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Abstract :   
 
Local declines of wild populations represent the most visible part of biodiversity loss, and their detection 
often relies on long-term surveys. An alternative to identify risk-prone populations is to use indicators 
informing on their general health (i.e., their general fitness and ability to cope with changing environment) 
based on simple and complementary parameters estimated from snapshot sampling. However, most 
studies on wildlife population health focus on one or only a few parameters, yielding potentially biased 
conclusions for conservation. Here, we developed a multifaceted index of population health by combining 
3 complementary indicators, namely pathological, ecological, and genetic indicators, based on an 
integrative approach traditionally used to assess ecosystem multifunctionality. We investigated their 
complementarity and relevance for detecting brown trout (Salmo trutta) risk-prone populations at a large 
spatial scale, and the underlying environmental stressors. The multifaceted health index properly 
represented the individual indicators' complementary information. It identified a cluster of moderately risk-
prone populations and raised the alarm for one population. Each indicator was individually associated 
with distinct environmental stressors relevant for brown trout requirements. The multifaceted health index 
highlighted surrounding agricultural land and oxygen concentration as the most impacting environmental 
factors for the general health and sustainability of brown trout populations. The implementation of such 
integrative index can be transferred to a wide range of species and contexts. This index therefore provides 
to environmental managers and conservationists a snapshot and easily operated tool to identify risk-prone 
populations and areas to restore or conserve. 
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Highlights 

► We propose a multifaceted index to assess wildlife populations health. ► This index combines three 
individual pathological, ecological, and genetic indicators. ► Each individual indicator was associated 
with distinct environmental stressors. ► The multifaceted health index identified the most impacting 
environmental stressors. ► This approach efficiently highlighted the most risk-prone populations in the 
area. 

 

Keywords : Population demography, Sustainability, Biological indicator, Parasitology, Genetics, 
Environmental variability 
 
 

 

 



Abbreviations: 
MFI: multifaceted indicator of population health 

PI: pathological indicator  1 

EI: ecological indicator 

GI: genetic indicator 

Abstract  1 

Local declines of wild populations represent the most visible part of biodiversity loss, and 2 

their detection often relies on long-term surveys. An alternative to identify risk-prone 3 

populations is to use indicators informing on their general health (i.e., their general fitness and 4 

ability to cope with changing environment) based on simple and complementary parameters 5 

estimated from snapshot sampling. However, most studies on wildlife population health focus 6 

on one or only a few parameters, yielding potentially biased conclusions for conservation. 7 

Here, we developed a multifaceted index of population health by combining 3 complementary 8 

indicators, namely pathological, ecological, and genetic indicators, based on an integrative 9 

approach traditionally used to assess ecosystem multifunctionality. We investigated their 10 

complementarity and relevance for detecting brown trout (Salmo trutta) risk-prone 11 

populations at a large spatial scale, and the underlying environmental stressors. The 12 

multifaceted health index properly represented the individual indicators’ complementary 13 

information. It identified a cluster of moderately risk-prone populations and raised the alarm 14 

for one population. Each indicator was individually associated with distinct environmental 15 

stressors relevant for brown trout requirements. The multifaceted health index highlighted 16 

surrounding agricultural land and oxygen concentration as the most impacting environmental 17 

factors for the general health and sustainability of brown trout populations. The 18 

implementation of such integrative index can be transferred to a wide range of species and 19 

contexts. This index therefore provides to environmental managers and conservationists a 20 

snapshot and easily operated tool to identify risk-prone populations and areas to restore or 21 

conserve.  22 

Keywords: population demography, sustainability, biological indicator, parasitology, 23 

genetics, environmental variability 24 
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1. Introduction 25 

By altering environmental conditions and biotic interactions, global change is threatening 26 

many plant and animal species, thereby increasing their risk of extinction (Radchuk et al., 27 

2019; Spooner et al., 2018; Thomas et al., 2004). Species extinction is systematically 28 

preceded by the decline in abundance of local populations, which actually represents the most 29 

important and visible part of the global biodiversity loss (Collen et al., 2011; Hughes et al., 30 

1997). Local declines of populations may therefore serve as early warning signals (EWS) for 31 

managers to mitigate the aftermaths of global change (Drake & Griffen, 2010). However, 32 

characterizing these declines requires long-term surveys of populations’ abundance that are 33 

labor-intensive and still scarce in wild populations (Atkinson et al., 2006).  34 

Monitoring indicators informing the general health of populations may be a relevant 35 

alternative to long-term surveys to infer their ability to cope with new environmental 36 

conditions (Stephen, 2014), and to identify risk-prone populations (Clements & Ozgul, 2016; 37 

Goff et al., 2020). The general health of populations is here defined as their general status 38 

(i.e., fitness) and their demo-genetic sustainability over short- to long-term periods (Hoban et 39 

al., 2013; Kophamel et al., 2021). Population health is therefore intrinsically multifaceted, and 40 

it can be informed by multiple indicators (generally genetic, phenotypic, or demographic 41 

information), measured during snapshot sampling events. For example, a decrease in the mean 42 

body size of whales appeared as a good EWS of local populations’ declines (Clements et al., 43 

2017). Similarly, intraspecific genetic diversity (or related indices such as effective population 44 

sizes) informs on the adaptive potential of populations in changing environments (Hoban et 45 

al., 2013; Lande & Shannon, 1996). Likewise, pathogenic infection can represent a silent 46 

threat to population fitness by provoking sudden mortality under new environmental 47 

conditions (Valenzuela-Sánchez et al., 2017). Hence, a thorough monitoring of wildlife 48 

populations’ characteristics informing their general health may help noticing EWS and setting 49 

pro-active management decisions.  50 

Wildlife population health is multifaceted and encompasses several intrinsic 51 

parameters such as ecological (e.g. population abundance, body condition), genetic (e.g. 52 

genetic diversity) or pathological (e.g. pathogen infection) parameters, which are 53 

complementary and influenced by multiple environmental factors (Stephen, 2014). Most 54 

studies on wildlife population health focus on one or only a few parameters. However, when 55 

interpreted independently, these indicators can yield opposite conclusions, and therefore 56 

potentially biased outcomes for wildlife population management. For instance, a population 57 

can show high local abundance, making it resilient to stochastic demographic fluctuations but 58 

a low level of genetic diversity, leaving it vulnerable under fluctuating environmental 59 

conditions (Maebe et al., 2019). Similarly, pathogen infection may differently affect a 60 

genetically diversified or an inbred host population (King & Lively, 2012). In addition, 61 

different indicators might be differently modulated by environmental factors. For example, an 62 

increase in temperature may benefit individual growth, while favoring pathogen development 63 

detrimental to individual fitness and population health, so that the use of multiple indicators 64 

may better capture the global impact of environmental stressors. Besides, the combination of 65 

several indicators into a single index of population general health could buffer potential 66 

uncertainties related to the measurement of each individual indicator. Therefore, more 67 

integrative studies incorporating several indicators are needed to grasp the multiple 68 

dimensions of wild population health.  69 

This query is timely because recent advances in field and laboratory techniques enable 70 

the development of such integrative indicators. For instance, remote sensing mapping 71 

landscape types (Skidmore, 2003) or molecular tools assessing genetic diversity and 72 

environmental DNA quantifying the abundance of species (Bohmann et al., 2014; Hoban et 73 
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al., 2013) offer new non-invasive monitoring tools to address this challenge while minimizing 74 

the impact on sampled populations. Building on such new field and molecular techniques, this 75 

study aims at developing a multifaceted index of population health (MFI) combining 76 

individual indicators related to the pathological, ecological, and genetic status of populations. 77 

The construction of this MFI is inspired from studies measuring ecosystem multifunctionality 78 

by synthetizing multiple ecosystem functions into a single score (e.g. Manning et al., 2018). 79 

We first tested the covariation between each component indicator and their covariation with 80 

the MFI to investigate their complementarity or redundancy for informing population general 81 

health. We then tested the link between each of these indicators and potential natural and 82 

anthropogenic environmental stressors to identify the most impacting for population health.  83 

We focused on populations of a common freshwater fish, the brown trout Salmo trutta, 84 

that has important economic, cultural and recreational values (Unfer & Pinter, 2018). This 85 

species is highly sensitive to environmental stressors such as water warming and chemical 86 

alterations (Eklöv et al., 1999; Elliott & Elliott, 2010). We sampled populations along a large 87 

spatial gradient associated with water physicochemical variations. For each population, we 88 

quantified 3 component indicators informing on their pathological, ecological and genetic 89 

status and combined them into a MFI. Our final aims were to identify low-health populations 90 

that are the most risk-prone and likely to decline in the sampled area, and the underlying 91 

environmental factors. We expected the component indicators to provide complementary 92 

information, revealed by a weak covariation among them within populations. Consequently, 93 

combining these indicators into a MFI should provide a better assessment of population health 94 

and its underlying environmental factors. We thus predicted a tighter association between 95 

environmental factors and the MFI relative to each individual component indicator. 96 

2. Methods 97 

2.1. Brown trout sampling 98 

We developed the MFI in brown trout populations because the ecology of this salmonid fish is 99 

well known. This species is particularly sensitive to water temperature and quality (Elliott, 100 

1994), so that water characteristics may be tightly associated with population health. We 101 

sampled 46 wild populations experiencing a wide range of environmental conditions in 102 

southern France, at the foothills of the Pyrenean mountains (Fig. 1, Table A1). During 103 

summer 2019, we electro-fished up to 20 individuals per site (when local abundances allowed 104 

it), representing 865 sampled brown trout in total (Table 1, Table A1). We targeted juveniles 105 

(mean size ± SD 75±14mm), corresponding mainly to young-of-the-year (0+) fish because it 106 

is the most sensitive stage to environmental stressors and pathogen infection, and the most 107 

abundant cohort. After manipulations (see hereafter), we released the fish alive into their 108 

sampling sites. Authorizations to sample brown trout were provided by the Directions 109 

Départementales des Territoires of Ariège, Haute-Garonne and Hautes-Pyrénées respectively. 110 

2.1.1. Pathological indicator (PI) 111 

The PI focused on the most impacting pathogen for brown trout in our study area: the 112 

myxozoa Tetracapsuloides bryosalmonae. This pathogen is the causative agent of the 113 

proliferative kidney disease (PKD), an emerging disease that has been increasingly reported 114 

during the last two decades, in Europe and North America. PKD can cause up to 100% 115 

mortality during severe outbreaks, especially in young-of-the-year cohorts, representing a 116 

threat for infected populations (Okamura et al., 2011). 117 

We assessed the infection by T. bryosalmonae and its load in sampled fish using a 118 

non-lethal method developed in Duval et al. (2021) quantifying the DNA of pathogen 119 

excreted in the fish urine, considered as a proxy for the level of kidney infection. After 120 
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capture, the fish recovered for 30min, and were placed individually into plastic bottles with 121 

1.2L of commercial mineral water for 1h to let time for the infected fish to excrete pathogen 122 

spores or DNA through urine. Then, we used a Vampire sampler® to filter 1L of the water 123 

and extracted DNA from 1.2μm filters. Lastly, we used specific droplet digital PCRs 124 

(ddPCRs) to quantify T. bryosalmonae DNA (see Duval et al. (2021) for the complete 125 

procedure). Population infection prevalence is the number of positive individuals for T. 126 

bryosalmonae DNA detection divided by the number of sampled individuals. The fish 127 

pathogen load corresponds to the concentration of T. bryosalmonae DNA divided by the time 128 

of excretion and the fish body mass to correct for variation in urine excretion (Hunn, 1982).  129 

We scaled the infection prevalence and the mean pathogen load in each population 130 

into scores ranging between 0 (the population with the highest prevalence or highest mean 131 

pathogen load) and 1 (the population with the lowest prevalence or lowest mean pathogen 132 

load), with the R scales package (Wickham & Seidel, 2020). We averaged these two scores 133 

and rescaled the mean between 0 and 1 to build the PI. Populations with the lowest pathogen 134 

prevalence and load were considered the healthiest from a pathological point of view. 135 

2.1.2. Ecological indicator (EI) 136 

The EI is based on the population density and the fish mean body condition. We estimated 137 

fish density at each site as the number of juveniles caught per minute through single-pass 138 

electrofishing surveys (“catch-per-unit-effort”, CPUE, Kruse et al., 1998). After the urine 139 

excretion step (2.1.1.), we anaesthetized each fish with benzocaine, measured and weighed 140 

them to the nearest mm and 0.1g respectively. We calculated fish body condition (K) 141 

according to equation (1) (Fulton, 1904), with W as fish mass in g, and L as fish length in cm.  142 

(1)  � =
�

��
× 100  143 

As for the PI (2.1.1.), we scaled the mean body condition and fish density into scores 144 

between 0 and 1, averaged them and rescaled the mean to build the EI. Populations with the 145 

highest density of juveniles and the highest mean body condition were considered the 146 

healthiest from an ecological point of view (Lobón-Cerviá, 2005; Robinson et al., 2008). 147 

2.1.3. Genetic indicator (GI) 148 

We fin-clipped each fish for genetic analyses and stored the fins in 70% ethanol. The LGC® 149 

Group (UK) used the KASPar allele-specific fluorescent genotyping system to genotype each 150 

individual at 175 SNPs, among which 158 were confidently genotyped (Table A2). These 151 

included 141 SNPs evenly spread on the brown trout linkage genetic map from Saint-Pé et al. 152 

(2019), as well as 17 SNPs from Ahmad et al. (2018), identified as candidate loci in the 153 

resistance/tolerance to the infection by T. bryosalmonae. To ensure the reliability of the 154 

genotyping, we duplicated 17 individuals that indicated a 0.2% error in scoring (5 mismatches 155 

in 2584 comparisons). To identify potential genotyping errors, we ran Hardy-Weinberg 156 

equilibrium tests with the genepop package (Rousset, 2008). We removed from the analyses 6 157 

loci that departed from the equilibrium in 5 to 22 populations (Table A2) and 7 individuals 158 

that did not amplify properly so that 152 loci and 858 individuals were genotyped.  159 

 The GI is based on the effective population size (Ne), a measure of population 160 

sustainability (Waples & Do, 2010) and the mean multilocus heterozygosity (MLH), a 161 

genomic inbreeding estimator often positively correlated with individual fitness in wild 162 

populations (Hansson & Westerberg, 2002). We computed the MLH with the package 163 

inbreedR (Stoffel et al., 2016). We computed populations’ Ne with the linkage disequilibrium 164 
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method (Waples & Do, 2007) in NeEstimator 2.1 (Do et al., 2014) with a lowest allele 165 

frequency of 0.05. These values were logged to homogenise variance.  166 

As for the other indicators (2.1.1., 2.2.2.), we scaled MLH and Ne into scores between 167 

0 and 1, averaged them and rescaled the mean to build the GI. Populations with the highest Ne 168 

and MLH harbor higher genetic variation, enhancing their response to environmental changes 169 

and reducing their sensitivity to genetic stochasticity, so that they were considered the 170 

healthiest from a genetic point of view (Evans & Sheldon, 2008; Palstra & Ruzzante, 2008). 171 

2.1.4. Multifaceted health index 172 

We then calculated the MFI of each population by combining these 3 component indicators. 173 

We averaged the PI, EI and GI, before rescaling the mean between 0 and 1 to obtain the final 174 

MFI.  175 

2.2. Environmental data 176 

To investigate the impact of natural and anthropogenic factors on these different indicators, 177 

we measured key environmental factors (Table 1). Brown trout is highly sensitive to 178 

temperature, oxygen concentration, pH and conductivity (Elliott, 1994). Therefore, we 179 

recorded water temperature in each site every 4h between July and August 2019 with a 180 

HOBO® logger and we acquired O2 concentration, pH, and specific conductivity through 181 

snapshot measures with the In-Situ® Aqua TROLL 500 Multiparameter Sonde in August 182 

2020. In addition, we quantified PO4
3-, NO2

- and NO3
- concentrations in the water reflecting 183 

water eutrophication, based on 50mL samples collected in May 2020 at the Laboratoire 184 

Ecologie Fonctionnelle et Environnement according to the ISO 15681-2 and ISO 13395 185 

norms, respectively.  186 

We estimated the percentage of agricultural land in a 2km buffer around each site with 187 

the CORINE Land Cover 2018 dataset (European Environment Agency), as it represents the 188 

main anthropogenic pressure in the sampled area. We also used the QGIS software (2022) to 189 

estimate the distance from the source and the altitude of the sampled sites. We expected that 190 

the general health of brown trout populations would be lower in the warmest waters with the 191 

lowest oxygen concentration, the highest values of eutrophication and the highest surfaces of 192 

agricultural land in their surroundings (Jonsson et al., 2011; Molony, 2001). 193 

2.3. Statistical analyses 194 

We conducted the statistical analyses in the R environment (R 4.0.3, R Core Team 2020). 195 

2.3.1. Covariance between the indicators  196 

We quantified the covariance between the PI, EI and GI and with the MFI respectively using 197 

pairwise Spearman correlation tests with Holm’s correction for multiple inference (n=6 pairs 198 

of indicators) from the RcmdrMisc package (Fox, 2020). A positive and significant correlation 199 

between two indicators would indicate that they co-vary and support redundant information. 200 

2.3.2. Impacts of the environmental factors on the indicators and multifaceted health index 201 

To investigate the impacts of the environmental factors on the component indicators and the 202 

MFI, we used a redundancy analysis (RDA) with the vegan package (Oksanen et al., 2020). 203 

This analysis is a constrained form of principal component analysis which explains a set of 204 

response variables (here the indicators) by a set of explanatory variables (here the 205 
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environmental factors). We assessed the validity of the RDA through an analysis of variance 206 

(ANOVA, 999 permutations).  207 

Additionally, we ran path analyses to outline the statistically significant relationships 208 

between the environmental factors and the indicators while taking into account the inter-209 

dependence of the environmental factors, using the lavaan (Rosseel, 2012) and semPlot 210 

(Epskamp et al., 2019) packages. We added and removed incrementally the links between the 211 

variables, only keeping significant relationships until reaching the lowest Akaike’s 212 

Information Criterion (AIC), together with a non-significant Chi² p-value (>0.05), a 213 

Comparative Fit Index (CFI) >0.95 and a Root Mean Square Error of Approximation 214 

(RMSEA) <0.05 (Hu & Bentler, 1999; Rigdon, 1996). Because the MFI was highly correlated 215 

with the component indicators, we ran two path analyses separately: one including the 3 216 

component indicators and one including only the MFI. However, as the covariations among 217 

environmental factors remained the same, we joined both analyses for graphical 218 

representation. 219 

3. Results 220 

3.1. Covariance between the component indicators and with the multifaceted index 221 

The PI, EI and GI did not significantly covary (Spearman correlation tests and adjusted 222 

Holm’s p-values; PI vs. EI, r=0.14, 95% CI -0.16 to 0.41, P=1; PI vs. GI, r=0.06, 95% CI -223 

0.23 to 0.34, P=1; GI vs. EI r=0.03, 95% CI -0.26 to 0.32, P=0.1; Fig. A2). In addition, each 224 

of the 3 component indicators were significantly and positively correlated to the MFI 225 

(Spearman correlation tests; MFI vs. PI r=0.69, 95% CI 0.50-0.82, P<0.001; MFI vs. EI, 226 

r=0.52, 95% CI 0.27-0.70, P=0.001; MFI vs. GI, r=0.52, 95% CI 0.27-0.70, P=0.001; Fig. 227 

A2). These correlation coefficients did not differ significantly among them (95% CI overlap 228 

among the coefficients, Fig. A2), hence indicating that the 3 component indicators equally 229 

contributed to the MFI.  230 

3.2. Effect of environmental factors on the indicators 231 

The highest MFI scores were mostly located upstream and closer to the Pyrenean mountains, 232 

whereas the lowest scores were found further downstream, with a specific cluster in the 233 

western part of the studied area (Fig. 1). This spatial pattern was also detectable with the PI 234 

but not with the EI and GI (Fig. A1). The population with the lowest MFI score was BAUSou, 235 

which had a low score for each component indicator (Fig. 1, Fig. A1). 236 

The ANOVA confirmed the validity of the RDA (df=9, F=3.11, P=0.001). The global 237 

variance of the indicators’ scores (component and MFI) constrained by the environmental 238 

factors was of 43.71%, including 39.93% explained by the two first axes (Fig. 2). The PI was 239 

negatively associated with the mean summer water temperature and the NNO2-NNO3 240 

concentration (Fig. 2), suggesting that fish in colder and less eutrophicated water were less 241 

frequently and severely infected by T. bryosalmonae. The EI was poorly defined by both axes, 242 

and thus poorly explained by the measured environmental factors (Fig. 2). The GI was 243 

positively associated with the distance from the source, and negatively with the percentage of 244 

agricultural land, suggesting that fish further downstream and in less agricultural areas had a 245 

better genetic status. The MFI was strongly and negatively associated with the percentage of 246 

agricultural land, and positively associated with the O2 concentration. Overall, the first axis 247 

was positively related to high scores for all the indicators, therefore the populations on the left 248 

part of the plot were identified as the less healthy and the most likely to decline (Fig. 2). 249 

The path analyses for the component indicators (χ²=20.68, df=19, P=0.36; CFI=0.99; 250 

RMSEA=0.04) and the MFI (χ²=6.070, df=7, P=0.53; CFI=1; RMSEA=0) both met the 251 
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validation requirements. Consistently with the RDA, they revealed statistically significant 252 

relationships between some environmental factors and the indicators, while evaluating the 253 

covariances between environmental factors, i.e., considering their non-independence (Fig. 3). 254 

For instance, the concentration of NNO2-NNO3, the percentage of agricultural land and the 255 

mean summer water temperature were positively correlated: agricultural sites were thus 256 

warmer and more eutrophicated. The mean summer temperature and the percentage of 257 

agricultural land were negatively correlated with the altitude, implying that warm agricultural 258 

sites were mostly located at low altitudes. After considering the environmental factors 259 

covariations, the PI was negatively associated with the nutrient concentration and the mean 260 

water temperature (Fig. 3, see Fig. A3 for a visual representation). The EI was negatively 261 

associated with the percentage of agricultural land, as was the GI which was additionally 262 

positively associated with the distance from the river source (Fig. 3, see Fig. A3 for a visual 263 

representation). The set of measured environmental factors explained a consistent part of the 264 

variance of the PI and the GI (R²=0.45 and R²=0.37, respectively), but barely explained the 265 

variance in the EI (R²=0.09, Fig. 3). The path analysis run separately for the MFI identified a 266 

positive relationship with the O2 concentration and a strong negative relationship with the 267 

percentage of agricultural land (Fig. 3, see Fig. A4 for a visual representation). The MFI had 268 

the highest percentage of variance explained by the model (R²=0.55, Fig. 3).  269 

4. Discussion 270 

We developed an easy-to-build operational multifaceted index informing on the general health 271 

of wild populations, as a first management step to identify risk-prone populations and guide 272 

conservation priorities. To that end, we combined indicators of population pathological, 273 

ecological, and genetic status into a multifaceted health index (MFI) by adapting a framework 274 

traditionally used to assess ecosystem multifunctionality. We showed that the 3 component 275 

indicators measured in brown trout populations did not covary, suggesting that they carry 276 

non-redundant and complementary information on population health. The MFI equally 277 

synthetized their information and enhanced the detection of risk-prone populations. The 278 

component indicators were associated with different environmental stressors, and the MFI 279 

highlighted the most important stressors regarding the populations’ general health, which can 280 

help prioritizing conservation actions.  281 

4.1. Identifying risk-prone populations 282 

The pathological, ecological, and genetic indicators (PI, EI and GI, respectively) did not 283 

covary, indicating that they carry complementary information regarding population health. 284 

For instance, the population ARRGou showed a good GI suggesting a high adaptive potential, 285 

but its PI and EI were weak. The discrepancy between indicators illustrates the need for a 286 

more integrative index to get reliable insights of populations’ general health. The combination 287 

of the indicators into a MFI therefore enhanced the accuracy of health assessment and 288 

ultimately classified ARRGou as a moderately risk-prone population.  289 

This is especially true because the 3 component indicators equally contributed to the 290 

MFI, indicating that each indicator was accurately represented by the MFI. The MFI 291 

identified a cluster of populations with low scores in the north-western part of the studied 292 

area, in which especially one population (BAUSou) showed a high risk of decline. 293 

Congruently, we observed that its density has decreased markedly in 2020 (data not shown). 294 

This particular case illustrates the potential of the MFI to detect early warning signals of 295 

populations’ declines (Clements & Ozgul, 2016; Drake & Griffen, 2010), even though further 296 

temporal surveys would be needed to validate this hypothesis.  297 
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4.2. Identifying underlying environmental stressors 298 

We further showed that the component indicators were influenced by different environmental 299 

factors. We found associations between the indicators and the environmental factors tested 300 

that were mutually coherent and consistent with the biological requirements of brown trout, 301 

hence comforting the robustness of the multifaceted index.  302 

For instance, the PI decreased with increasing nutrient concentration and water 303 

temperature. This result is consistent with T. bryosalmonae life cycle: increased water 304 

temperature favors its multiplication and transmission as well as the growth of its main host, a 305 

bryozoan, that is also favored by increasing concentration in nutrients, which in turn increases 306 

the available niche for the pathogen (Okamura et al., 2011).  307 

Likewise, the GI increased with increasing distance from the source, following the 308 

prediction that genetic diversity usually increases downstream in riverine fish (Paz-Vinas et 309 

al., 2015), and decreased with increasing percentage of agricultural land. In addition, we 310 

found that our agricultural sites were warmer and more eutrophicated (3.2.). Since high 311 

concentration in nutrients, high temperature and low oxygen concentration are unfavorable 312 

conditions for brown trout survival and reproduction (Burkhardt-Holm & Scheurer, 2007; 313 

Elliott & Elliott, 2010), large agricultural surroundings may thus be associated with a rapid 314 

decline in the population demographic performance, ultimately decreasing its genetic 315 

diversity, as observed in other aquatic species (Blum et al., 2012; Nicol et al., 2017).  316 

The EI also decreased with the percentage of surrounding agricultural land, but this 317 

indicator was globally poorly explained by the measured environmental factors.  318 

The MFI was better explained by the measured environmental stressors than the 3 319 

individual indicators, showing its relevance in indicating the most impacting factors for brown 320 

trout populations’ health, i.e., the percentage of agricultural land and the oxygen 321 

concentration in the water. Consistently, the populations identified as the most likely to 322 

decline had the highest percentages of agricultural land in their surroundings. This 323 

corroborates the negative impact of agricultural land on the density and production found in 324 

other wild salmonid populations (Jonsson et al., 2011; Vondracek et al., 2005).  325 

Lastly, an important advantage of the MFI is that it revealed the most impacting 326 

environmental stressors among those measured, including both the direct and indirect impacts 327 

of other environmental factors as revealed by the path analysis. Indeed, this integrative MFI 328 

approach showed that the presence of agricultural land was the main driver of low population 329 

health, combined with low oxygen concentration. Investigating the impact of environmental 330 

factors on the different facets of population health could enhance existing knowledge on the 331 

species’ ecological niche and tolerance ranges (Sax et al., 2013) and help refining 332 

management practices.  333 

4.3. Implementation and implications for wildlife conservation  334 

This study shows how integrating different facets of health at the intraspecific level can 335 

improve risk assessment in wild populations, which is a major target for managers and 336 

stakeholders. Biological indicators combining multiple parameters at different scales of the 337 

ecosystem (communities, species, populations, genes) generally outperform single-parameter 338 

indicators (Alric et al., 2021; Friberg, 2014). Our MFI likewise demonstrated that the 339 

combination of several indicators appears wiser to limit the individual indicators’ 340 

imperfections. Nonetheless, some individual parameters must be interpreted cautiously. For 341 

instance, a low genetic diversity could merely reveal past demographic history rather than the 342 

consequence of a recent contemporary stress (Matocq & Villablanca, 2001), and the body 343 

condition may misleadingly reflect individual health as it can be density-dependent or 344 

associated with some diseases (Bruneaux et al., 2017). This implies that the use of an 345 



9 

 

integrative index should not impede complementary analyses of the individual parameters to 346 

ensure that some important information is not lost during the process, blurring special patterns 347 

(e.g., especially alarming pathological or genetic status).  348 

Importantly, the implementation of such integrative health indexes is highly flexible 349 

depending on management objectives as they can be built from a wide variety of parameters 350 

depending on the particularities of the studied systems. In this study, the parameters chosen 351 

were relevant for the brown trout, and easily implemented in the field, which improves the 352 

operationality of this index by managers and stakeholders. In other studies or species, 353 

additional indicators could be integrated such as physiological parameters (e.g. haematocrit, 354 

oxygen consumption, Bruneaux et al., 2017; cortisol, Sadoul & Geffroy, 2019), telomere 355 

length informing on the exposure to environmental stressors (e.g. in Dupoué et al., 2017), or 356 

demographic parameters (e.g. population age structure, Hixon et al., 2014; sex ratio, Le 357 

Galliard et al., 2005). Furthermore, our PI focused on the most threatening pathogen for our 358 

populations, but it could be accommodated to other pathogens and even to a wider community 359 

of pathogens so as to more realistically reveal the stresses imposed by pathogens. For 360 

instance, high sequencing throughput methods can be developed to screen the entire 361 

community of parasites infecting individuals, as it has been done for Chinook salmon 362 

(Oncorynchus tshawytscha) (Bass et al., 2017). The PI could be applied to mammal or avian 363 

species, based on fecal pathogen eggs counts (Kumar et al., 2019) or pathogen identification 364 

in the blood (Anjos et al., 2021). The MFI tested in our study could thus be applied to a wide 365 

range of species and ecosystems, and therefore help wildlife managers in prioritizing 366 

conservation measures into a wide variety of ecological contexts. 367 

The implications of this new index are multiple. First, to understand how this MFI 368 

could guide species and habitat conservation actions, a parallel can be drawn with the 369 

community indicators of river quality (López-López & Sedeño-Díaz, 2015). For instance, the 370 

Fish Index, developed at the European scale, uses information from fish assemblages to assess 371 

the water quality of rivers (Pont et al., 2007). These indicators are very useful to assess the 372 

environmental quality of rivers at large spatial scales, but may be too coarse to compare sites 373 

with similar species composition. For instance, brown trout is the main species contributing to 374 

fish biomass in many mountainous areas in Europe, so that a community indicator based on 375 

fish assemblage does not allow the assessment of habitat quality. In these cases, gaining 376 

information at the intraspecific level is more appropriate to estimate the variation in habitat 377 

quality and identify potential key environmental stressors. Our indicator is therefore 378 

extremely valuable for indicating population and habitat qualities of ecosystems with 379 

dominant species, which is actually the norm rather than an exception in many areas in the 380 

World (Avolio et al., 2019). Focusing on the dominant species conservation may therefore 381 

benefit the whole ecosystem through conservation measures enhancing the habitat quality, 382 

corresponding to the concept of umbrella species (Roberge & Angelstam, 2004). Second, 383 

since it is based on the assessment of a single species, our indicator is also extremely useful 384 

for managers focusing on emblematic (or economically important) species for which specific 385 

actions are often needed. 386 

 387 

4.4. Conclusions 388 

The development of multifaceted health indexes brings more integrative insights on wildlife 389 

population health and potential risk of decline in changing environments. The development of 390 

such indexes is timely as cutting-edge field and molecular technologies enable digging into 391 

complex processes at the intraspecific level along fine gradients of anthropogenic 392 

perturbations. Moreover, non-invasive methods now enable to sample at wider geographic 393 

scales and a high number of populations, while minimizing the time spent on the field and the 394 



10 

 

impact on the sampled populations. The framework used in this study could thus be 395 

transferred to a wide range of species and different component indicators, as a tool to 396 

anticipate wildlife populations’ declines and to guide future management decisions. An 397 

important perspective would be to normalize this index according to reference populations (as 398 

in Pont et al., 2007), which would undoubtedly ease its interpretation and implementation. We 399 

hope that our work will motivate researchers to improve this tool and make it operational for 400 

managers and stakeholders.  401 
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Tables 622 

Table 1: Summary of the measures in the 46 sampled brown trout populations, see Table A1 623 

for details on each population.  624 

Type of parameter Method Measure Range Mean SD 

Sampled individuals Count  
Number of brown 
trout sampled (N) 

10-20 19 3 

Environmental factors 

GIS software 

% Agricultural land 
in a 2km buffer 

0-89 49 24 

Altitude (m) 232-844 447 136 

Distance from 
source (km)  

3-105 28 21 

HOBO logger 
Mean summer 
temperature (°C) 

12.3-19.4 16 1.9 

Ponctual dosage 
PO4

3- (µg/L) 0-205 58 55 

NNO3
- NNO2

- (µg/L) 0-2440 747 661 

Ponctual measure (InSitu) 

pH 7.7-8.7 8.3 0.2 

Conductivity 
(µs/cm) 

24-460 216 117 

O2 concentration 
(mg/L) 

8.5-11.4 9.8 0.5 

Pathological indicator 
Parasite DNA detection in 
fish urine 

Infection 
prevalence (%) 

0-100 30 40 

Parasite DNA 
excretion 
(copies/µL/g/min) 

0-17 2 3.6 

Ecological indicator Measures in the field 

Condition factor 1.05-1.43 1.24 0.08 

Brown trout density 
(N/min) 

0.12-2.40 0.89 0.52 

Genetic indicator SNPs 
MLHa 0.13-0.21 0.17 0.02 

Ne 
b 6-681 138 174 

a Multilocus heterozygosity 625 
b Effective population size 626 
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Figures 627 

 628 

Figure 1. Map of the 46 sampled populations and their multifaceted health index. Dark red 629 

represents the populations with a low multifaceted health index score, and dark green the 630 

populations with a high score. The inset map shows the location of the studied area, in 631 

Southern France at the foothill of the Pyrenees. Codes for the sampled sites (in bold) and 632 

departments (standard police) are indicated.   633 
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 634 

Figure 2. Biplot of the redundancy analysis showing the relation between the indicators 635 

(response variables, in red) and the environmental factors (explanatory variables, in blue). 636 

Dots represent the sampled populations together with their code.  637 
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 638 

Figure 3. Plot of the best path analyses explaining the 3 indicators and the multifaceted health 639 

index. Plain arrows represent the impact of the environmental factors on the indicators, and 640 

double arrows represent the covariations between the environmental factors. Dotted arrows 641 

towards the multifaceted health index and the dotted rectangle indicate that this variable was 642 

part of a different analysis but represented on the same figure for the sake of clarity (see 643 

2.3.2.). Red arrows represent negative relationships and green arrows represent positive 644 

relationships, and the estimates are indicated. All the relationships represented on the graphic 645 

are statistically significant (see Table A3 for details). T°C: temperature. 646 




