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Abstract :   
 
Like other seafood products, tuna is highly perishable and sensitive to microbial spoilage. Its consumption, 
whether fresh or canned, can lead to severe food poisoning due to the activity of specific microorganisms, 
including histamine-producing bacteria. Yet many grey areas persist regarding their ecology, conditions 
of emergence and proliferation in fish. In this study, we used 16S rDNA barcoding to investigate post-
mortem changes in the bacteriome of fresh and brine-frozen yellowfin tuna (Thunnus albacares), until late 
stages of decomposition (i.e. 120 h). The results revealed that despite standard refrigeration storage 
conditions (i.e. 4°C), a diverse and complex spoilage bacteriome developed in the gut and liver. The 
relative abundance of spoilage bacterial taxa increased rapidly in both organs, representing 82% of the 
bacterial communities in fresh yellowfin tuna, and less than 30% in brine-frozen tuna. Photobacterium 
was identified as one of the dominant bacterial genera, and its temporal dynamics were positively 
correlated with histamine concentration in both gut and liver samples, which ultimately exceeded the 
recommended sanitary threshold of 50 ppm in edible parts of tuna. The results from this study show that 
the sanitary risks associated with the consumption of this widely eaten fish are strongly influenced by 
post-capture storage conditions. 
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Tracking spoilage bacteria in the tuna microbiome 

 

 

Abstract 

Like other seafood products, tuna is highly perishable and sensitive to microbial spoilage. Its 
consumption, whether fresh or canned, can lead to severe food poisoning due to the activity 
of specific microorganisms, including histamine-producing bacteria. Yet many grey areas 
persist regarding their ecology, conditions of emergence and proliferation in fish. In this 
study, we used 16S rDNA barcoding to investigate post-mortem changes in the bacteriome 
of fresh and brine-frozen yellowfin tuna (Thunnus albacares), until late stages of 
decomposition (i.e. 120 h). The results revealed that despite standard refrigeration storage 
conditions (i.e. 4°C), a diverse and complex spoilage bacteriome developed in the gut and 
liver. The relative abundance of spoilage bacterial taxa increased rapidly in both organs, 
representing 82% of the bacterial communities in fresh yellowfin tuna, and less than 30% in 
brine-frozen tuna. Photobacterium was identified as one of the dominant bacterial genera, 
and its temporal dynamics were positively correlated with histamine concentration in both 
gut and liver samples, which ultimately exceeded the recommended sanitary threshold of 50 
ppm in edible parts of tuna. The results from this study show that the sanitary risks 
associated with the consumption of this widely eaten fish are strongly influenced by post-
capture storage conditions.  
 

Keywords: fish, histamine, Photobacterium, spoilage microorganisms, Yellowfin 

 

Introduction  

Like other living organisms, fish live in close association with a diverse assemblage of 

microorganisms, including bacteria, viruses, archaea and microeukaryotes, which constitute 

their microbiome. Increasing attention has been paid to the fish microbiome in recent years, 

and we now know that it ensures a number of essential functions for the health and fitness 

of the host (Egerton et al. 2018; Sehnal et al. 2021). It has also been shown to be highly 

heterogeneous throughout the body, with specific microbial signatures in different fish 

organs, including the gut, gills, skin, liver, etc. (Apprill 2017; Egerton et al. 2018; Ross et al. 

2019; Gadoin et al. 2021). Numerous studies have reported that the composition of the fish 

microbiome depends on various factors, such as species (Larsen et al. 2013; Chiarello et al. 

2015, 2018; Givens et al. 2015), stage of individual development (Hansen & Olafsen 1999), 

sex (Dhanasiri et al. 2011), diet (Cordero et al. 2015; Parata et al. 2019), geographical 

location (Chiarello et al. 2019; Xavier et al. 2020) or captive state (Dhanasiri et al. 2011; 
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Parata et al. 2019). However, little is known about the evolution of this microbiome in 

different organs after the death of the fish, which may influence its quality before 

consumption. After a fish dies, numerous physical and chemical alterations take place (i.e. 

decrease in pH, cellular lysis), inducing taxonomic and functional shifts in the bacterial 

community initially present in the organism (Boziaris & Parlapani 2017; Duarte et al. 2020; 

Gram & Huss 1996).  

In the last three decades, numerous studies have analysed the diversity and activity of 

spoilage microorganisms in many seafood products, mainly using a culture-based approach 

(reviewed in Boziaris & Parlapani 2017; Gram & Huss 1996; Gram & Dalgaard 2002). The 

results of these studies have identified microorganisms such as Pseudomonas, 

Psychrobacter, Lactobacillus and other lactic acid bacteria (LAB), Shewanella, 

Photobacterium and Aeromonas as specific spoilage organisms (SSOs) due to their ability to 

produce metabolites and off-odours/flavours in seafood flesh (Boziaris & Parlapani 2017; 

Gram & Dalgaard 2002; Parlapani 2021). Such microorganisms produce specific metabolites 

(trimethylamine oxide, ammonia, biogenic amines, organic acids, acetate and sulphur) that 

lead to organoleptic rejection of the food product (Boziaris & Parlapani 2017; Gram & 

Dalgaard 2002). The levels of these SSOs in the host organism are mainly dependent on fish 

evisceration procedures and on storage conditions (Huss 1995; Indergård et al. 2014; 

Odeyemi et al. 2018; Antunes-Rohling et al. 2019; Zhuang et al. 2021), but can also vary 

depending on the fish species (Parlapani et al. 2013, 2018; Reynisson et al. 2010), 

geographical location (Parlapani et al. 2018), and the composition of the initial microbiome 

(Boziaris & Parlapani 2017; Gram & Dalgaard 2002; Parlapani 2021). Preservation methods 

such as chilling, freezing and reduced oxygen are all known to delay bacterial growth and 

thus extend shelf-life (Dawson, Al-Jeddawi & Remington 2018; Ghaly 2010; Sivertsvik, 

Jeksrud & Rosnes 2002). 

To date, the majority of studies on the spoilage microbiome in fish have been conducted on 

flesh (Kuuliala et al. 2018; Parlapani et al. 2018; Syropoulou et al. 2021; Wang et al. 2017; 

Antunes-Rohling et al. 2019; Eliasson et al. 2019; Zotta et al. 2019), while viscera such as the 

gut and liver have received less attention. Yet the latter are recognized as important 

microbial reservoirs: the digestive tract of fish is known to host specific bacterial taxa that 

play key roles in the digestion, immunity and fitness of the host (Egerton et al. 2018; 
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Ghanbari, Kneifel & Domig 2015). More recently, diverse microbial communities have also 

been discovered in the liver of several fish species, including tuna, mullet, sardinella and 

Randall’s threadfin bream (Meron et al. 2020; Gadoin et al. 2022), showing the importance 

of including this organ in microbiome studies on marine organisms. As is the case with fish 

flesh, enteric and hepatic bacterial communities are likely to evolve rapidly on the death of 

the fish, but these mechanisms remain poorly understood to date. Although the gut and 

liver are generally not consumed, it remains important to study their microbiological 

development, as these organs could contaminate others (in particular the flesh) during the 

multiple stages of handling from fish capture to consumption.  

Of the main fish species consumed worldwide, tuna show one of the highest risks of food 

poisoning (Hungerford 2010; Tortorella et al. 2014). From a microbiological perspective, 

tuna, like other members of the Scombridae family, are an interesting study model, as the 

consumption of these species can lead to histamine poisoning (Hungerford 2010, 2021). 

Histamine is produced when specific spoilage-associated bacteria decarboxylate free 

histidine, an amino acid present in high concentrations in Scombridae (Gram & Dalgaard 

2002; Jørgensen et al. 2000; Bjornsdottir-Butler et al. 2015). It has been clearly established 

that storage temperature is a major factor influencing the production of histamine by these 

histamine-producing bacteria (HPB) (Economou et al. 2007; Guizani et al. 2005; Hungerford 

2021; Mahusain et al. 2017; Silva et al. 1998). Yet while these HPB have been identified and 

the production mechanisms of this biogenic amine are relatively well known, their ecology 

and development within the post-mortem microbiome of tuna remain poorly documented, 

especially in digestive organs such as the liver or gut (Bjornsdottir-Butler et al. 2016; Gadoin 

et al. 2022).   

In this study, we chose to conduct our investigations on a particular species – the yellowfin 

tuna (Thunnus albacares) – which is found in tropical waters worldwide and is the second 

most consumed tuna species in the world (FAO 2020). Our objective was to understand how 

the bacteriome of this key species evolves after fish capture/death by examining two major 

bacterial reservoirs: the gut and the liver. We used a metabarcoding approach to depict the 

dynamics of the whole bacterial community as well as the emergence of more specific 

spoilage bacteria and HPB. The results are discussed in the light of fish conditioning 
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processes by comparing the development of the bacteriome in fresh and brine-frozen tuna 

captured by artisanal and industrial techniques respectively. 

 

Material and methods 

Sampling 

The yellowfin tuna (Thunnus albacares) in our study were captured using two different 

fishing techniques and post-capture storage conditions: (1) artisanal fishing with immediate 

storage on ice of fresh individuals, and (2) industrial fishing followed by immediate brine-

freezing treatment. In the first case, 12 individual yellowfin were captured around fish-

aggregating devices located in the Gulf of Guinea (Ivory Coast, N04°55’00”, W03°42’19.97’’) 

on 20–21 November 2019. The capture and euthanasia of the fish were performed by 

professional fishermen. Three tuna were dissected on board immediately after their capture 

(see ‘Experimental design’), while the remaining nine individuals were individually placed in 

plastic bags and kept on ice until they reached the laboratory, less than 5 h after death. The 

mean fork length of the individuals was 49.5 cm (min 45.7 cm – max 52.3 cm), and the 

average weight was 2.1 kg (min 1.7 kg – max 2.6 kg). 

In the second case, 12 individual yellowfin were collected at the Abidjan tuna port (Ivory 

Coast) by the Exploited Tropical Pelagic Ecosystem Observatory (IRD, Ob7, certified ISO 

9001:2015) within the framework of multiannual European fishery data collection (DCF, 

financed by the European Maritime and Fisheries Fund, Article 77). All individuals were 

caught by purse seine vessels between May and December 2019 in the Eastern Atlantic 

Ocean (Gulf of Guinea and off the coast of Senegal) and immediately chilled in brine to lower 

their temperature to around -15°C. The fish remained frozen in the tanks until landing in the 

Port of Abidjan and were then thawed at 4°C in the laboratory, 24 hours before the 

beginning of the experiment (Fig. 1). The mean fork length of these brine-frozen individuals 

was 63.4 cm (min 58.0 cm – max 70.0 cm), and the average weight was 4.4 kg (min 3.1 kg – 

max 5.9 kg).  
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Experimental design 

From each sample (fresh and brine-frozen), a batch of three yellowfin individuals was 

dissected at the beginning of the experiment (T0) to analyse their liver and gut microbiota, as 

well as the histamine concentration (see sampling procedure below) (Fig. 1). For brine-

frozen tuna, T0 corresponded to 24 h after thawing at 4°C, which is considered the standard 

temperature for home storage. For fresh tuna, T0 corresponded to the time of death of the 

fish since they were dissected directly onboard after their capture. The nine remaining fish in 

each batch were kept at 4°C in temperature-controlled refrigerators. Every 48 h until the end 

of the 120-h experiment (i.e. T120), three individuals from each batch were randomly 

selected to sample their hepatic and intestinal microbiota (Fig. 1).  

 

Sampling the gut and liver microbiota 

Gut 

The dissection of the tuna involved extracting the gastrointestinal tract after cutting from 

below the stomach to the rectum using sterile tools. Each gut was opened, squeezed, and its 

inner surface entirely rubbed to expel the contents (minimum volume of 5 mL) on a sterile 

surface. The contents were homogenized before sampling (Gadoin et al. 2021). 

Liver 

A 2 x 0.2 x 2 cm (L x W x H) piece was trimmed from the right lobe of each tuna liver using 

sterile tools. Liver samples were rinsed with distilled water filtered through a 0.2 μm filter to 

avoid any contamination from other internal organs or fluids.  

All the gut and liver samples were placed in 5-mL sterile cryovials, frozen in liquid nitrogen 

and stored at -80°C in the laboratory until the extraction of bacterial nucleic acid. 

 

Bacterial DNA extraction, amplification and sequencing 

The bacterial DNA was extracted from 250 ± 0.5 mg of the gut (n= 24) and liver (n= 24) 

samples. All extractions were performed with the PowerSoil DNA Isolation Kit (Qiagen®, 

Hilden, Germany) following the manufacturer’s instructions. DNA quality and quantity were 

assessed by spectrophotometry (NanoDrop®, Wilmington, DE, USA). Blank extractions were 

performed in duplicate in order to identify potential contaminants within the reagents. The 

V3-V4 region of the 16S rDNA gene was amplified using universal bacterial primers modified 
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for Illumina sequencing: 343F (5'- ACGGRAGGCAGCAG) (Klindworth et al. 2013) and 784R (5'- 

TACCAGGGTATCTAATCCT) (Andersson et al. 2008). The reaction mixture consisted of 12.5 μL 

of 2X Phusion Mix (New England Biolabs®, Ipswich, MA, USA), 1 μL of each primer at 10 μM 

(Eurofin®, Luxembourg), 10 ng of DNA template and enough molecular-grade H2O (Qiagen®) 

to reach a final volume of 25 μL. All samples were amplified in triplicate to avoid PCR bias in 

the taxonomic diversity of the community (Perreault et al. 2007). Negative controls to check 

for the contamination of the PCR reactions were performed and blank extractions were also 

amplified (n = 2). For all samples and controls, the success of PCR amplification was 

confirmed on 2% agarose gel in TAE buffer using a 100 bp DNA ladder. Successfully amplified 

samples (n = 50) were sequenced on the Illumina platform using 2x250 bp MiSeq chemistry 

(accession number GenBank: SUB11887845, BioProject THE MOME, PRJNA674773). 

 

Bacterial sequence processing and analysis 

A total of 16,277,785 reads were obtained. Raw reads were processed with RStudio (R 

version 3.5.3) using the DADA2 package (v1.10.1) (Callahan et al. 2016) following the 

authors’ tutorial (https://benjjneb.github.io/dada2/tutorial.html). The quality of forward and 

reverse reads was analysed before removing adaptors and primers based on their length. 

Using the DADA2 tutorial with default parameters, reads were then filtered, trimmed and 

merged into 8312 amplicon sequence variants (ASVs). Chimaeras were removed, and 

sequences were aligned to the SILVA 138 database to access their taxonomy (Quast et al. 

2013; https://www.arb-silva.de/). Analyses were performed on a random subsample of 2337 

sequences per sample, corresponding to the sample with the smallest number of sequences 

after trimming and quality processing. Using the phyloseq package (McMurdie & Holmes 

2013), final taxonomic and ASV tables were linked to sample metadata (including biological 

compartment, sampling time and preservation conditions). The relative abundance of ASVs 

in each sample was assessed by phyloseq, and ASVs assigned to non-prokaryotes, archaea, 

chloroplasts and mitochondria were removed, as well as the ASVs found in the negative 

sequencing controls. Using the phyloseq and ggplot2 packages, the composition and 

diversity of bacterial communities were then represented at the class level, based on the 

relative abundance of ASVs in each sample. Among the different ASVs detected in the gut 

and liver of tuna, those corresponding to known spoilage bacterial genera in seafood 

products were listed (see Table 1). A list of putative histamine-producing bacteria genera 
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was also established from the literature, and their presence in our samples was assessed by 

comparing these to our taxonomy table.  

 

Histamine concentration  

In all the gut and liver samples, histamine concentration was assessed by enzyme-linked 

immunosorbent assays (ELISA) using the Veratox® kit for tuna histamine (Neogen®, Lansing, 

MI, USA) following the manufacturer’s instructions. Samples were suspended in distilled 

water, filtered and diluted 10X prior to the ELISA tests. Assays were performed under sterile 

conditions and the optical density was measured at 650 nm using a TECAN Infinite M200 Pro 

(Tecan®, Männedorf, Switzerland). The optical densities of the six standards available in the 

kit allowed us to trace the standard curve against which the optical density of a sample was 

plotted to calculate its histamine concentration in parts per million (ppm).  

 

Statistical analysis 

All statistical analyses were performed with RStudio. For both gut and liver samples, the 

variability in the bacteria community structure between the three individuals in a batch (see 

Fig. 1) was tested using PERMANOVAs with 999 permutations on the Bray–Curtis 

dissimilarity matrix, using the “adonis” function of the vegan package (Dixon 2003). Since no 

significant inter-fish variability could be detected in any of the batches (PERMANOVA, p 

value > 0.05), the mean relative abundance of each ASV was calculated from each triplicate 

in order to analyse the effect of storage conditions, for each organ, in both fresh and frozen 

samples and for all sampling occasions. The effect of time and post-catch storage conditions 

on the composition of hepatic and intestinal bacterial communities was determined by 

single-factor and multiple-factor PERMANOVAs. Correlations between histamine 

concentration and the relative abundance of potential HPB were evaluated using a 

Spearman correlation test performed in RStudio.  

 

Results 

Short-term dynamics of the tuna bacteriome 

The results revealed that the composition of the tuna bacteriome changed significantly over 

time in both the gut and liver (Tab. 2). 
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The gut bacteriome 

In fresh tuna, the initial enteric bacteriome was comprised of numerous taxa that included 

the genera Cutibacterium, Enhydrobacter, BD1-7 clade and Neorickettsia, as well as several 

known spoilage-associated bacteria genera such as Photobacterium, Shewanella, 

Pseudomonas and Vibrio (Tab. 1). Over the 120-h period, the abundance of Photobacterium 

then rapidly increased to reach almost 90% of the total abundance of bacteria, while most of 

the other genera decreased (Fig. 2).  

In brine-frozen yellowfin, significant changes in the composition of the gut bacteriome were 

also observed during the experiment (Fig. 2). In addition, in these fish, the presence of 

spoilage bacteria that were not found in fresh tuna were identified (e.g. Lactococcus, 

Lactobacillus, Psychrobacter, Psychrilyobacter and Proteus). The occurrence of certain taxa 

such as Psychrobacter, Lactococcus and Shewanella increased throughout the experiment. 

At T96, Photobacterium, Lactobacillus, BD1-7 clade and Mycoplasma were the most 

abundant bacterial genera, but taxa with a relative abundance of less than 2% represented 

more than 25% of the community. Their proportion increased at T120, when the spoilage 

genera Shewanella, Psychrobacter, Proteus, Pseudomonas, Photobacterium, Lactobacillus 

and Psychrilyobacter were detected and together represented 22.6% of the bacterial 

community. 

 

The liver bacteriome 

The composition of the bacterial community in the liver was highly diverse and was 

significantly different from that of the gut (Fig. 2, Permanova, p = 0.003). At T0, the 

bacteriome in fresh tuna was mostly comprised of Enhydrobacter, Micrococcus, 

Neorickettsia and Massilia. In contrast with gut samples, the liver of fresh yellowfin initially 

hosted few spoilage bacteria, but these proliferated rapidly over time. The only spoilage 

bacteria genus observed in liver samples at the beginning of the experiment was 

Pseudomonas, but at T48 the relative abundance of other genera such as Photobacterium, 

Shewanella, Psychrobacter and Vibrio began to increase. By T96, spoilage bacteria were 

dominant within the liver bacteriome, representing 76% of the bacterial community. They 

remained the major component of the liver bacteria until the end of the experiment, when 
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other genera such as Salegentibacter, Sporosarcina, Enhydrobacter and Cutibacterium were 

also detected.  

The treatment prior to storage greatly impacted the composition of the bacteriome in this 

organ. The liver-associated bacteria in brine-frozen tuna evolved in a different way than in 

fresh tuna (Tab. 1, Fig. 2). For example, the genus Photobacterium, which was highly 

dominant in the liver bacteriome of fresh fish, was much less abundant in brine-frozen fish. 

Generally, although the relative abundance of spoilage bacteria increased over time, their 

occurrence remained lower in brine-frozen than in fresh samples. At the beginning of the 

experiment, hepatic bacterial communities were composed of Enhydrobacter, 

Cutibacterium, Brachybacterium, Macrococcus, Halomonas, Acinetobacter and 

Methylobacterium, as well as two main genera (Photobacterium and Pseudomonas), and 

potential pathogens such as Staphylococcus and Corynebacterium. At the end of the 

experiment (T120), the liver bacteriome hosted several other spoilage taxa including Proteus, 

Psychrobacter, Photobacterium, Shewanella and Psychrilyobacter, which together 

represented 29% of the bacterial community.   

 

Diversity of histamine-producing bacteria and histamine concentrations 

In general, the relative abundance of HPB was much higher in fresh than in brine-frozen 

tuna. Photobacterium ASVs were generally dominant in gut samples, while other HPB genera 

(Pseudomonas and Acinetobacter) were also present in the liver in equivalent proportions 

(Fig. 3). Interestingly, the genus Proteus was only detected at the late stage of fish 

decomposition (T120) and exclusively in brine-frozen samples.  

In fresh yellowfin, the temporal dynamics of Photobacterium ASVs were significantly 

correlated with histamine concentration in both gut and liver samples (Pearson, p <0.05). 

Other potential HPB genera such as Pseudomonas, Vibrio, Acinetobacter and Enterobacter 

were also detected, but at low levels (Fig. 3).  

Fresh and brine-frozen tuna exhibited contrasting patterns of histamine concentration. In 

fresh fish, histamine concentration increased abruptly after T48 to reach a maximum at T96 in 

the gut (mean = 676 ppm) and at T120 in the liver (mean = 59 ppm), thus exceeding the 50 

ppm sanitary threshold established by the United States Food and Drug Administration (FDA 

2021) but which concerns only the edible parts (i.e. the flesh) of the fish (Fig. 3). Conversely, 
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in brine-frozen fish, histamine concentrations remained below that threshold throughout 

the experiment.  

 

Discussion 

Modifications in microbiome composition following an animal’s death are normal 

phenomena resulting from physical and chemical changes, as well as the loss of immune 

response (Benbow, Receveur & Lamberti 2020). In fish, however, the evolution of the post-

mortem bacteriome over time has been poorly studied. In this study, we sought to begin to 

address this gap by exploring the tuna spoilage bacteriome and the dynamics of bacterial 

communities in two major bacterial reservoirs: the gut and the liver. We compared the 

influence of post-capture storage conditions (fresh or brine-frozen) on the development of 

these spoilage bacteria.  

Bacterial diversity within the spoilage bacteriome 

As expected, the relative abundance of spoilage-associated microorganisms (see Table 1) 

increased significantly in the gut and liver over the duration of the experiment. This trend 

was particularly marked in fresh tuna. In both organs, we observed an increase in abundance 

of Psychrobacter, Pseudomonas, Proteus, Aeromonas, Lactobacillus, Shewanella and 

Photobacterium, which have all been previously detected in the flesh of various fish species 

such as haddock, Atlantic salmon, gilthead sea bream, European sea bass and yellowfin tuna 

(Dalgaard et al. 2006; Fogarty et al. 2019; Jääskeläinen et al. 2019; Parlapani et al. 2018; 

Reynisson et al. 2010; Syropoulou et al. 2020).  

The development of spoilage bacteria in fish and seafood products is well documented, and 

their proliferation typically depends on the applied storage conditions (Boziaris & Parlapani 

2017). Several studies have demonstrated that the diversity of such bacteria in the flesh of 

different fish species varies depending on conditions such as chilling, vacuum packaging or 

thawing temperature (Reynisson et al. 2010; Odeyemi et al. 2018; Antunes-Rohling et al. 

2019; Syropoulou et al. 2021). Bacteria from the Shewanella, Photobacterium and 

Pseudomonas genera are known for their ability to produce respectively high quantities of 

H2S, trimethylamine and volatile nitrogenous compounds (Boziaris & Parlapani 2017; 

Carrascosa et al. 2014; Chinivasagam et al. 1998). 
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It should be noted that the spoilage activity of bacteria is a relatively complex mechanism 

that has multiple determinants. The production of spoiling metabolites is clearly species 

dependent and can also vary according to storage conditions such as temperature (Antunes-

Rohling et al. 2019; Parlapani & Boziaris 2016) and atmosphere (Emborg, Laursen & Dalgaard 

2005; Silbande et al. 2016; Sivertsvik et al. 2002), as well as microbial interactions between 

communities (Joffraud et al. 2006; Zotta et al. 2019). Various analyses such as the detection 

of spoilage genes and the quantification of spoilage metabolites are usually required to 

assess the spoilage potential of specific spoilage organisms (Fu et al. 2018; Tang et al. 2019; 

Syropoulou et al. 2020); these analyses would be valuable to perform in future studies. 

 

The effect of storage conditions on the tuna bacteriome 

The relative abundance and dynamics of spoilage-associated bacteria greatly varied 

according to the initial storage conditions (fresh vs brine-frozen). In fresh tuna, spoilage ASVs 

represented on average 82% (for both organs studied) of the total number of bacterial ASVs 

at the end of the experiment, and less than 30% in brine-frozen samples. The influence of 

storage conditions on the composition of the fish microbiome has long been a subject of 

investigation (Ghaly 2010; Zhuang et al. 2021). For example, delayed development of 

spoilage microorganisms was reported in frozen fillets of Atlantic cod, mackerel and salmon 

compared to fresh samples (Fagan, Ronan Gormley & Mhuircheartaigh 2003; Sørensen et al. 

2020). Low-temperature chilling is known to decrease the growth of microorganisms, while 

freezing between -18 and -30°C kills between 10% and 60% of viable bacteria (Berkel, 

Boogaard & Heijnen 2004; Rahman 1999). In addition, the presence of sodium chloride (for 

example, in brine) is also known to inactivate autolytic enzymes in fish, as well as to 

negatively impact the growth of several spoilage bacteria (Ghaly 2010; Henney et al. 2010; 

Mejlholm, Devitt & Dalgaard 2012; Turan & Erkoyuncu 2012). This may partially explain why 

brine-frozen yellowfin exhibited a limited abundance of spoilage bacteria in the gut and liver 

microbiota compared to fresh tuna.  

 

Spoilage bacteria and histamine production in tuna  

Of the spoilage-associated bacteria detected in the tuna microbiome, histamine-producing 

bacteria are of particular interest, as they have been implicated in cases of food poisoning 

worldwide (Torido et al. 2012; Bjornsdottir-Butler et al. 2016; Hungerford 2010, 2021). We 
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identified several HPB genera in the gut and liver samples, including Acinetobacter, 

Enterobacter, Morganella, Proteus, Pseudomonas and Vibrio, but Photobacterium was the 

most abundant, especially in fresh fish, where it rapidly dominated the bacterial community 

in both organs. The genus Photobacterium is ubiquitous in marine environments and is 

composed of several species (Thyssen & Ollevier 2005). It has been described as commensal 

in various fish species (Torido et al. 2012; Bjornsdottir-Butler et al. 2015; Estruch et al. 2015; 

Givens et al. 2015; Egerton et al. 2018), but some Photobacterium species such as P. 

damselae and P. piscicida are known as fish and human pathogens (Rivas, Lemos & Osorio 

2013; Romalde 2002). Photobacterium has also been identified as an HPB in Atlantic cod 

(Kuuliala et al. 2018), haddock (Reynisson et al. 2010) and Atlantic salmon (Jääskeläinen et 

al. 2019). Indeed, several Photobacterium species are able to synthetize histamine, including 

P. angustum, P. aquimaris, P. kishitanii, P. damselae and P. phosphoreum, which are 

designated as high histamine producers (> 200ppm) (Bjornsdottir-Butler et al. 2018). While 

histamine-production capacity has been demonstrated to vary across different 

Photobacterium species, this capacity is also influenced by temperature (Bjornsdottir-Butler 

et al. 2018; Morii & Kasama 2004; Takahashi et al. 2015). Insufficiently cold temperatures 

are known to favour the production of histamine, so maintaining the cold chain is essential 

to prevent its formation (Hungerford 2021; Torido et al. 2012). Some psychrotrophic HPB, 

such as P. phosphoreum and Morganella psychrotolerans, are able to synthesize histamine at 

temperatures between 0° and 5°C (Bjornsdottir-Butler et al. 2018; Emborg et al. 2005; Kanki 

et al. 2004; Wang et al. 2020). Interestingly, our results revealed the existence of positive 

and significant correlations between histamine concentration and the relative abundance of 

bacteria belonging to the genus Photobacterium, both in the gut and liver of fresh tuna (see 

Fig. 3). Although our data did not allow us to identify the potential HPB down to species 

level, such correlations suggest that these Photobacterium taxa are probably HPB, a 

hypothesis that remains to be confirmed.  

The vast majority of studies investigating Scombroid (histamine) poisoning have been 

conducted on tuna flesh or in processed products such as filets or canned tuna (Emborg et 

al. 2005; Guizani et al. 2005; Kim et al. 2002; Kung et al. 2009; Silva et al. 2011). Our study 

extends this by revealing the presence of histamine and HPB in both gut and liver samples. 

These organs have been previously identified as important reservoirs of HPB in tuna (Taylor 
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& Speckhard 1983; Bjornsdottir-Butler, Bowers & Benner 2015; Gadoin et al. 2022), but few 

studies have considered the liver and gut in their investigations on histamine formation in 

scombroid fish. Glória et al. (1999) observed that the intestinal wall of yellowfin tuna 

contained a substantial concentration of histamine. Similarly, Fernández-Salguero & Mackie 

(1979) reported significant histamine concentration in the liver of mackerel, in an even 

greater proportion than in muscle. In light of our results and the sanitary risks associated 

with histamine synthesis in scombroid fish, it would be very useful to characterize more 

precisely the activity of the potential HPB identified in tuna digestive organs. 

Another key finding was that histamine was not detected in the gut or liver samples of brine-

frozen tuna, despite the presence of potential HPB genera. This suggests that the brine-

freezing treatment may alter the capacity of HPB to produce histamine in these two organs. 

Freezing has been previously observed to limit the production of this biogenic amine in tuna 

fillets (Tahmouzi et al. 2013). In addition, brine immersion is known to inhibit the activity of 

the histidine decarboxylase enzyme in HPB, and therefore to limit the synthesis of histamine 

from its precursor histidine (Hwang et al. 2020; Morii & Kasama 2004; Tabanelli et al. 2012). 

Overall, in line with previous studies, our results confirm the usefulness of applying a brine-

freezing treatment to tuna to prevent the formation of histamine, and thus reduce the 

health risk associated with their consumption.   

 

Conclusion 

Using a metagenomic approach, our study provides new information on the presence of 

spoilage microorganisms in the gut and liver of tuna, and their modifications after the death 

of the fish. The results show not only that the evolution of this spoilage bacteriome was 

specific to each of these digestive organs, but also highly variable according to the storage 

conditions of the fish, with the potential risk of rapid local development of histamine-

producing bacteria. From a sanitary perspective, these metagenomic results demonstrate 

the importance of removing tuna viscera as soon as possible before consumption. These 

findings highlight the need to take into account the gut and liver in investigations on the 

ecology of HPB and other SSOs in scombroid fish.  
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Figure 1. Experimental design to study the post-mortem microbiome of yellowfin tuna 

stored at 4°C. Gut and liver samples were collected in triplicate at the beginning of 

the experiment (T0) and after 48, 96 and 120 hours, on fresh (A) and brine-frozen (B) 

individuals.  
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Figure 2. Temporal variation in the relative abundance of the main bacterial genera 

in the gut and liver samples of fresh and brine-frozen yellowfin tuna. The size of the 

dot is proportional to the relative abundance of each bacterial genus from T0h to T120h. 

Genera identified as spoilage organisms (see Table 1) are coloured in red. Arrows 

represent the overall development of each bacterial genus during the experiment. 

Bacterial genera with a relative abundance inferior to 2% were grouped and 

designated as < 2% abund.  
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Figure 3. Dynamics of histamine concentration (ppm) (right abscissa) and relative 

abundance (left abscissa) of the main putative histamine-producing bacteria (HPB) 

found in the gut (A,B) and liver (C,D) of fresh (B,D) and brine-frozen (A,C) yellowfin 

tuna. The red horizontal bar represents the sanitary threshold of 50 ppm established 

by the United States Food and Drug Administration (FDA 2021).  
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Table 1. List of bacterial genera detected in the tuna gut and liver samples, and reported as spoilage taxa in 
seafood products. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
  

Bacterial genera Marine species/Seafood 
product 

References 

Aeromonas spp. Atlantic salmon (Salmon salar) Jakobsen et al. 2020 
Common carp (Cyprinus carpio) Beaz-Hidalgo et al. 2015 
Sea bass (Dicentracus labrax) Carrascosa et al. 2014; Parlapani et al. 2013 
Sea salmon (Pseudopercis semifasciata) Hozbor et al. 2006 

Lactobacillus spp. Cold-smoked salmon  Olofsson et al. 2007 
Marinated and smoked herring (Clupea 
harengus) 

Gancel et al. 1997; Lyhs et al. 2001 

‘Gravad’ rainbow trout Lyhs et al. 2002 
Lactococcus spp. Common carp (Cyprinus carpio) Li et al. 2018 

Grass carp (Ctenopharyngodon idellus) Zhang et al. 2019 
Photobacterium spp. Atlantic cod (Gadus morhua) Hovda et al. 2007; Kuuliala et al. 2018 

Atlantic salmon (Salmon salar) Emborg et al. 2002; Fogarty et al. 2019; 
Jääskeläinen et al. 2019; Macé et al. 2012 

Garfish (Belone belone) Dalgaard et al. 2006 
Haddock (Melanogrammus aeglefinus) Reynisson et al. 2010 
Sea bream (Sparus aurata) Parlapani & Boziaris 2016 

Proteus spp. Sardine (Sardina pilchardus) Houicher et al. 2013 
Spoiled fish (mackerel, sardine, anchovy 
and rainbow trout) 

Yazgan et al. 2019 

Canned tuna  Ahmed 2019 
Yellow croaker (Pseudosciaena crocea) Guo Quanyou et al. 2018 

Pseudomonas spp. Atlantic cod (Gadus morhua) Hovda et al. 2007 
Atlantic salmon (Salmon salar) Xie et al. 2018 
Gilt-head sea bream (Sparus aurata) 
 

Parlapani et al.  2013; Tryfinopoulou et al. 
2002 

Norway lobster (Nephrops norvegicus) Bekaert et al. 2015 
Sea bass (Dicentracus labrax) Parlapani et al. 2015 
Yellow croaker (Pseudosciaena crocea) Ge et al. 2017 
Yellowfin tuna (Thunnus albacares) Jääskeläinen et al. 2019 
Tilapia fillets (Oreochromis niloticus) Duan et al. 2018 

Psychrobacter spp. Brown shrimp (Crangon crangon) Broekaert et al. 2013 
Salt-cured cod ((Gadus morhua) Bjørkevoll et al. 2003 
Norway lobster (Nephrops norvegicus) Bekaert et al. 2015 
Cuttlefish (Sepia officinalis) Parlapani et al. 2018 
Hake fillet (Merluccius merluccius) Antunes-Rohling et al. 2019 
Deepwater rose shrimp (Parapenaeus 
longirostris) 

Parlapani et al. 2020 

Psychrilyobacter spp. Mandarin fish (Siniperca chuatsi) Wang et al. 2021 
Pacific oyster (Crassostrea gigas) Fernandez-Piquer et al. 2012 

Shewanella spp. Common carp (Cyprinus carpio) Beaz-Hidalgo et al. 2015 
Sea bream (Sparus aurata) Tryfinopoulou et al. 2007 
Atlantic horse mackerel (Trachurus 
trachurus) 

Alfaro & Hernandez 2013 

Sea bass (Dicentracus labrax) Carrascosa et al. 2014; Parlapani et al. 2018 
Tilapia fillets (Oreochromis niloticus) Duan et al. 2018 
Sea salmon (Pseudopercis semifasciata) Hozbor et al. 2006 
Hake (Merluccius merluccius) López-Caballero et al. 2001 
Yellow croaker (Pseudosciaena crocea) Ge et al. 2017 
Mussels Odeyemi et al. 2018 

Vibrio spp. Pacific oyster (Crassostrea gigas) Madigan et al. 2014 
Blue crab (Callinectes sapidus) Parlapani et al. 2019 
Hake fillet (Merluccius merluccius) Antunes-Rohling et al. 2019 
Tropical shrimp (Penaeus vannamei) Macé et al. 2014 
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Table 2. Results of permutational ANOVAS (PERMANOVA, 999 permutations) performed on Bray-Curtis 
dissimilarities matrices to test the variation of bacterial community composition with time and post-capture 
preservation conditions in gut and liver samples. Bold values indicate a significant effect of the tested factor (p < 
0.05). 
 

 
 
 
 
 
 
 
 

 

Community dissimilarity 

 Time Post-mortem preservation 

 p value r2 df p value r2 df 

Gut 0.001 0.21 2 0.255 0.05 1 
Liver 0.023 0.13 2 0.003 0.09 1 
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