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The mole fraction of the equilibrated CO2 (χCO2w) in the equilibrator is measured by a gas 26 

analyzer and is then converted into CO2 partial pressure (pCO2w_equ) using the equilibrator 27 

temperature (Tequ, K) and pressure (Pequ, atm): 28 

 𝑝CO
2w_equ

= 𝜒CO2w(𝑃equ − 𝑝H
2
O) (S1) 29 

where pH2O (atm) is the water vapor pressure and can be calculated from Tequ and the seawater 30 

salinity (Pierrot et al., 2009). The pCO2w_equ is then converted into fCO2w_equ to correct for non-31 

ideal behavior of the gas (Weiss, 1974): 32 

 𝑓CO
2w_equ

= 𝛾 𝑝CO
2w_equ

  (S2) 33 

where the fugacity coefficient γ is ~0.996 (Bakker et al., 2014). 34 

 35 

Text S2. The Timescale of Chemical Repartitioning and Water Mass Transport 36 

The seawater carbonate system creates unique properties for air-sea CO2 exchange. The 37 

seawater carbonate system includes several different carbonate species, i.e., CO2, carbonic acid, 38 

bicarbonate, carbonate. Among these species, only CO2 is directly involved in the air-sea CO2 39 

exchange. There is a dynamic equilibrium between these carbonate species. When the 40 

seawater temperature varies, these carbonate species repartition and gradually approach a 41 

new equilibrium. The relaxation time (the time after which a perturbation has reached e-1 of its 42 

initial value) for this equilibration depends on pH and temperature. For typical seawater (pH 43 

~8.2, total dissolved inorganic carbon ~2000 µmol kg-1, and salinity ~35) at ~25℃, the 44 

relaxation time is ~13 s (Johnson, 1982; Zeebe & Wolf-Gladrow, 2001). For warmer seawater 45 

(e.g., ~30℃), the relaxation time is shorter (~11 s) (Johnson, 1982; Zeebe & Wolf-Gladrow, 46 

2001), while for colder seawater, the relaxation time is longer. Therefore, the timescale of the 47 

chemical repartitioning of the CO2 system is at least 10 s. i.e., if the seawater temperature varies, 48 

more than 10 s is required for the carbonate species to approach equilibrium. 49 

There is a temperature gradient in the thermal boundary layer (TBL), and the temperature at 50 

the top of the TBL is lower than that at the bottom of the TBL due to the cool skin effect. The 51 

typical thickness of the TBL (L) is 1 mm (Jähne, 2009). The mass boundary layer (MBL) is at the 52 

top of the TBL with a typical thickness of 0.1 mm (Jähne, 2009). Molecular diffusion dominates 53 
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water mass transport within MBL. There is a viscous boundary layer (VBL) below the MBL and 54 

the VBL has a similar thickness as the TBL (i.e., L ~1 mm) (Jähne, 2009). Viscous dissipation 55 

dominates water mass transport in the VBL (Jähne, 2009). The kinematic viscosity (v) is ~1 mm2 56 

s-1 at 25℃ seawater (v is larger at colder seawater). So, the timescale of water mixing in the 57 

TBL (below the MBL) is ~1 s (L2 / v). 58 

 59 

Text S3. SST Dataset for Air-Sea CO2 Flux Estimates 60 

The SST data used for flux estimates differ between studies. Table S1 lists SST datasets used in 61 

eight global observation-based (i.e., fCO2-based) air-sea CO2 flux estimates. Within a specific 62 

study, the same global gap-free SST dataset is typically used for the calculation of Schmidt 63 

number, Sc, solubility at the base of the MBL, αw, and at the air-sea interface, αi, CO2 fugacity 64 

in the atmosphere, fCO2a, and for the fCO2w mapping, while the in-situ bulk water temperature 65 

(TBulk) measured concurrently with fCO2w is used for correcting individual fCO2w from the 66 

equilibrator temperature to the seawater temperature.  67 

An exception to the above is Watson et al. (2020), which co-located the DOISST v2.0 (1 × 1, 68 

monthly data) (Reynolds et al., 2007) to the individual fCO2w measurements in SOCAT (Goddijn-69 

Murphy et al., 2015). The co-located DOISST v2.0 was used to re-calculate fCO2w (via Equation 70 

2 in the main text). Watson et al. (2020) showed that SOCAT SST is on average 0.13 ± 0.78 K 71 

higher than the co-located DOISST v2.0, and the SOCAT fCO2w is on average 1.65 ± 11.98 µatm 72 

higher than the re-calculated fCO2w. Watson et al. (2020) and this study are the only two studies 73 

that considered the cool skin effect. Watson et al. (2020) applied a constant cool skin correction 74 

(0.17 K) to the satellite subskin SST product (i.e., DOISST v2.0 minus 0.17 K) for the calculation 75 

of αi and fCO2a. In addition, Watson et al. (2020) used HadISST for the mapping process instead 76 

of the SST product used to calculate the other variables (i.e., DOISST v2.0). 77 

As discussed in the main text, a global gap-free TSubskin product is an important practical SST 78 

for the air-sea CO2 flux calculation. However, only some of the global gap-free SST products 79 

in Table S1 (MOISST v2, DOISST v2.0, OAFlux, and CCI SST v2.1) represent the subskin 80 

temperature, while the others (ASMD, ARMOR3D, MGDSST, HadISST) correspond to the 81 

temperature of bulk seawater. 82 
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 83 

Text S4. Comparison of Three Satellite SST Products 84 

The satellite SST product is expected to provide a consistent subskin temperature which can 85 

be used for calculating global Sc, αw, αi, and fCO2a, and for mapping fCO2w. Recent research 86 

compared eight global gap-free satellite/blend SST products (ESA CCI SST v2.0, ERA5, 87 

HadISST1, DOISST v2.1, MUR25 v4.2, MGDSST, BoM Monthly SST, OSITASST) and showed that 88 

the global mean of these eight SST products ranges from 20.02 C to 20.17 C (for the period 89 

2003-2018 with 95% confidence level) (Yang et al., 2021). So, a bias potentially exists in some 90 

or all of these satellite SST products. In addition, among these eight satellite SST products, 91 

only the CCI SST (Merchant et al., 2019; Merchant & Embury, 2020) and the DOISST (Huang et 92 

al., 2021; Reynolds et al., 2007) represent the subskin temperature (Yang et al., 2021). The other 93 

SST products provide a bulk temperature for a depth below the subskin. So, hereafter, only 94 

the CCI SST and the OISST (DOISST and MOISST) are assessed. 95 

There are two types of OISST products: 1) 1 × 1, monthly OI.V2 SST (MOISST), which is 96 

derived by linear interpolation of the 1 × 1, weekly OI.v2 SST fields to daily fields which are 97 

then averaged over a month (Reynolds et al., 2002); 2) 1/4° × 1/4°, daily OISST v2 (Reynolds et 98 

al., 2007) which has been replaced by DOISST v2.1 (Huang et al., 2021) with some quality 99 

improvements for data from January 1, 2016,  onwards. DOISST data are constructed 100 

differently than the MOISST, although both use satellite-derived SST data with a calibration 101 

based on in-situ measurements (including both ICOADS ship and drifting buoy SST) (Freeman 102 

et al., 2017; Xu & Ignatov, 2014). With the warm bias in the ICOADS ship SST well-recognized 103 

by the SST community (Huang et al., 2017; Kennedy et al., 2011, 2019), a constant (0.14 K) is 104 

subtracted from the ICOADS ship SST to compensate for the large scale (global mean) ship-105 

buoy SST difference (Reynolds & Chelton, 2010) before it is used to calibrate the DOISST v2.0. 106 

In addition, the latest research shows that the bias in the ICOADS ship SST has substantially 107 

reduced since 2006 (Kennedy et al., 2019). So for the DOISST v2.1 dataset, the ship-buoy SST 108 

difference has been set to 0.14 K from 1981 to 2015 and to 0.01 K from 2016 onwards (Huang 109 

et al., 2021). However, the warm bias in the ICOADS ship SST is not corrected for when it is 110 

used for the calibration of the MOISST. So the DOISST tends to be lower than the monthly 111 

MOISST, particularly in the 1980s and 1990s when ship SST data were dominant (Banzon et al., 112 

2016). 113 
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Here we test the agreement between the gridded drifting buoy SST (as a reference SST; Xu & 114 

Ignatov, 2014) and three satellite SST products: CCI SST v2.1, MOISST v2, DOISST v2.1. Figure 115 

S1a shows a comparison between different SST products. The DOISST v2.1 is on average 0.09 116 

K lower than the buoy SST (red curve), while the MOISST v2 is on average 0.01 K lower than 117 

the buoy SST (blue curve). The orange curve shows that the CCI SST v2.1 is on average 0.05 K 118 

lower than the buoy SST.  119 

Although MOISST v2 has the smallest bias, it is an old SST product and has not been updated 120 

for a long time. The standard deviation (SD) of MOISST minus the buoy SST (blue line in Figure 121 

S1b) is larger than that of DOISST v2.1 (or CCI SST v2.1) minus buoy SST (red and orange lines 122 

in Figure S1b). Therefore, we suggest that the MOISST should better not be used for air-sea 123 

CO2 flux estimates.  124 

The SD of DOISST v2.1 minus the buoy SST is similar to the SD of CCI SST v2.1 minus the buoy 125 

SST (red and orange line in Figure S1b). Therefore, both DOISST v2.1 and CCI SST v2.1 can be 126 

used for the air-sea CO2 flux estimates (i.e., calculating global Sc, αw, αi, fCO2a, and mapping 127 

fCO2w). However, as the in-situ SST measurements were employed for the validation process, 128 

DOISST and MOISST are not fully independent from the in-situ SSTs. The CCI SST is 129 

independent from the in-situ SST dataset because the CCI SST is not calibrated against in-situ 130 

SST measurements as a reduced-state-vector optimal estimation algorithm (Merchant et al., 131 

2019) is used instead. 132 

The purple line in Figure S1b shows that the SD of CCI SST v2.1 minus DOISST v2.1 is ~0.5 K 133 

and decreasing to ~0.4 K in recent years, which suggests that there is a discrepancy between 134 

these two satellite SST products. the SD of DOISST v2.0 minus SOCAT SST is ~0.8 K. The large 135 

SDs suggest that using any co-located satellite SST products to calculate fCO2w could 136 

significantly increase the uncertainty in fCO2w and thus the uncertainty in the estimated air-sea 137 

CO2 flux. 138 

 139 

Text S5. Under-Sampling and inter-Annual Variation of the Bias Correction 140 

Due to the limited measurements in SOCAT and buoy SST datasets, especially during the 1980s, 141 

many grid cells only have a small number of SOCAT and buoy SST measurements. The number 142 
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of measurements in grid cells might influence the comparison between the SOCAT SST and 143 

the buoy SST. Figure S2a shows the under-sampling issue and its influence on the average of 144 

SOCAT SST minus buoy SST. If we consider all matched grid cells, the average of SOCAT SST 145 

minus buoy SST is ~0.02 K. But if we consider cells with at least 10 measurements, the average 146 

of SOCAT SST minus buoy SST is ~0.03 K. However, Figure S2b suggests that under-sampling 147 

does not significantly influence the latitudinal variation of SOCAT SST minus buoy SST.  148 

Figure S3 shows the inter-annual variation of the number of cells with SOCAT measurements 149 

and the bias correction for the SOCAT SST. We apply the latitudinal-varying bias correction 150 

(red curve in Figure S2b) to account for the bias in the SOCAT SST (use buoy SST as the 151 

reference). However, as the number of SOCAT measurements varies with year, and the 152 

measurements in years before 1990 are limited (blue bars in Figure S3), we do not consider 153 

inter-annual variation of the latitudinal-varying bias correction. Thus, the same bias correction 154 

value is applied to a specific latitude for every year (every month) between 1982 and 2020. 155 

However, as the spatial distribution of the SOCAT measurements is different in different years, 156 

the annual mean bias correction varies with year (red line in Figure S3).  157 
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158 

Figure S1. Time series of the global annual mean SST difference and its standard deviation 159 

between SST products. (a) The blue, red and orange lines represent the MOISST v2 (MOISST) 160 

minus drifting buoy SST, DOISST v2.1 (DOISST) minus buoy SST, and ESA CCI SST v2.1 (CCI SST) 161 

minus buoy SST, respectively. (b) The blue, red, orange, and purple dashed lines correspond 162 

to the standard deviation of  MOISST minus buoy SST, DOISST minus buoy SST, CCI SST and 163 

buoy SST, and CCI SST minus DOISST, respectively. 164 

  165 
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 166 

Figure. S2. (a) Average of SOCAT SST minus buoy SST (from 1982 to 2020) versus the 167 

minimum number of matched points within a grid cell, and (b) the latitudinal variation of 168 

SOCAT SST minus buoy SST. The first (second) point in (a) represents the average temperature 169 

difference considering all grid cells with at least one (two) SOCAT and one (two) buoy 170 

measurement (s). The blue shading indicates one standard deviation. The red, blue, purple, 171 

and orange lines in (b) correspond to the average temperature difference for grid cells with at 172 

least one, eleven, thirty one, and fifty one matched SOCAT and buoy measurements, 173 

respectively .  174 
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175 

Figure S3. The number of grid cells (per year) with measurements in the 1 × 1, monthly 176 

gridded SOCAT data (blue bars) and the inter-annual mean bias correction for the SOCAT SST 177 

(red line) assessed by the buoy SST.  178 
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179 

Figure S4. Time series of the annual mean global net air-sea CO2 flux calculated by 180 

interpolating the sea surface CO2 fugacity (fCO2w) data in SOCATv2021 using a neural network-181 

based method (Landschützer et al., 2013). Negative values represent ocean CO2 uptake. The 182 

red, green, and blue solid lines represent the uncorrected flux, the flux with bias_buoy 183 

correction (bias assessed by buoy SST), and the flux with bias_buoy and Fairall96 cool skin 184 

corrections, respectively (this study). The green and blue dashed curves correspond to the flux 185 

with the bias_OI (using co-located DOISST v2.1 to account for the bias in SOCAT SST) and 186 

Donlon02 cool skin corrections (Watson et al., 2020). The same datasets, interpolation method 187 

(Landschützer et al., 2013), and the Arctic and the coastal flux compensation method (Fay et 188 

al., 2021) are used for the flux calculations in the figure. 189 

190 
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191 

Figure S5. Mean difference between the OISST and the gridded SOCAT SST for 1982 to 2020. 192 

The positive (negative) value represents the OISST is higher (lower) than the SOCAT SST. 193 

  194 
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 195 

Figure S6. Mean difference between the gridded SOCAT SST and the gridded buoy SST for 196 

1982 to 2020. The positive (negative) value represents the SOCAT is higher (lower) than the 197 

buoy SST. 198 

  199 



13 

 

Table S1. Summary of the SST datasets used in global air-sea CO2 flux estimates by the bulk 200 

flux method (Equation 1 in the main text). Acronyms of SST products and related references 201 

are in the footnotes. 202 

Studies 
Sc and αw αi and fCO2a Individual 

fCO2w 
fCO2w 
mapping 

Takahashi et al. 
(2009) 

ASMD ASMD In-situ TBulk Interpolated 
TBulk 

Rödenbeck et al. 
(2013) 

OAFlux OAFlux In-situ TBulk OAFlux 

Zeng et al. (2014) 
and Landschützer 
et al. (2016) 

 

MOISST v2 

 

MOISST v2 

 

In-situ TBulk 

 

MOISST v2 

Denvil-Sommer et 
al. (2019) 

ARMOR3D ARMOR3D In-situ TBulk ARMOR3D 

Gregor et al. 
(2019) 

DOISST v2.0 DOISST v2.0 In-situ TBulk DOISST v2.0 

Watson et al. 
(2020) 

DOISST v2.0 DOISST v2.0 – 
0.17 K 

Co-located 
DOISST v2.0 

HadISST 

Iida et al. (2021) MGDSST MGDSST In-situ TBulk MGDSST 

This study CCI SST v2.1 CCI SST v2.1 
with a Fairall96 
cool skin 
correction  

In-situ TBulk 
with a bias 
correction 
assessed by 
buoy SST 

CCI SST v2.1 

ASMD: surface water temperature from the NOAA Atlas of Surface Marine Data (1994, as cited 203 

in Takahashi et al., 2009). OAFlux: SST from the Objectively Analysed Air-Sea Fluxes for the 204 

global oceans dataset (Yu & Weller, 2007). MOISST v2: NOAA Monthly Optimum Interpolation 205 

SST dataset version 2, also known as OI.V2 SST (Reynolds et al., 2002). ARMOR3D: SST from 206 

monthly global reprocessed products of physical variables from the ARMOR3D L4 dataset 207 

(Guinehut et al., 2012). DOISST v2.0: NOAA Daily Optimum Interpolation SST dataset version 208 

2 (Banzon et al., 2016; Reynolds et al., 2007). HadISST: Hadley Centre Sea Ice and Sea Surface 209 

Temperature dataset (Rayner et al., 2003). MGDSST: Merged satellite and in-situ data global 210 

daily SST analysis dataset (Sakurai et al., 2005). CCI SST v2.1: European Space Agency Climate 211 

Change Initiative SST product (Merchant et al., 2019; Merchant & Embury, 2020). In-situ TBulk 212 

represents the in-situ bulk SST measurements in the LDEO and SOCAT datasets. The study of 213 

Takahashi et al. (Takahashi et al., 2009) used the LDEO (Lamont-Doherty Earth Observatory) 214 

fCO2w dataset (Takahashi et al., 2008) while the other studies employed the SOCAT fCO2w 215 

dataset (Bakker et al., 2016). Co-located DOISST v2.0: the 0.25 × 0.25, daily DOISST v2.0 is 216 
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resampled to 1 × 1, monthly data and then co-located with the individual fCO2w 217 

measurements in SOCAT (Goddijn-Murphy et al., 2015). 218 

219 
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Dataset S1 (Separate file: Flux corrections with different methods. xlsx): Air-sea CO2 flux 220 

corrections using different methods. Lines 2–5 represent the flux corrections for different years 221 

using bias_buoy, bias_OI, Fairall96, and Donlon02 temperature corrections, respectively. Lines 222 

7–10 correspond to the flux corrections for different latitude bins using bias_buoy, bias_OI, 223 

Fairall96, and Donlon02 temperature corrections, respectively. For example, latitude -89.5 224 

represent the median latitude of the latitude bin [-90, -89] and the corresponding flux 225 

correction represent the accumulated flux in this latitude bin. 226 

 227 
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