1	Supplementary Information for
2	CO2 degassing in the mantle triggers deep earthquakes at the Mid-Atlantic
3	Ridge
4	Zhiteng Yu ^{1*} , Satish C. Singh ^{2*} , Léa Grenet ¹ , Marcia Maia ¹ , Cédric Hamelin ³ , Anne Briais ¹ ,
5	¹ Geo-Ocean UMR6538 CNRS-Ifremer-URO-URS 20280 Plouzané France
7	² Université Paris Cité Institut de Physique du Globe de Paris CNRS Paris France
8	³ Department of Earth Science, University of Bergen, Bergen, Norway
9	⁴ Istituto di Geologia Ambientale e Geoingegneria-Consiglio Nazionale delle Ricerche, Roma,
10	Italy
11	⁵ Università di Modena e Reggio Emilia, Modena, Italy
12	⁶ Institute for Marine Sciences ISMAR-CNR, Italy
13	
14	Corresponding author: Zhiteng Yu (zhitengyu@gmail.com); Satish Singh (singh@ipgp.fr)
15	Present address: Zhiteng Yu, Geo-Ocean UMR6538, 29280, Plouzané, France.
16	
17	Contents of this document
18 19	This document contains Supplementary Tables 1–5 (pages 2-6), and a list of references is given to citations made in this document (pages 7-10).
20	

22 Supplementary Table 1

23 The maximum depth of earthquakes versus full spreading rates at 25 slow- and ultraslow-spreading Mid-Ocean Ridges. D1_{max}

and D2_{max} indicate the maximum depth limited by several earthquakes and one deepest earthquake, respectively. Rainbow Massif (No.

25 22) is located in an NTD. Magmatism indicates the depths are influenced by strongly magmatic processes, e.g., hotspot and/or focused

26 melting. Lat=Latitude; Lon=Longitude; -1=dead/inactive hydrothermal vent; RTJ=The Rodrigues Triple Junction; OCC=oceanic core

- 27 complex; DF=detachment fault; TF=transform fault; MAR=Mid-Atlantic Ridge; SWIR=Southwest Indian Ridge; MCSC=Mid-
- 28 Cayman Spreading Centre.

No.	Name	Ridge center	Area	Lat (°)	Lon (°)	Full rate (mm/yr)	Shallow est (km)	D1 _{max} (km)*	D2 _{max} (km)*	OCC/ DF	Vent	Magm atism	TF
1	Amagmatic SWEAP segment ¹	SWIR	Indian	-52.37	13.30	7.8	13	20	23	Y	Ν	Ν	Ν
2	13°E -14°E (Oblique super- segment) ²	SWIR	Indian	-52.38	13.50	7.8	1	16	17	Ν	Ν	Ν	Ν
3	Magmatic SWEAP segment ¹	SWIR	Indian	-52.35	13.60	7.8	10	17	20	Y	Ν	Y	Ν
4	85°E Volcanic complex ³	Gakkel Ridge	Arctic	85.00	85.00	10.0	1	16	23	Ν	Ν	Y	Ν
5	Segment 1 ⁴	SWIR	Indian	-25.70	69.80	12.6	0	10	10	n/a	n/a	n/a	RTJ
6	Lena Trough ⁵	Fram Strait	Arctic	81.00	-5.00	12.8	Ν	Ν	14	Ν	Ν	Ν	Ν
7	Segment 8 ⁶	SWIR	Indian	-27.75	65.80	13.6	0	15	23	n/a	n	Y	Ν
8	Segment 8 volcano, SWRUM segment ¹	SWIR	Indian	-27.75	65.60	13.6	1	10	13	n/a	Y	Y	Ν
9	SWRUM segment ¹	SWIR	Indian	-27.75	65.80	13.6	1	17	20	n/a	n/a	Ν	Ν
10	Segment 27 ⁷	SWIR	Indian	-37.66	50.45	14.2	3	6	8	Ν	-1	Y	Ν
11	Segment 7 ⁸	SWIR	Indian	-27.58	65.95	14.2	5	12	13	n/a	n/a	Ν	Ν
12	SWIR 64°30'E ⁹	SWIR	Indian	-27.85	64.50	14.5	0	14	15	Y	-1	Ν	Ν
13	Logachev Seamount 6,10,11	Knipovich Ridge	Arctic	76.50	7.20	14.5	2	6	12	n/a	n/a	Y	Ν
14	Logachev Seamount- Amagmatic ^{6,10,11}	Knipovich Ridge	Arctic	76.20	7.20	14.5	7	16.5	20	n/a	n/a	Ν	N

15	Segment 28 ¹²	SWIR	Indian	-37.72	49.70	14.6	2	13	15	Y	Y	Ν	Ν
16	Segment 28 ⁷	SWIR	Indian	-37.72	49.70	14.6	0	16	20	Y	Y	Ν	Ν
17	Mount Dent ²	MCSC	Caribbea n	18.40	-81.75	15.0	1	7.5	9.5	Y	Y	Ν	Y
18	Reykjanes Ridge ¹³	MAR- Iceland	Atlantic	62.45	-25.80	20.0	0	7.5	12.5	n/a	n/a	Y	Ν
19	Lucky strike ¹⁴	MAR	Atlantic	37.33	-32.30	20.3	1.5	3	3.3	n/a	Y	Y	Ν
20	Lucky strike ¹⁵	MAR	Atlantic	37.33	-32.30	20.3	1.5	6	6.5	n/a	Y	Y	Ν
21	35°N-West ¹⁶	MAR	Atlantic	35.20	-36.50	20.6	0	4	4.5	n/a	n/a	Ν	Y
22	Rainbow Massif ¹⁷	MAR	Atlantic	36.20	-33.90	21.5	0	7.5	8	-1	Y	Ν	NTD
23	35°N-East ¹⁸	MAR	Atlantic	35.10	-35.20	22.2	1	9	14	Ν	Ν	Ν	Y
24	29°N ¹⁹	MAR	Atlantic	29.20	-43.20	22.8	2.5	7.5	8	n/a	Y	Y	Ν
25	23°N ^{20,21}	MAR	Atlantic	23.50	-45.00	23.0	0.9	8	8	n/a	n/a	Ν	Ν
26	Logatchev Massif ²²	MAR	Atlantic	14.45	-45.00	24.0	1.5	5.5	7	Y	Y	Ν	Y
27	26°N TAG ²³	MAR	Atlantic	26.10	44.85	24.2	0	7	8	Y	Y	Ν	Ν
28	26°N TAG ²⁴	MAR	Atlantic	26.10	44.85	24.2	2	7	8	Y	Y	Ν	Ν
29	13°20'N OCC ^{25,26}	MAR	Atlantic	13.33	-44.90	25.4	3	12	15	Y	Y	Ν	Ν
30	13°30'N OCC ^{25,26}	MAR	Atlantic	13.50	-44.85	25.4	4	10	12	Y	Y	Ν	Ν
31	5°S ²⁷	MAR	Atlantic	-5.20	-11.65	32.0	0	7	8	Ν	n/a	Ν	Y
32	0°6'S, this study	MAR	Atlantic	-0.15	-16.45	32.0	1.5	16	18.5	Ν	Ν	Ν	Y
33	7°12′S ²²	MAR	Atlantic	-7.20	-13.20	32.0	3	6	7	Ν	Ν	Ν	Y
34	7°56'S ²²	MAR	Atlantic	-7.80	-13.40	32.0	2	4	7	Ν	Ν	Ν	Y

31 Supplementary Table 2

32 Average location parameters for earthquakes located with the different 1-D velocity models.

For each model, an earthquake was counted when it has an RMS residual of ≤ 0.3 s, a horizontal uncertainty of ≤ 10 km, a vertical uncertainty of ≤ 10 km, a station primary gap of $< 270^{\circ}$, and phases participated in the computation of >5. Model 5 (bold) was selected as the best fitting 1-D velocity model, and 516 events are well located, of which two events were removed because they

- are out of the observation network.
- 38 39

Velocity model	Model 1	Model 2	Model 3	Model 4	Model 5
Number of located events	502	505	508	509	516
Mean RMS residual (s)	0.0832	0.0908	0.0860	0.0982	0.0851
Mean horizontal	2.62	2.71	2.70	2.96	2.76
uncertainty (km)					
Mean vertical uncertainty	2.96	3.07	3.01	3.00	2.93
(km)					
Mean focal depth below	9.21	13.22	11.49	15.79	11.64
seafloor (km)					
Mean number of phases	13.47	13.55	13.51	13.55	13.45
used in the computation					
Mean station primary gap	152.24	152.62	152.82	153.29	152.4

- **Supplementary Table 3**
- Earthquake locations dependent on three velocity models shown in Supplementary Fig. 7b.

Only earthquakes with depth errors of ≤ 5 km are included in the computation of these average

values.

Velocity model	Number of located earthquakes (depth error ≤10 km)	Number of located earthquakes (depth error ≤5 km)	Mean depth (km)	Mean depth error (km)	Mean horizontal error (km)	Mean RMS (s)
-0.1 km/s	511	412	12.45	1.86	2.49	0.0915
Final	516	418	11.63	1.89	2.45	0.0884
+0.1 km/s	507	407	10.10	1.84	2.43	0.0851

- 48 Supplementary Table 4
- **The calculated focal mechanism solutions.** S1-S3 are three previous solutions for earthquake swarms from ref.²⁸.

No.	Longitude (°)	Latitude (°)	Depth (km)	Mecha solutio	Aechanism olution		RMS uncertainty		Number of P first motion	Misfit of t first motions	Mechanism probability	Station distribution
				strike	dip	rake	fault plane	auxiliary plane	polarities	weighted		ratio (%)
S 1	-17.1485	0.0268	11.6430	280	48	-144	30	36	13	0	63	41
S2	-17.4826	-0.0395	21.6340	121	44	-111	22	33	15	17	78	44
S3	-17.5224	-0.0468	20.8370	96	39	-153	21	33	14	13	72	46
4	-17.1022	0.0891	11.4750	257	41	-163	28	41	10	3	78	43
5	-16.8813	0.0896	6.0015	193	87	169	43	44	9	12	60	60
6	-16.8046	0.1327	6.5790	72	56	152	39	44	9	18	65	59

Supplementary Table 5

52	Geochemical analysis results: values for the Ba, Nb, and Rb for three different samples.

Samples	Latitude	Longitude	Ba (ppm)	Nb (ppm)	Rb (ppm)
SMA1974-278	0.04°S	16.46°W	334.21	48.48	25.27
SMA1974-279	0.04°S	16.46°W	329.96	46.94	19.52
13-12 49A ²⁹	0.08°S	16.38°W	561.00	79.60	42.90

o Kelerence

- Aupart, C., Schlindwein, V., Ben-Zion, Y., Renard, F. & Jamtveit, B. Seismic controls on the
 progress of serpentinization at ultra-slow spreading ridges.
- 59 http://www.essoar.org/doi/10.1002/essoar.10502242.1 (2020).
- 60 2. Grevemeyer, I. et al. Constraining the maximum depth of brittle deformation at slow- and
- 61 ultraslow-spreading ridges using microseismicity. *Geology* **47**, 1069–1073 (2019).
- 62 3. Korger, E. I. M. & Schlindwein, V. Seismicity and structure of the 85°E volcanic complex at
- 63 the ultraslow spreading Gakkel Ridge from local earthquake tomography. *Geophys. J. Int.*
- 64 **196**, 539–551 (2014).
- 4. Katsumata, K. et al. Microearthquake seismicity and focal mechanisms at the Rodriguez
- Triple Junction in the Indian Ocean using ocean bottom seismometers. *J. Geophys. Res. Solid Earth* 106, 30689–30699 (2001).
- 5. Läderach, C., Schlindwein, V., Schenke, H.-W. & Jokat, W. Seismicity and active tectonic
- 69 processes in the ultra-slow spreading Lena Trough, Arctic Ocean: Seismicity of Lena Trough.
- 70 *Geophys. J. Int.* **184**, 1354–1370 (2011).
- Schlindwein, V. & Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean
 lithosphere. *Nature* 535, 276–279 (2016).
- 73 7. Yu, Z. et al. Lithospheric structure and tectonic processes constrained by microearthquake
- ⁷⁴ activity at the central ultraslow-spreading Southwest Indian Ridge (49.2° to 50.8°E). J.
- 75 *Geophys. Res. Solid Earth* **123**, 6247–6262 (2018).
- 8. Meier, M. & Schlindwein, V. First In Situ Seismic Record of Spreading Events at the
- Ultraslow Spreading Southwest Indian Ridge. *Geophys. Res. Lett.* **45**, 10,360-10,368 (2018).

78	9.	Chen, J., Crawford, W. & Cannat, M. Microseismicity and lithosphere thickness at a nearly
79		amagmatic mid-ocean ridge. https://www.researchsquare.com/article/rs-1046015/v1 (2021)
80		doi:10.21203/rs.3.rs-1046015/v1.
81	10.	Schlindwein, V., Demuth, A., Geissler, W. H. & Jokat, W. Seismic gap beneath Logachev
82		Seamount: Indicator for melt focusing at an ultraslow mid-ocean ridge? Geophys. Res. Lett.
83		40 , 1703–1707 (2013).
84	11.	Meier, M. et al. Segment-Scale Seismicity of the Ultraslow Spreading Knipovich Ridge.
85		Geochem. Geophys. Geosystems 22, e2020GC009375 (2021).
86	12.	Tao, C. et al. Deep high-temperature hydrothermal circulation in a detachment faulting
87		system on the ultra-slow spreading ridge. Nat. Commun. 11, 1300 (2020).
88	13.	Mochizuki, M. et al. Detailed distribution of microearthquakes along the northern Reykjanes
89		Ridge, off SW-Iceland. Geophys. Res. Lett. 27, 1945–1948 (2000).
90	14.	Crawford, W. C. et al. Hydrothermal seismicity beneath the summit of Lucky Strike volcano,
91		Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 373, 118–128 (2013).
92	15.	Dusunur, D. et al. Seismological constraints on the thermal structure along the Lucky Strike
93		segment (Mid-Atlantic Ridge) and interaction of tectonic and magmatic processes around the
94		magma chamber. Mar. Geophys. Res. 30, 105–120 (2009).
95	16.	Barclay, A. H. Shear wave splitting and crustal anisotropy at the Mid-Atlantic Ridge, 35°N.
96		J. Geophys. Res. 108, 2378 (2003).
97	17.	Horning, G., Sohn, R. A., Canales, J. P. & Dunn, R. A. Local Seismicity of the Rainbow
98		Massif on the Mid-Atlantic Ridge. J. Geophys. Res. Solid Earth 123, 1615–1630 (2018).

99	18. Cessaro, R. K. & Hussong, D. M. Transform seismicity at the intersection of the
100	oceanographer fracture zone and the Mid-Atlantic Ridge. J. Geophys. Res. 91, 4839–4853
101	(1986).
102	19. Wolfe, C. J., Purdy, G. M., Toomey, D. R. & Solomon, S. C. Microearthquake
103	characteristics and crustal velocity structure at 29°N on the Mid-Atlantic Ridge: The
104	architecture of a slow spreading segment. J. Geophys. Res. Solid Earth 100, 24449–24472
105	(1995).
106	20. Toomey, D. R., Solomon, S. C. & Purdy, G. M. Microearthquakes beneath Median Valley of
107	Mid-Atlantic Ridge near 23°N: Tomography and tectonics. J. Geophys. Res. 93, 9093–9112
108	(1988).
109	21. Toomey, D. R., Solomon, S. C., Purdy, G. M. & Murray, M. H. Microearthquakes beneath
110	the Median Valley of the Mid-Atlantic Ridge near 23°N: Hypocenters and focal mechanisms.
111	J. Geophys. Res. Solid Earth 90, 5443–5458 (1985).
112	22. Grevemeyer, I., Reston, T. J. & Moeller, S. Microseismicity of the Mid-Atlantic Ridge at
113	7°S-8°15'S and at the Logatchev Massif oceanic core complex at 14°40'N-14°50'N.
114	Geochem. Geophys. Geosystems 14, 3532–3554 (2013).
115	23. deMartin, B. J., Sohn, R. A., Pablo Canales, J. & Humphris, S. E. Kinematics and geometry
116	of active detachment faulting beneath the Trans-Atlantic Geotraverse (TAG) hydrothermal
117	field on the Mid-Atlantic Ridge. Geology 35, 711–714 (2007).
118	24. Kong, L. S. L., Solomon, S. C. & Purdy, G. M. Microearthquake Characteristics of a Mid-
119	Ocean Ridge along-axis high. J. Geophys. Res. Solid Earth 97, 1659–1685 (1992).
120	25. Parnell-Turner, R. et al. Seismicity trends and detachment fault structure at 13°N, Mid-
121	Atlantic Ridge. Geology 49, 320–324 (2021).

- 26. Parnell-Turner, R. *et al.* Oceanic detachment faults generate compression in extension.
 Geology 45, 923–926 (2017).
- 124 27. Tilmann, F., Flueh, E., Planert, L., Reston, T. & Weinrebe, W. Microearthquake seismicity
- 125 of the Mid-Atlantic Ridge at 5°S: A view of tectonic extension. J. Geophys. Res. Solid Earth
- 126 **109**, B06102 (2004).
- 127 28. Yu, Z. *et al.* Semibrittle seismic deformation in high-temperature mantle mylonite shear zone
 128 along the Romanche transform fault. *Sci. Adv.* 7, eabf3388 (2021).
- 129 29. Kendrick, M. A. et al. Seawater cycled throughout Earth's mantle in partially serpentinized
- 130 lithosphere. *Nat. Geosci.* **10**, 222–228 (2017).