metric that integrates across the myriad of different N sources and redistribution 
pathways within a catchment, making it difficult for managers to apportion the overall load amongst specific land 
use activities. This is particularly the case if the catchment has a complex mosaic of land use and a heteroge-
neity in landscape properties. This leads to uncertainty as to the dominant anthropogenic driver of N pollution 
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and therefore poorly informed management decisions. Furthermore, catchment scale indicators of the extent of 
denitrification and other processes are essential, for example, whether low N concentrations are due to dilution or 
denitrification at the catchment scale (Peters et al., 2011; Rassam et al.,  2008). As such, there is an ongoing need 
to develop improved methods to quantify nitrogen export from specific land use types that better informs land 
management policy and focuses on management interventions to reduce N export.

Developing a comprehensive monitoring network that samples catchment tributaries draining different dominant 
land uses is a common approach to better delineate hot spots of nutrient export (Seitzinger et al., 2010). However, 
in many systems, it is rare to be able to find sampling locations that represent a single land use, and in the case 
of highly heterogeneous catchments all tributaries and river monitoring sites represent a mixing environment of 
nutrient sourced from various land uses and landscapes. Furthermore, increasing the intensity of anthropogenic 
impacts on catchments has been reported to increase the functional homogeneity of catchment outputs (Gall 
et al., 2013), making it difficult to identify which nutrients come from where.

As a result, stable isotopes of nitrogen (N) and oxygen (O) of nitrate (NO3 −), that is, δ 15NNO3 and δ 18ONO3, have 
been gaining increasing use as a means to estimate the dominant land use contributors to stream water quality 
(Kang et al., 2022; Kendall et al., 2007; Ford et al., 2017; Liu et al., 2021; Rassam et al., 2008). For example, 
typical δ 15NNO3 in manure or sewage of +7‰ to +20‰ (Mayer et al., 2002) is partially distinct from δ 15NNO3 in 
atmospheric deposition (−10‰ to +8‰), δ 15NNO3 in synthetic fertilizers (0‰), δ 15NNO3 in natural soil (−3‰ 
to +5‰), and δ 15NNO3 produced by nitrification in soil (−20‰ to +10‰) (Kendall et al., 2007). However, due 
to the overlapping signals, NO3 − derived from synthetic fertilizers, soils, and the atmosphere typically cannot be 
distinguished using δ 15N alone. Signatures of δ 18ONO3 can inform the process pathways of NO3 − by identifying 
the sources of O in NO3 −, that is, microbial soil nitrification processes (δ 18ONO3 <0‰ to +14‰), atmospheric 
O2 (ca. +23‰), or environmental H2O (−30‰ to +5‰) (Kendall,  1998; Kroopnick & Craig,  1972; Mayer 
et al., 2002). Application of the dual isotopes in NO3 − (δ 15NNO3 and δ 18O NO3) has shown potential to support the 
partial separation of the dominant N sources (atmospheric, mineralization of organic N in forest soils, fertiliz-
ers, soil, and sewage) in temperate climate catchments of North America (Mayer et al., 2002), Western Europe 
(Voss et al., 2006), and Asia (Lee et al., 2008). However, there are no dual isotopes studies in sub-tropical or 
tropical catchments with heterogeneous land uses, therefore it remains unclear whether the increased information 
provided for the dual isotopes δ 15NNO3 and δ 18O NO3 could be of benefit in quantifying the magnitude and varia-
bility in land use-specific export rates of nitrogen.

Variability in export rates of nitrogen (with its isotopic signature) occurs not only due to the time-varying nature 
of human inputs and land management actions, but also due to the highly nonlinear connection between hydro-
logical (mobilization and transport) processes and biogeochemical (transformation) processes (e.g, Eyre & 
Pont, 2003; Oldham et al., 2013; Turner et al., 2006]. For example, for a given stochastic time-series of rainfall 
forcing, a disproportionate nutrient load will be released by some events but not others (Gunaratne et al., 2017), 
due to a decoupling of landscape filtering between hydrological and biogeochemical processes (Gall et al., 2013). 
However, at the catchment scale, the relationship between flow and export becomes simpler, effective biogeo-
chemical stationarity emerges (Basu et al., 2010). Mechanistic modeling approaches for resolving the dominant 
pathways of nutrient export from plot to catchment scale have advanced considerably (Paniconi & Putti, 2015). 
While these approaches are promising in assisting with dis-entangling the time-varying coupling between hydrol-
ogy and biogeochemical pathways, and provision of land use-specific export rates, they are not always suitable 
for nutrient export studies since (a) issues around equifinality create considerable uncertainty as to whether they 
can accurately resolve the pathways based on limited calibration data (Houska et al., 2017), and (b) the mecha-
nistic modeling approach requires numerous inputs of nutrients to the landscape (e.g., fertilizers) to be provided 
as boundary conditions, which is a challenge for catchment managers since this data can be difficult to source, 
or unreliable.

The aim of this study was to estimate land use-specific export rates of dissolved inorganic nitrogen by devel-
oping an inverse approach that hybridizes results from a distributed hydrological model (DHM) with empirical 
geospatial and river nutrient monitoring data. The inverse calculation adopts a Bayesian Hierarchical Framework 
using a Markov-chain Monte Carlo (MCMC) state-space algorithm to address the challenge that the measured 
isotope signatures do not represent unequivocal end-member signatures due to the samples being collected in 
isotopically mixed environments. The approach was applied with and without the inclusion of isotope data to 
demonstrate that stable isotope measurements taken along-side routine stream nutrient sampling can improve 
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the accuracy of source apportionment of the overall nitrogen load. The results demonstrate the relative benefit of 
including isotope data as an information constraint on the nutrient export calculation in both wet and dry flows, 
and improvements to extend the approach are outlined.

The proposed work is not directed toward further development and understanding of biogeochemical cycling of 
N, but the conceptual advance made here is to demonstrate that it is possible to identify and quantify N contri-
butions to streamflow from a multiple land use catchment. Furthermore, the analysis is based at the scale of land 
use units, which is the scale at which catchment managers normally require information and are able to enact 
management decisions to minimize N export via discharge.

2. Approach and Methods
The approach was applied to the Caboolture River catchment in southeast Queensland, Australia. A distrib-
uted river discharge 1K-Distributed Hydrological Model (1K-DHM) (Sayama & McDonnell, 2009; Tanaka & 
Tachikawa, 2015) was utilized that takes into account saturated through-flow processes to predict land use-specific 
runoff rates. The land use-dependent hydrological parameters in 1K-DHM were optimized using the shuffled 
complex evolution (SCE) method (Duan et al., 1993, 1994). The 1K-DHM output discharges were then used 
as input to an isotope mixing model within a Bayesian Hierarchical Framework to inversely simulate  the land 
use-specific dissolved inorganic nitrogen exports. The model outputs are the posteriors of the dissolved nitrogen 
export rate (mg/ha/day) for each of the land use types. This was done for six individual sampling between May 
2012 and April 2013 that captured the dry and wet seasonality of water quality, as recorded at 51 sampling sites 
within the catchment domain.

2.1. Study Site

The Caboolture River Catchment is a sub-tropical catchment in southeast Queensland, Australia, approximately 
40 km north of Brisbane (Figure 1). It has a catchment area of 383 km 2 with elevations ranging from 0 to 550 m 
above sea level. The complex stream network is an amalgamation of Wararba Creek, Lagoon Creek, King Johns 
Creek, Gregor's Creek, Sheepstation Creek, and Gympie Creek, which discharge to the main Caboolture River 
and downstream Caboolture Estuary Mouth, with final discharge to Deception Bay, a small embayment within 
the larger Moreton Bay (Figure 1).

Rainfall data measured at 10 Bureau of Meteorology (BoM) stations and temperature data at the BoM Beer-
burrum Meteorological Station, 20 km north-west of Caboolture (Figure 1) was utilized. Gridded rainfall was 
calculated using an inverse distance weighting method that captured the spatial variation of rainfall within the 
area, which was higher in the mountain areas compared to the lowland areas. The long-term (1910–2015) average 
of annual rainfall measured at Beerburrum Station was 1,253 mm. On average, the highest monthly rainfall occurs 
in February (204 mm) during the late summer-autumn wet season and the lowest during the mainly dry winter in 
July (32 mm), reflecting typical sub-tropical seasonal variations.

The major land uses in the Caboolture River Catchment include crops (11%), conservation and forests (22%), 
livestock (16%), rural (35%), urban (9%), river and creeks (6%), and wetland (1%). In the upper catchment, the 
dominant land uses are forest, crops, and livestock. Crops are largely dominated by fruit trees and pineapples 
and to a lesser extent, berries. Orchards and mango plantations are mostly in the upper Wararba Creek and 
Caboolture River sub-catchments, while pineapples and berry plantations are mainly present in the upper Lagoon 
Creek sub-catchment. The middle catchment is characterized by rural and urban usages such as residential and 
commercial/industrial. In the lower catchment, wetland and rural are the dominant land uses (Figure 1). Scattered 
livestock farming is present at the lower catchment with mainly beef and dairy cattle grazing on large areas of 
native pastures located near water courses.

2.2. Measurement, Water Quality Sampling, and Analysis

Water quality samples were collected at 51 field sites during six sampling campaigns within the Caboolture River 
(CR) catchment above the tidal limit (Figure 1) as follows: CR5 (May 29–30, 2012), CR7 (August 15–16, 2012), 
CR9 (October 9–11, 2012), CR11 (December 11–13, 2012), CR13 (February 4–8, 2013), and CR15 (April 24–25, 
2013). CR7 and CR15 represent dry season and CR5, CR9, CR11, and CR13 represent wet season. The water quality 
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parameters include concentrations of dissolved inorganic nitrogen as nitrate NO3 −-N and ammonium NH4 +-N and 
dual isotopes of NO3 − (δ 15NNO3 and δ 18ONO3).

At each location, surface water was collected with a water sampling pole holding a sample-rinsed polypropylene 
container. Samples for ammonium (NH4 +), oxides of nitrogen (NOx −), and stable isotopes of NO3 − (δ 15NNO3 and 
δ 18ONO3) analyses were immediately filtered through sample-rinsed cellulose acetate membrane filters with a 
0.45 and 0.2 μm pore size, respectively. All water samples were stored in polypropylene vials, kept cold on ice, 
and frozen at the end of the sampling day.

The concentrations of NO3 − and NH4 + were determined colorimetrically using LachatTM flow-injection analysis 
(McKee et al., 2000). Analytical accuracy for nitrogen analysis was maintained using standard additions of certi-
fied laboratory standards in Milli-Q water. The isotopic composition of nitrate (δ 15NNO3) was determined using 
the denitrifier method (Casciotti et al., 2002; Sigman et al., 2001). This method results in the complete conversion 
of NOx − into N2O by the specific strain of bacteria Pseudomonas aureofasciens (ATTC #13985). The produced 
N2O was subsequently concentrated and purified in a custom-built purge and trap system. Analysis of its isotopic 
composition was performed using a Delta V Plus IRMS (Thermo Fisher Scientific) with a modified Gas Bench 
II interface (Erler et al., 2015). Data were subsequently normalized using certified reference materials. USGS 32 
and USGS 34 were used for calibrating δ 15N values with respect to atmospheric N2, while USGS 34 and USGS 
35 were used to express δ 18O values relative to the reference VSMOW scale (Böhlke & Coplen, 1995; Böhlke 
et al., 2003).

All δ 15N and δ 18O results are expressed as per mille (‰) with reference to the international standard as:

𝛿𝛿
15N (‰) =

[(

15N∕14NSample

)

∕
(

15N∕14Nstandard

)

– 1
]

x 1000 (1a)

Figure 1. Caboolture River catchment field sites (identification numbers 0–50) and land use types, with 10 rainfall stations provided in the inset.
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𝛿𝛿
18O (‰) =

[(

18O∕16OSample

)

∕
(

18O∕16Ostandard

)

– 1
]

x 1000 (1b)

where  15 N/ 14Nstandard is 0.0036765 (AIR) and  18O/ 16Ostandard is 0.0020672 (VPDB).

In addition, the reference material IAEA NO3 was used as a quality control and run in triplicates in each batch of 
analysis to ensure good accuracy. The precision of the method depends on sample NO3 −-N concentrations. For 
samples with NO3 −-N concentrations greater than 1 μmol/L, the within-lab reproducibility as estimated by the 
pooled standard deviation was 0.2‰ and 0.3‰ for δ 15NNO3 and δ 18ONO3, respectively. For samples having NO3 − 
-N concentrations between 0.2 and 1 μmol/L, the within-lab reproducibility was 0.5‰ and 0.8‰ for δ 15NNO3 and 
δ 18ONO3, respectively. Results from samples with NO3 − concentrations lower than 0.2 μmol/L were not included 
in the study as the analytical error was too large. Isotope δ values were reduced from relative abundances to the 
state variable mass used in numerical processing.

2.3. Model Framework

The model framework adopts a three-step process (Figure 2). First, the model watershed containing flow direc-
tion and accumulation was constructed using a GIS watershed tool on a 25 × 25 m 2 grid digital elevation model 

Figure 2. Model framework.
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(DEM) and calibrated using the reference stream network provided by the Queensland Government. The cali-
brated watershed was applied to the distributed hydrological model 1K-DHM (Tanaka et al., 2015) to compute 
the gridded discharge Q(x,y). The DHM was then calibrated by comparing the simulated discharge against the 
daily discharge observed at the Upper Caboolture gauging station (142001A) for five periods: (a) January 1–31, 
2011 (representing the 1-in-100 years Average Recurrence Interval (ARI) flood event on January 11, 2011), 
(b) January 1–31, 2012 (wet summer condition), (c) May 1–31, 2009 (wet autumn), (d) May 1–31, 2012 (dry 
autumn), and (e) multiple months from January 1 to March 31, 2012. Second, the simulated discharge Q(x,y) was 
incorporated into an isotope mixing model within a Bayesian Hierarchical Framework that inversely simulated 
the six land use (end-member) concentrations of NO3 −-N and NH4 +-N and stable isotopes δ 15NNO3 and δ 18ONO3. 
The model was auto-calibrated against the NOx −-N and NH4 +-N concentrations and stable isotope signatures 
measured at the 51 sampling sites (Figure 1) during the six sampling campaigns (CR5, CR7, CR9, CR11, CR13, and 
CR15) between May 2012 and April 2013. Third, the inversely simulated posteriors of nitrogen concentrations for 
each land use were then converted into the land use-specific nutrient export rate of NO3 −-N and NH4 +-N. Each 
posterior contains information of the central tendency (i.e., mean and median) and variability (i.e., standard devi-
ation) of each possible population of the export rate, providing model uncertainty information.

2.3.1. Distributed Hydrological Model 1K-DHM and Calibrations

The 1K-DHM is a DHM based on a kinematic wave flow approximation that takes into account surface and 
subsurface flows using a storage-discharge equation. The kinematic flow was applied to each grid within the 
DHM, where flow was defined as a net of rainfall input and evapotranspiration loss into the grids and discharge 
from upstream cells (Tanaka & Tachikawa, 2015),

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑟𝑟 − 𝑒𝑒 (2)

𝑄𝑄 =
√

𝐼𝐼∕𝑛𝑛𝑐𝑐 𝐵𝐵
−3∕2

𝐴𝐴
3∕5 (3)

where A is the cross-sectional area, Q is the discharge, t is time, x is distance, r is rainfall intensity, e is evapo-
transpiration, I is the slope gradient, nc is Manning's roughness coefficient, and B is the width of river channel. 
The values for rainfall at each grid were calculated using an inverse distance weighting method, and values for 
evapotranspiration were estimated using an empirical relationship between monthly air temperature and evapo-
transpiration measured at Beerburrum Station. Details are provided in Figure S3 in Supporting Information S1.

The flow direction in the dendritic stream network of the Caboolture River catchment was derived from 25 × 25 m 2 
grid DEM of the basin using a GIS watershed tool, which was validated against the reference stream network. The 
comparison between the derived and reference stream networks is provided in supporting material S1. The land 
use type for each grid was identified by overlaying the model grids with the surveyed land use map. The dominant 
land use was assigned for the grid with multiple land use identified (Figure 2).

Based on the number of upslope cells, each cell was assigned as either a river-channel cell or a slope-runoff cell. 
Flow from a river-channel cell was modeled using Equations 2 and 3, whereas flow from a slope-runoff cell was 
modeled using modified equations that take into account both saturated and unsaturated subsurface flow compo-
nents (Hunukumbura et al., 2012; Sayama & McDonnell, 2009),

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑟𝑟 − 𝑒𝑒 (4)

𝑞𝑞 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑑𝑐𝑐𝑘𝑘𝑐𝑐

(

ℎ

𝑑𝑑𝑐𝑐

)𝛽𝛽

𝑖𝑖𝑖 for 0 ≤ ℎ ≤ 𝑑𝑑𝑐𝑐

𝑑𝑑𝑐𝑐𝑘𝑘𝑐𝑐𝑖𝑖 + (ℎ − 𝑑𝑑𝑎𝑎) 𝑘𝑘𝑎𝑎𝑖𝑖𝑖 for 𝑑𝑑𝑐𝑐 ≤ ℎ ≤ 𝑑𝑑𝑎𝑎

𝑑𝑑𝑐𝑐𝑘𝑘𝑐𝑐𝑖𝑖 +

√

𝑖𝑖

𝑛𝑛𝑠𝑠
(ℎ − 𝑑𝑑𝑎𝑎)

𝑚𝑚 + (ℎ − 𝑑𝑑𝑎𝑎) 𝑘𝑘𝑎𝑎𝑖𝑖𝑖 for 𝑑𝑑𝑎𝑎 ≤ ℎ

 (5)

where h is the water stage, q is the discharge per unit slope width, dc is the water stage equivalent to the maxi-
mum water content in capillary pores, i is the slope, da is the water stage equivalent to maximum water content in 
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effective porosity, ns is Manning's surface roughness coefficient for overland flow, kc is the hydraulic conductivity 
when capillary pores saturated, and ka is the saturated hydraulic conductivity calculated as,

𝑘𝑘𝑎𝑎 = 𝛽𝛽𝑘𝑘𝑐𝑐 (6)

where β is an exponent parameter of the q-h relationship shown in Equation 5. Parameters ns, ka, da, dc, and β of 
each land use (except urban) were optimized. As for urban, only parameter ns was optimized as urban surface 
water runoff is controlled via drainage and stormwater system, hence da is negligible, dc = 0, and 𝐴𝐴 𝐴𝐴  = 1.

The DHM setup requires 30 sets of parameters (i.e., 5 parameters ns, ka, da, dm and β for the 6 land use types) 
to calibrate, for which the Shuffled Complex Evolution of University of Arizona (SCE-UA) was applied due to 
its robustness and efficiency as a global optimization method for calibration of rainfall-runoff models (Duan 
et  al., 1993, 1994). The algorithm combines the best features of multiple complex shuffling and competitive 
evolution which enable a parallel exploration of the search space by using a population of potential solutions.

The SCE-UA steps in this study include the generation of initial population sampled randomly from a search 
space (n = 1,000) and the partition of the population into two complexes, each containing 51 points. Within each 
complex, the population reproduces and evolves based on simple geometric shapes and Nash-Sutcliffe efficiency 
(NSE; Nash & Sutcliffe, 1970), directing the search toward a global convergence within 6–7 generations.

The DHM simulations were first run for calibration against daily discharge measured during the five calibration 
periods (Section 2.3). Inputs to the model included daily gridded rainfall, temperature and evaporation loss, and 
initial DHM parameters for each land use. The calibration resulted in five sets of ns, ka, da, dm, and β for each 
land use, from which the average of parameter values over the five periods were calculated for each land use and 
applied to the DHM simulation during May 1, 2012 to April 1, 2013. The output of the DHM daily simulation 
(gridded discharges) was applied in the isotope mixing—nutrient export model. At this point, each grid (of 
100 × 100 m 2) contained information on discharge and land use type.

2.3.2. Stable Isotope Mixing Model—Nutrient Export Model

Stable isotope mixing models are often used to estimate the source contributions to a mixture. However, the 
number of sources that can be partitioned is limited by the number of isotopic signatures employed. Application 
of dual (n = 2) isotope δ 15NNO3 and δ 18ONO3 is capable of estimating up to three sources (n + 1) contribution of 
NO3 −. To estimate the contribution from many sources, a priori and a posteriori aggregation methods (Phillips 
et al., 2005) were used.

Our model utilizes an a priori and a posteriori aggregation approach based on a Bayesian Framework that uses an 
MCMC algorithm (Adiyanti et al., 2016). The model estimates the posteriors of land use-specific contributions of 
NO3 −-N, NH4 +-N and dual isotopes signatures of NO3 − using an inverse technique applied to the nutrient mixing 
model. This was done by optimizing the modeled concentrations (mg/L) and isotope data (‰) against the values 
measured at each station i (i = 1, …, 51), shown in Equations 7a–7e,

�15�� =
∑6

�=1

(

��,� .�15��,����
)

 (7a)

�18�� =
∑6

�=1

(

��,� .�18��,����
)

 (7b)

��−
3�� =

∑6

�=1

(

��,� .��−
3��,����

)

 (7c)

��+
4�� =

∑6

�=1

(

��,���+
4��,����

)

 (7d)

where δ 15Ni, δ 18Oi, NO3 −Ni, and NH4 +Ni are the simulated isotope signatures δ 15NNO3 and δ 18ONO3, concentrations 
of NO3 −-N and NH4 +-N at each station i; and fi,j is the fraction of discharge from each land use at each station.

The δ 18Oi values were approximated as a function of δ 15Ni, therefore Equation 7b can be reformulated as,
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�18�� =
∑6

�=1

(

��,� .
(

��.�15��,����
) ) (7e)

where mj is the gradient in the δ 15N and δ 18O relationship for each land use j. The gradient values of the derived 
linear regression of measured signals of δ 15NNO3 and δ 18ONO3 (details in Section 4.1) were used as priors.

The fraction of discharge from each land use (j) at each station (i), fi,j, where j represents crops, forest, livestock, 
rural, urban, and wetland) was calculated as,

𝑓𝑓𝑖𝑖𝑖𝑖𝑖 =

𝐴𝐴𝑖𝑖𝑖𝑖𝑖

𝐴𝐴𝑖𝑖

𝑄𝑄𝑖𝑖 (8)

where Ai,j is the sub-watershed area for each land use j at each station i which was determined from the contrib-
uting grids to each of the 51 stations (Ai) using a GIS watershed delineation tool which was further overlain with 
the surveyed land use map (Figure 3), and Qi is the DHM simulated discharges at each station i (Section 2.3.1).

The contributing catchment grids to each station i were developed using a GIS watershed tool applied on the 
flow direction and accumulation grids derived from the DHM simulation (Step 1). Each grid (of 100 × 100 m 2) 
containing information of discharge and land use proportions was identified as a contributing grid to one of the 
51 stations, enabling the calculation of fi,j.

The solutions to Equations 7a–7e are a set of posteriors of land use-specific δ 15N and δ 18O signatures and concen-
trations of NO3 −-N and NH4 +-N, depicted as δ 15Nj,post, δ 18Oj,post, NO3 −Nj.post, NH4 +Nj,post in Equations 7a–7d.

Figure 3. Sub-watershed delineation and land use.
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The right side of Equations 7c and 7d resulted in concentration posteriors at each of the six land uses (NO3 −

Nj.post, NH4 +Nj,post) which were then converted into the land use specific export rates (mg/ha/day) of NOx −-N and 
NH4 +-N using:

��−
3������� = ��−

3��,����.
��

��
 (9a)

��+
4������� = ��+

4��,����.
��

��
 (9b)

where Qj and Aj are the total discharge and area of each land use in the model domain.

2.3.3. Bayesian Interference and Adaptive Markov-Chain Monte Carlo

The procedures for calibrating conceptual models have progressed rapidly in the last decade as a result of advances 
in computing simulations that have the ability to reduce the computational demands of iterative processes. The 
progress has enabled the calibration of multi-dimensional parameters to be performed effectively to satisfy the 
necessary criteria, that is, ability to avoid being trapped in the local maxima and minima during the search in the 
objective function evaluation, and robustness in the presence of different levels of parameter sensitivity and inter-
dependence. This in turn results in a global convergence in the presence of multiple regions of attraction within 
the search area. An example of such a procedure is Bayesian inference—MCMC (Zhang & Arhonditsis, 2009), 
which was used in this study.

The central aim in applying an MCMC framework for calibration is to reduce the ambiguity that otherwise appears 
when one uses a single set of parameters for calibration as part of a manual calibration (Adiyanti et al., 2016), 
which is based on Arhonditsis et al. (2008). Bayesian interference considers that measurements (Y), sometimes 
termed as a data model from a Bayesian perspective, and the unknown process model (X) and model parameters 
(𝐴𝐴 𝐴𝐴 ) contain uncertainties. These can be estimated by simultaneously calculating the conditional probability of 
data model Y given the process model X and model parameters 𝐴𝐴 𝐴𝐴 , i.e., 𝐴𝐴 𝐴𝐴

([

𝑌𝑌𝑇𝑇
1

. . . , 𝑌𝑌𝑇𝑇𝑛𝑛
|𝑋𝑋1, . . . , 𝑋𝑋𝑇𝑇 , 𝜃𝜃

)

 or shortened 
as 𝐴𝐴 𝐴𝐴(𝑌𝑌 |𝑋𝑋𝑋 𝑋𝑋) , the conditional probability of the process model given the parameter 𝐴𝐴 𝐴𝐴 (𝑋𝑋1, . . . , 𝑋𝑋𝑇𝑇 |𝜃𝜃) or 𝐴𝐴 𝐴𝐴(𝑋𝑋|𝜃𝜃) 
using the prior information of the parameter values 𝐴𝐴 𝐴𝐴(𝜃𝜃) . This allows calculation of the probability of the param-
eter posteriors, or joint probability of the process model and model parameters given the data model 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑋 𝑋𝑋|𝑌𝑌 ) . 
The unknown probability of the process model 𝐴𝐴 𝐴𝐴(𝑋𝑋) can be estimated through sampling the posteriors 𝐴𝐴 𝐴𝐴(𝑋𝑋|𝜃𝜃) and 
joint probability 𝐴𝐴 𝐴𝐴(𝑌𝑌 𝑌𝑌𝑌𝑌 𝑌𝑌) in the MCMC framework.

The Bayesian-MCMC is a specialization of the general Bayesian Hierarchical Model that imposes the Markov 
property on the state process 𝐴𝐴 𝐴𝐴(𝑡𝑡 ), that is, the current state depends only on the most recent previous state in the 
Markov-chain. The framework simultaneously calculates the probability of model parameters given the process 
model or posteriors 𝐴𝐴 𝐴𝐴(𝜃𝜃|𝜓𝜓) and the probability of the data model given the parameters at the state 𝐴𝐴 𝐴𝐴(𝑌𝑌 |𝜓𝜓𝜓 𝜓𝜓) to 
produce a better representation of the joint distribution for prediction. In our study, the state is evaluated as the 
sum of the square of errors (SSE) between the model and observed concentrations at all 51 stations during the 
six sampling campaigns (CR). Due to outliers observed with NO3 −-N and NH4 +-N concentrations, the data was 
bound to the 95% percentile.

The Metropolis-Hastings MCMC algorithm was applied to draw samples from the Bayesian distribution 
as summarized in the following five steps (Adiyanti et  al.,  2016; Harmon & Challenor, 1997): (a) a starting 
vector 𝐴𝐴 𝐴𝐴𝑡𝑡=0 was drawn from a prior distribution 𝐴𝐴 𝐴𝐴(𝜑𝜑) for the Markov-chain, where vector 𝐴𝐴 𝐴𝐴 consists of 24 model 
parameters (i.e., 4 source concentrations for each 6 land use with the same priors values for each land use) 
and 4 initial conditions that were optimized, (b) a new vector 𝐴𝐴 𝐴𝐴

′ was generated from a distribution �(�′, �) and 
a random number u from a uniform distribution U(0,1), (c) the probability of the move in the Markov-chain 
�(�,�′) = �(�′) �(�′, �) ∕�(�)�(�,�′) was computed where 𝐴𝐴 𝐴𝐴 is the target distribution, (d) if u ≤ �(�,�′) then 

𝐴𝐴 𝐴𝐴
′ was accepted as the next state 𝐴𝐴 𝐴𝐴𝑡𝑡 in the chain, otherwise 𝐴𝐴 𝐴𝐴 was kept as the next step in the chain, and (e) steps 

2–4 (random walk Metropolis) were repeated and evaluated until the Markov chain became time-reversible and 
had stationary probabilities 𝐴𝐴 𝐴𝐴(𝑖𝑖)𝑃𝑃𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴(𝑖𝑖)𝑃𝑃𝑖𝑖𝑖𝑖𝑖 for 𝐴𝐴 𝐴𝐴 ≠ 𝑖𝑖 . The adaptive Metropolis and delayed rejection (Haario 
et al., 2006) were applied to improve the convergence of the solution.
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The following Bayesian-MCMC routine was executed for the dry and wet periods separately, with each contain-
ing two and four sampling campaigns, respectively. Observed values for each land use (Figure 4) were applied as 
an initial set of parameters (priors) for both periods. The initial chains were first run for 6,000 iterations and the 
results were used to initiate the next 5,000 iterations. About 70%–75% of the proposed solutions were accepted, 
from which the posteriors were sampled. Three chains were run separately, and their running averages and vari-
ances were monitored. Algorithm stability was indicated when all the three chains converged to similar solutions. 
Output of the routine includes 24 posteriors of land use-specific (end-member) parameters (isotope signatures 
and nitrogen concentrations) and 4 posteriors of initial values, which were then converted into land use-specific 
export rates of NO3 −-N and NH4 +-N, and the corresponding δ 15NNO3 and δ 18ONO3.

To ensure that the necessary condition for convergence of the solutions was satisfied, three diagnostics were 
assessed at the end of MCMC routine execution: (a) convergence evolution visually using SSE plots for all 

Figure 4. Scatter plots of dual isotopes δ 15NNO3 (‰) and δ 18ONO3 (‰) sampled in mixing environment from six land uses. Land use was identified based on the 
predominant land use immediately upstream the creek or streamflow where the samples were taken from. The gradients in the linear regression of δ 18ONO3 = f(δ 15NNO3) 
were applied as priors of parameter mj in Equation 7e.
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the chains, (b) convergence solution statistically using the Geweke's spectral density diagnostic (Brooks & 
Roberts, 1998; Geweke, 1992), and (c) the posterior distribution plots. The second diagnostic is based on the 
test for equality of mean estimates of the first 10% and the last 50% of chains using the power spectral density 
Hanning window. If the samples are drawn from the stationary distribution of the chain, the two means are equal 
and the Geweke's statistic has an asymptotically standard normal distribution. By using the above three diag-
nostics, the problem identified in implementing MCMC simulation caused by the transient phase of the Markov 
chain to reach the stationary phase (Brooks & Roberts, 1998) can be avoided.

To illustrate the model uncertainty due to model parameters and data model (observations) 𝐴𝐴 [𝑋𝑋|𝑌𝑌 𝑌 𝑌𝑌] , the Bayesian 
model predictions were calculated using the Generalized Gaussian Error Technique (Grabe, 2010), yi = μ + εi; 
where εi denotes random errors calculated from random number multiplied the standard deviation of all simulated 
state variable values at all sites. This was done by running the mixing model using 1,000 random samples drawn 
from the 28 posteriors output from the MCMC routine each for dry and wet periods, hereinafter referred to as the 
Bayesian mixing model.

2.3.4. Models Performance Assessment

The performance of DHM was assessed using validation metrics—residual and correlation methods that is, NSE, 
Root Mean Square Error (RMSE), Normalized RMSE (RSR), and Bias (Bennett et al., 2013; Moriasi et al., 2007; 
Nash & Sutcliffe, 1970) and time-series plots.

To illustrate the role of isotope signatures in the performance of land use specific nitrogen export model, the N 
(of NO3 − and NH4 +) export model was run without the inclusion of isotopes δ 15NNO3 and δ 18ONO3 using the same 
routine as for the isotope-enabled model. Both models' results were compared using the same validation metrics 
(NSE, RMSE, RSR, Bias, r, and r 2).

3. Results
3.1. Isotope Signatures in the Mixing Environment

The scatter plot of observed δ 15NNO3 and δ 18ONO3 (Figure 4) indicates the significant linear relationship (p << 
0.01) between the signatures measured in mixing environments with the majority land use identified as crops, 
forest, livestock, and rural. A strong correlation (r > 0.6) exists for crops, forests, and livestock, that is, about 38%, 
41%, and 65% variation in δ 18ONO3 signatures can be predicted from the linear relationship with δ 15NNO3, and a 
weak correlation (r < 0.5) for rural. There is no significant correlation between the dual isotopes signatures for 
urban and wetland land uses, which may be due to the fact that urban receives more variable sources and wetland 
experiences more biogeochemical processing, including formation of organic nitrogen and nitrification (indicated 
with a high range of δ 18ONO3) than other land uses.

3.2. Distributed Hydrological Model Discharge Calibration

The DHM simulated the daily discharges fairly well over an order of the magnitude 10 −1 to 10 2 m 3/s (Figure 5). 
All calibrations produced NSE of greater than 0.5, but residuals (RMSE, RSR, and Bias) varied depending upon 
the magnitude of the peak discharges. Among the five calibration periods, the May 2012 calibration (Figure 5d) 
indicates the best fit with a high NSE, and small RMSE, RSR, and Bias. The good calibration reflects the signif-
icant difference between the peaks of small discharges (10 −1 m 3/s). Detailed calibrated parameters values are 
provided in the Supporting Information S1.

A fair agreement was achieved between the DHM-modeled daily discharge and the measurements (Figure 5) 
suggesting that the DHM was able to reproduce seasonal hydrological variations. The inaccuracy in reproducing 
the peak magnitude suggests the daily resolution applied in the simulation might not capture the diurnal varia-
tion in discharges. Note that DHM was primarily developed to estimate floods, and as such it does not have the 
capability to take into account the time-variant storage capacity, as such all the five calibrated parameters were 
assumed constant throughout the simulation. This resulted in overestimated discharges in November–December 
2012 and April 2013 (Figure 5f) with an overall bias of 2.4 m 3/s. Nevertheless, for the purpose of the study 
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Figure 5. DHM Discharge Calibration (a–e) and Validation (f), with NSE, RMSE, RSR (=RMSE/Standard deviation of observation), and Bias are provided.
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where the nutrient data was only available at a lower resolution (bimonthly) than the hydrological forcing, it was 
concluded that a daily resolution of DHM was adequate.

3.3. Nitrogen Export Model Posteriors and Bayesian Mixing Model

Figure  6 illustrates the resulting posteriors distribution for forest land use, that is, δ 15Nj,post, δ 15Nj,post, NO3 −

Nj.post, and NH4 +Nj,post depicted in Equations 7a–7d. The prerequisite for MCMC calibration to have sufficiently 
low-dependence between parameters during randomization is satisfied, as indicated by small Pearson's correla-
tions (r) and small covariance values (Cov) shown in the upper right triangle of panels in Figure 6. As a result, 
their standard errors are representative of uncertainty in the estimate. Table 1 details the posteriors of the 24 
parameters for dry and wet periods for each land use.

The number of optimized parameters (24 model parameters and 4 initial conditions) relative to the number of 
observed values (i.e., 4 state variables at 51 sites; 2 sets of samples in the dry and 4 in the wet season) limits the 
capability to reduce the model uncertainty due to a high range of values in the observed data. It was also found 
that the number of parameters being optimized (28 parameters altogether) reached the maximum number of 
parameter that MCMC can handle. This was indicated by the mean of posterior values changing slightly with new 
simulation runs, although the region of solutions (distribution with 95% confidence interval) were still within the 
expected distribution as shown in the Gaussian plots of parameter covariance matrix (examples in Figure 6 and 
Figures S4 and S5 in Supporting Information S1).

The simulated discharges in the dry period (August 2012 and April 2013; Figure 5f) were all small (<0.01 m 3/s 
in average) and the observed nitrate and ammonium concentration were elevated (Figure 7a). For this case, the 
mixing model was not sensitive in capturing the land use effect on nitrogen exports. This was reflected as high 
uncertainty in the process model due to parameter posteriors 𝐴𝐴 𝐴𝐴(𝜓𝜓|𝜃𝜃) , shown in dark gray band in Figure 7a. The 
1K-DHM simulates surface (high) flow and subsurface (low) flow or baseflow. Groundwater contribution was 
not simulated. An elevated nitrogen concentration during dry periods with low discharge is thought to be a result 
of the release of nitrogen via groundwater through-flow which experienced limited dilution before the release.

The opposite cases were observed with NOx −-N in October and December 2012 when the NO3 −-N concentration 
had a skewed gamma distribution, that is, most values were very small compared to the maximum value (as 
shown in Figure 8b and Figures S6b and S6c in Supporting Information S1), which resulted in poor performance 
of the mixing model.

The Bayesian mixing model results (Figures 7a and 7b) indicate that the uncertainty due to parameters (dark gray 
shaded area) was less than the uncertainty due to observation (light gray area). This indicates high variance in the 
observation responsible for high variance in the data model probability given the model parameters at the state 
process 𝐴𝐴 𝐴𝐴(𝑌𝑌 (𝑡𝑡𝑖𝑖)|𝜓𝜓(𝑡𝑡𝑖𝑖), 𝜃𝜃) , particularly NO3 −-N concentration in the dry period.

3.4. Nitrogen Export Rate

The land use-specific export rates of NO3 −-N and NH4 +-N (mg/ha/day) presented in Table 2 were converted from 
the posteriors of land use specific concentration (μmol/L) (Figure 6 and Figures S4 and S5 in Supporting Infor-
mation S1) using Equations 8a and 8b. During the dry period, nutrient export rates of NO3 −-N and NH4 +-N from 
forest (0.01 and 0.12 mg/ha/day, respectively) and rural land uses (0.03 and 0.27 mg/ha/day, respectively) were 
low, urban land use produced more NO3 −-N (2.2 mg/ha/day) than any other land use, whereas wetland and live-
stock land uses produced more NH4 +-N (1.3 mg/ha/day and 1.1 mg/ha/day, respectively) than the others. Nutrient 
export rates during the wet period were 3 orders of magnitude higher than during the dry period, with the wetland 
land use being the main contributor of both NO3 −-N (110 g/ha/day) and NH4 +-N (27 g/ha/day).

The dissolved inorganic nitrogen export rates during the dry period were low (of the order of 0.1 mg/ha/day on 
average) compared to the rates during the wet period (NO3 −-N ranging from 0.06 g/ha/day from forest to 110 g/
ha/day from wetland). The low export during dry period needs to be treated with caution. The low export rate was 
due to the DHM-simulated low flow, which could cause some grids lacking in wet cells exporting the nitrogen, 
hence low export rates.

 19447973, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
031944 by IFR

E
M

E
R

 C
entre B

retagne B
L

P, W
iley O

nline L
ibrary on [11/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

ADIYANTI ET AL.

10.1029/2022WR031944

14 of 23

Figure 6. Parameter covariance matrix from MCMC calibration for the forest land use dry period (a) and wet period (b). 
Lower triangle: pairwise scatterplots of the four-parameter randomizations for forest. Upper triangle: the corresponding 
Pearson's correlation and Covariance coefficient. Diagonal: posterior distributions (parameters NO3 −Nj.post and NH4 +Nj,post in 
Equations 7c and 7d). Plots for other land uses are provided in Supporting Information.
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4. Discussion
4.1. Nutrient Export Bayesian Model

We have presented an inverse modeling technique to estimate the land use-specific export of dissolved inorganic 
nitrogen (NO3 −-N and NH4 +-N) by including isotope abundances δ 15NNO3 and δ 18ONO3, whilst simultaneously 
assessing uncertainty in the mixing model parameters by application of Bayesian inference within an MCMC 
algorithm. The model framework is flexible, that is, the probability of parameter 𝐴𝐴 𝐴𝐴(𝜃𝜃) and the probability of state 
variables (model data) given the conditional posteriors 𝐴𝐴 𝐴𝐴(𝑦𝑦|𝜓𝜓𝜓 𝜓𝜓) can be updated with more observed data which 
essentially reduces data variance. This in turn produces a better representation of the joint distribution for the 
Bayesian prediction (Figure 7). The stochastic nature inherent in the prediction and posterior inferences can be 
utilized to investigate the model uncertainty and variability. The first will decline with more measurements or 
data model 𝐴𝐴 𝐴𝐴(𝑦𝑦) that reduces sample variance, but the latter will stay the same.

One problem in implementing MCMC simulations was caused by the transient phase of the Markov chain 
never reaching the stationary phase (Brooks & Roberts, 1998), resulting in convergence never being achieved. 
Cleaning-up data outliers and an investigation on the initial search and search area can reduce this problem. It is 
not easy to develop algorithms to achieve the convergence of the solution during a random walk Metropolis algo-
rithm; however, the convergence process can easily be assessed using the three diagnostics (see Section 2.3.3). 
It should be noted that the Geweke's diagnostic attempts to verify a necessary, but not necessarily sufficient 
condition for convergence, as it informs us of when convergence is not achieved, but not when it does (Brooks & 

Parameter Unit

Posteriors—Dry period Posteriors—Wet period

Land use μ ± σ Min Max μ ± σ Min Max

Forest δ 15NNO3 ‰ 9.1 ± 1.1 4.7 12 1.8 ± 0.84 1.1 5.0

Gradient (m) Dimensionless 0.66 ± 0.06 0.46 0.86 0.44 ± 0.06 0.37 0.75

NO3 −-N μmol/L 0.07 ± 0.02 0.01 0.12 0.19 ± 0.03 0.07 0.25

NH4 +-N μmol/L 1.3 ± 0.21 0.54 1.86 0.56 ± 0.15 0.53 1.4

Rural δ 15NNO3 ‰ 6.8 ± 0.83 0.77 9.1 2.2 ± 0.75 3.6 8.6

Gradient (m) Dimensionless 0.84 ± 0.05 0.68 0.99 0.73 ± 0.04 0.59 0.89

NO3 −-N μmol/L 0.20 ± 0.05 0.01 0.39 0.21 ± 0.03 0.15 0.32

NH4 +-N μmol/L 1.9 ± 0.24 1.2 2.6 1.2 ± 0.19 0.61 1.8

Livestock δ 15NNO3 ‰ 10 ± 1.3 6.4 14 2.2 ± 1.33 −1.9 7.6

Gradient (m) Dimensionless 0.87 ± 0.06 0.67 1.0 0.75 ± 0.03 0.35 0.58

NO3 −-N μmol/L 10 ± 0.73 7.48 12 8.7 ± 0.59 5.7 9.0

NH4 +-N μmol/L 0.32 ± 0.11 0.05 0.67 0.50 ± 0.10 0.19 0.76

Crops δ 15NNO3 ‰ 6.1 ± 1.15 2.6 9.50 6.6 ± 0.98 3.7 9.45

Gradient (m) Dimensionless 1.2 ± 0.06 0.99 1.5 0.80 ± 0.07 0.59 1.0

NO3 −-N μmol/L 10 ± 2.1 5.1 16 12 ± 1.8 8.0 18

NH4 +-N μmol/L 0.87 ± 0.19 0.34 1.5 2.4 ± 0.23 1.7 3.0

Urban δ 15NNO3 ‰ 9.2 ± 0.78 6.9 11.3 8.6 ± 0.70 8.1 12

Gradient (m) Dimensionless 0.70 ± 0.06 0.51 0.90 0.43 ± 0.05 0.29 0.57

NOx −-N μmol/L 15 ± 2.18 8.3 22 16 ± 1.7 16 26

NH4 +-N μmol/L 1.9 ± 0.27 0.99 2.7 2.6 ± 0.42 1.4 3.6

Wetland δ 15NNO3 ‰ 3.2 ± 2.1 −2.0 7.0 3.4 ± 1.1 0.10 6.6

Gradient (m) Dimensionless 1.0 ± 0.08 0.81 1.3 0.75 ± 0.06 0.51 0.90

NO3 −-N μmol/L 9.2 ± 2.5 1.0 18 19 ± 2.2 11 25

NH4 +-N μmol/L 8.4 ± 1.09 4.1 12 5.3 ± 0.63 3.6 7.2

Table 1 
Posteriors Result of Markov-Chain Monte Carlo Calibration
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Figure 7. Observations (■) versus median values of Bayesian mixing model for all samples NO3-N, NH4-N, δ 15NNO3, δ 18ONO3 in: (a) the dry period and (b) the wet 
period. The gray zone area around the median is based on a random parameter sampling (n = 1,000) from posterior parameter distribution (MCMC calibration result), 
showing 95% confidence interval (μ ± 1.96δ) for observations (light gray) and for model parameters (dark gray). Results for each wet period sampling campaign are 
provided in Supporting Information.
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Roberts, 1998). The diagnostic uses a spectral sensitivity estimate, which is also an estimator of the true variance, 
and brings the chains to eventually converge to the stationary distribution and the target distribution.

4.2. Role of Isotopic Abundances in Reducing Model Over-Parameterization

The effect of including δ 15NNO3 and δ 18ONO3 values in the mixing model is to add more constraints to the model 
parameter optimization, thereby reducing the likelihood of some parameter combinations by limiting the options 
of source of NO3 − from each land use. That is without isotope data included, the cost function within the MCMC 
routine was applied with only two constraints NO3-N and NH4-N, whereas with the isotope-enabled model, there 
were four constraints (NO3-N, NH4-N, δ 15NNO3, and δ 18ONO3). This, in turn, constrains the most likely sources 
and pathways of nitrogen.

Comparison of the model evaluation metrics of the mixing model with (isotope-enabled) and without the inclu-
sion of isotopes signatures (Figure 8) suggests that during the wet period the isotope-enabled model performed 
better, that is, less RMSE, higher correlation (r), and determination (r 2) with the observed values, and higher 
NSE compared to the results without isotopes application. During the dry period, differences were not significant 
(details in Table S3 in Supporting Information S1). The negative values of NSE for both isotope-enabled and 
non-isotope-enabled models for NO3-N indicated the unacceptable performance of the export model to estimate 
the land use-specific nitrogen export during the dry period under assumed/available posteriors and model data. At 
low flow, groundwater may dominate with a non-varying N and isotope composition, and this was not simulated.

Parameter Unit

Isotopic signal and export rate (μ ± 1σ)
Comparison to similar 

systemLand use Dry period Wet period

Forest δ 15NNO3 ‰ 9.1 ± 1.1 1.8 ± 0.84 Oak Ridges 
groundwater 
discharge swamp 
export of

NO3 − -N: 9.5 kg/ha/yr
(Hill, 1991).

δ 18ONO3 ‰ 6.0 ± 0.96 1.3 ± 0.67

NO3 −-N mg/ha/day 0.01 (0.06 ± 0.005) × 10 3

NH4 +-N mg/ha/day 0.12 ± 0.003 (0.19 ± 0.03) × 10 3

Rural δ 15NNO3 ‰ 6.8 ± 0.83 2.2 ± 0.75

δ 18ONO3 ‰ 5.7 ± 0.89 4.6 ± 0.78

NO3 −-N mg/ha/day 0.03 (0.11 ± 0.01) × 10 3

NH4 +-N mg/ha/day 0.27 ± 0.004 (0.52 ± 0.08) × 10 3

Livestock δ 15NNO3 ‰ 10 ± 1.3 2.2 ± 1.3 South Pine catchment 
exports of

NO3 −-N: 0.33 kg/ha/yr,
NH4 +-N: 0.02 kg/ha/yr
(Eyre et al., 2011).

δ 18ONO3 ‰ 9.2 ± 1.44 1.0 ± 0.84

NO3 −-N mg/ha/day 1.1 ± 0.08 (6.8 ± 0.29) × 10 3

NH4 +-N mg/ha/day 1.1 ± 0.01 (0.17 ± 0.05) × 10 3

Crops δ 15NNO3 ‰ 6.1 ± 1.1 6.6 ± 0.98

δ 18ONO3 ‰ 7.3 ± 1.4 4.6 ± 0.72

NO3 −-N mg/ha/day 1.7 ± 0.25 (7.2 ± 1.1) × 10 3

NH4 +-N mg/ha/day 0.15 ± 0.02 (1.0 ± 0.13) × 10 3

Urban δ 15NNO3 ‰ 9.2 ± 0.78 8.6 ± 0.70 North Pine catchment 
export of

NO3 −-N: 0.29 kg/ha/yr,
NH4 +-N: 0.08 kg/ha/yr
(Eyre et al., 2011).

δ 18ONO3 ‰ 6.4 ± 0.80 5.2 ± 0.81

NO3 −-N mg/ha/day 2.2 ± 0.34 (16 ± 1.7) × 10 3

NH4 +-N mg/ha/day 0.23 ± 0.04 (2.3 ± 0.37) × 10 3

Wetland δ 15NNO3 ‰ 3.2 ± 2.1 3.4 ± 1.1

δ 18ONO3 ‰ 3.3 ± 2.2 2.5 ± 0.87

NO3 −-N mg/ha/day 1.8 ± 0.30 (110 ± 12) × 10 3

NH4 +-N mg/ha/day 1.3 ± 0.13 (27 ± 3.7) × 10 3

Table 2 
Isotope Signature and Nitrogen Export Rates
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The middle panels of Figure 8 illustrate the mechanism behind the better performance of the simulation using the 
isotope-enabled model during the wet period. The standard deviations of the land use-specific nitrogen concen-
tration posteriors resulting from the isotope-enabled export model were less than the deviations no-isotope model, 
hence less uncertainty. This resulted in the isotope-enabled export model producing values in better agreement 
(closer to 1:1 line) with the measured values than the no-isotope model, as shown in the top panel of Figure 8.

A sensitivity analysis was conducted to explore the effect of the concentration data distribution on model results. 
This was done by removing the outliers and extending the data set from 4 to 6 sampling events (Figure S8 in 
Supporting Information S1). The original data of CR5, C11, and CR13 were selected and bound to the 20th and 
80th percentiles and, for the next three events, datasets were modified by increasing the concentrations by 3% and 
reducing the flows by 3%. Isotope abundances were unaltered. The results shown in the lower panels of Figure 8 
indicate an improvement in the metrics of determination (r 2), NSE, and RSR for NO3-N, suggesting the data 
distribution does influence the model results.

Figure 8. Comparison of isotope-enabled and no-isotope export model of NO3-N and NH4-N concentrations versus 
observations in wet period plotted in 1:1 line (top panels), mean and standard deviation of the posteriors (middle panels) and 
results from modified data (bottom panels).
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4.3. Isotope Signature

The comparison of isotope signatures between land use during dry and wet periods (Table  1) indicates that 
δ 15NNO3 signatures of forest, rural, and livestock in the dry period were significantly higher than in the wet period. 
The isotope shifts (i.e., enrichment in  15N) between dry and wet periods could be also caused by denitrification 
as a function of the fraction of residual NOx-N (Rassam et al., 2008).

Signatures of urban δ 15NNO3 for both the dry and wet periods (ranging from +6.9‰ to +12‰) are generally 
higher than the other land uses. This may be due to typical δ 15NNO3 signatures in stormwater and sewage ranging 
from +7‰ to +20‰, compared to signatures in atmospheric deposition δ 15NNO3 from −10‰ to +8‰ (Kendall 
et al., 2007), δ 15NNO3 vehicle emissions +3.7‰, and roadside vegetation +3.8‰ (Elliott et al., 2007).

Signatures of δ 18ONO3 can be used to inform the proportion of oxygen sources which can be from precipita-
tion (δ 18OH2O −4‰ to −3‰; Hollins et al., 2018), H2O in soil zone (δ 18OH2O −30‰ to 5‰; Kendall, 1998), 
microbial respiration O2 (high δ 18OO2 as a result of isotopic fractionation) or atmospheric O2 (δ 18OO2 +23‰; 
Kroopnick & Craig, 1972). The comparisons of δ 18ONO3 between the dry and the wet periods for each land use 
(Table 2) show consistently that the signatures are higher in the dry period than in the wet period, which indicates 
that the main source of oxygen is microbial respiration.

Figure 9 illustrates that Lagoon-King John Creek experienced more biogeochemical transformation compared 
to other streams, suggesting the release of dissolved inorganic nitrogen in a mixing environment (indicated by 
a similar rate of change of δ 15NNO3 and δ 18ONO3) from upstream (station 19) to station 28, then denitrification 
around stations 34–35 (located next to landfill) (Figure 9b), followed with mineralization and nitrification, and 
possibly N-fixation downstream in area dominated by forest land use (Figures 9a–9d).

Isotope signatures during dry periods may be a good representation of a typical signature of soil. Table 2 shows 
that in the dry periods, signals of δ 15NNO3 in forests and livestock are higher than in crops and rural. This may 
be due to uncultivated soils having slightly higher δ 15NNO3 signal natural soils (−3‰ to +5‰) or N produced 
by nitrification in green manure soil (−20‰ to +10‰) compared to cultivated soils which use anthropogenic 
NO3 −-N and NH4 +-N such as synthetic fertilizer (δ 15N ≈ 0‰) (Kendall et al., 2007).

The gradient (m) values of 0.5 < m < 1 in the δ 18ONO3 and δ 15N NO3 linear regression (Table 1), or between 1:1 
(mixing line) and 2:1 denitrification line of Kendall et al. (2007), suggest that generally NO3 −-N experienced 
mixing and denitrification in the soil and riparian zones once it was exported off the land use, except for crops 
and wetland land uses in the dry periods where their gradients tend toward the nitrification line (m > 1).

4.4. Source of Uncertainty in Land Use-Specific Nutrient Export Rate

The accuracy of the proposed framework depends significantly upon the accuracy of the identification of land use 
type, and this was surveyed to validate an existing land use map provided by the Moreton Bay Regional Council 
(MBRC).

The DHM-modeled discharges for the dry period were small and showed insignificant differences between land 
use. This was reflected as uncertainty in the model due to parameter 𝐴𝐴 𝐴𝐴(𝜓𝜓|𝜃𝜃) which resulted in poor performance 
of the model at low flow as shown in Figure 7. Bias in the flow estimate contributed little to the model uncertainty 
for the wet period as the mixing model calculates the proportion of flow rather than the total flow to produce the 
contribution of each land use to the nutrient concentrations (Equations 7a–7e).

The higher uncertainty due to observation compared to that due to model parameters (Figure 7 and Figure S6 
in Supporting Information S1) indicates that the probability of model parameters conditional on the data model 

𝐴𝐴 𝐴𝐴(𝜓𝜓𝜓 𝜓𝜓|𝑦𝑦) is more significant than the probability of model parameters given the process model or posteriors 
𝐴𝐴 𝐴𝐴(𝜃𝜃|𝜓𝜓) . The uncertainty represents heterogeneity in hydrogeochemical processes during the sampling events and 

heterogeneity in nitrogen initial distribution as legacy source of nitrogen. Such uncertainty could be reduced with 
more observations that reflect the spatial and temporal variation of the nitrogen export, with the capability to 
quantify the proportion of active and legacy source of nitrogen, which is important in managing effective water 
quality improvement of downstream environment (Basu et al., 2022; Chen et al., 2021).
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Figure 9. Example of multiple axis plots of dual isotopes δ 18ONO3–δ 15N NO3 (left Y-axis) and NO3-N and NH4-N concentrations (right Y-axis) along King-John Creek, 
Sheepstation Creek, Caboolture River, and Wararba Creek. Refer to Figure 1 for sampling station locations.
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In addition, this study only included dissolved inorganic nitrogen. Approximately 3%–25% of the total nitrogen in 
Caboolture River catchment is exported as particulate nitrogen. Including particulate nitrogen concentration and 
δ 15N of particulate nitrogen may also improve the accuracy of the proposed framework.

5. Conclusions
This paper presents an approach that inversely estimates the land use-specific nutrient export rate using Bayesian 
Framework MCMC. The approach is able to provide the uncertainty estimates of the dual isotopes δ 15NNO3 and 
δ 18ONO3 and the concentration of dissolved nitrogen NO3 −-N and NH4 +-N released from forest, rural, livestock, 
crops, urban, and wetland for wet period. During the dry period, the export rates of NO3 −-N and NH4 +-N from 
forest and rural land uses were insignificant; urban land use produced more NO3 −-N than any other land uses, 
whereas wetland and livestock land uses produced more NH4 +-N than the others. The export rates of dissolved 
inorganic nitrogen during the wet period were 3 orders of magnitude higher than during the dry period, with the 
main source found to be wetland (110 g/ha/day NO3 −-N and 27 g/ha/day NH4 +-N) resulted from mineralization 
and nitrification of organic N, followed by urban (16 g/ha/day NO3 −-N and 2.3 g/ha/day NH4 +-N).

The poorer Bayesian model application for the dry period (as shown with negative NSE) where elevated nutri-
ent concentrations are released during low flow conditions suggests that the a priori mixing assumption is not 
valid. Thus, the approach fails. During this condition, export pathways are reduced, and soil and biogeochemical 
processes dominate (which were not modeled); hence, isotopic fractionation is more pronounced than isotopic 
mixing. This is consistent with the gradient (m) values of 0.5 < m < 1 in the δ 18ONO3 = f(δ 15NNO3) relationship, 
which suggests that generally NO3 −-N experiences mixing and denitrification once it is exported off the land use.
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