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Surface ocean CO2

concentration and air-sea flux
estimate by machine learning
with modelled variable trends

Jiye Zeng1*, Yosuke Iida2, Tsuneo Matsunaga1

and Tomoko Shirai1

1Earth Systems Division, National Institute for Environmental Studies, Tsukuba, Japan, 2Atmosphere
and Ocean Department, Japan Meteorological Agency, Tokyo, Japan
The global ocean is a major sink of anthropogenic carbon dioxide (CO2)

emitted into the atmosphere. Machine learning has been actively used in the

past decades to estimate the oceanic sink, but it is still a challenge to obtain an

accurate estimate due to scarcely available CO2 measurements. One of the

methods to deal with data scarcity was normalizing multiple years’ CO2 values

to a reference year to increase the spatial coverage. The practice assumed a

constant CO2 trend for the normalization. Here, we used three machine

learning models to extract variable ocean CO2 trends on a decadal scale and

proposed a method to use the extracted ocean CO2 trends to correct the

decadal atmospheric CO2 trends for data normalization. The method

minimizes assumptions of using the extracted ocean CO2 trends directly.

Comparisons of our CO2 flux estimate with machine learning products

included in Global Carbon Budget 2021 indicates that using the variable

trends improved the bias resulted from using a constant trend and that the

trends are a critical factor for machine learning methods. Our dataset includes

monthly distributions of surface ocean CO2 concentration and air-sea flux in

1980-2020 with a spatial resolution of 1×1 degree.

KEYWORDS

global ocean CO2 flux, machine learning, random forest, gradient boost machine,
neural network
Introduction

The oceans play a crucial role in mitigating the increase of atmospheric CO2 emitted

into the atmosphere by human activities (Sabine, 2004; Khatiwala et al., 2013; McKinley

et al., 2016). Using machine learning to estimate the oceanic sink has been practiced in

the past decades and the results have become an important part of the Global Carbon

Budget (Friedlingstein et al., 2022). Nevertheless, it is still a challenge to obtain an
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accurate estimate due to scarcely available CO2 measurements.

Through internationally coordinated efforts, decades of in situ

measurements have been combined to form high-quality

databases, such as the Surface Ocean CO2 Atlas Database

(SOCAT) (Sabine et al., 2013; Pfeil et al., 2013; Bakker et al.,

2016). The composite sampling map of SOCAT appears to cover

most areas of the oceans. However, only a small portion of the

oceans had samples in any single year and the samples were

unevenly distributed in time and space. The dilemma of using

multiple years’ data to train a machine learning model is that

while ocean CO2 tends to track the increase of atmospheric CO2

closely (Fay and McKinley, 2013; Bates et al., 2014), the large

seasonal and spatial variabilities up to a few hundred matm make

it difficult to detect the trends in the order of a few matm per

year. Current methods for solving the problem include

normalizing ocean CO2 to a reference year (Takahashi et al.,

2009; Sasse et al., 2013a; Sasse et al., 2013b; Nakaoka et al., 2013;

Zeng et al., 2014), including a linear time-dependent term in

regression (Fay and McKinley, 2013; Iida et al., 2015; Jones et al.,

2015; Watson et al., 2020; Iida et al., 2021), and including

atmospheric CO2 as a predictor to make models learn the

trend implicitly (Landschützer et al., 2016; Denvil-Sommer

et al., 2019; Gregor and Gruber, 2021; Chau et al., 2022). The

former two methods assume a constant trend for the whole

period. This can be a good approximation when the time span is

short, but the error tends to become substantial in a long period

as the trend could vary greatly with time. Landschützer et al.

(2016) and Gloege et al. (2021) showed that such a problem

could also exist in the third method.

There are two camps of using machine learning to

reconstruct ocean CO2 in terms of data pooling strategy. One

camp treats the global oceans as one entity (Takahashi et al.,

2009; Sasse et al., 2013b; Nakaoka et al., 2013; Zeng et al., 2014;

Denvil-Sommer et al., 2019; Chau et al., 2022). The other camp

divides the oceans into clusters with similar biogeochemical

properties. Sasse et al. (2013a) and Landschützer et al. (2013) are

early pioneers in this camp. They used a Self-Organization Map

(SOM) for clustering in the first step and then used different

regression methods in the second step for making predictions.

This method, used by Landschützer et al. (2013) and named two-

step method, was also applied by Laruelle et al. (2017); Watson

et al. (2020), and Gloege et al. (2021). Other clustering methods

include geographical blocking (Iida et al., 2015; Watson et al.,

2020), K-mean clustering (Gregor et al., 2019; Gregor and

Gruber, 2021), and CO2 biome clustering (McKinley et al.,

2011; Fay and McKinley, 2013; Gregor et al., 2019; Watson

et al., 2020).

In this study, we used three machine learning models to

extract the global time-dependent ocean CO2 trends. They were

used to correct the decadal atmospheric CO2 trends to normalize

ocean CO2 measurements to a reference year for modelling the
Frontiers in Marine Science 02
nonlinear dependence of CO2 on biogeochemical predictors.

Then, we reconstruct monthly CO2 distributions between 1980

and 2020 with a spatial resolution of 1×1 degree. Our method is

in the first camp discussed above. We compared the air-sea flux

estimate with those included in the Global Carbon Budget 2021

(Friedlingstein et al., 2022). The results reveal that the ocean

CO2 trends are a critical factor for machine learning methods,

which in turn implies the importance of having long-term

observations to quantify the uptake, predict scenarios, and

evolve adapting strategies.
Method

Model setup

Following Zeng et al. (2014) and considering the

inconstancy that can be associated with long-term oceanic

CO2 trends, we express the nonlinear dependence of ocean

CO2 on time and biogeochemical variables as:

CO2W = f SST , dSST , SSS,CHL,MLD, LAT , LONð Þ
+ f yearð Þ, (1)

where SST stands for sea surface temperature, SSS for sea

surface salinity, CHL for chlorophyll-a concentration, MLD for

mixed layer depth, LAT for latitude, and LON for longitude. The

sine and cosine converted values of LON were used to make the

circular variable contingent. We replaced the month variable of

Zeng et al. (2014) with the SST anomaly (dSST) against the

annual mean to harmonize the seasons of the two hemispheres.

The function of year represents the trends, which were a

constant in Zeng et al. (2014).

We used machine learning to investigate the variable trends

with varying lengths of data (Figure 1). A similar iteration

method was also used by Zeng et al. (2014). For a given target

year and data length, we fitted the dependence of CO2W on year

by linear regression first. The first term in Eq.(1) was treated as

an error in this step. Then we subtracted the trend from

observations and used machine learning to model the

nonlinear relationship between the residual and predictors.

These two steps were repeated until the trend became

stabilized. Initially, three years’ data were used: the target year

plus and minus one year. The data length was increased to the

longest available data length gradually. The longest data length

was 41 years for the target year 2000, i.e., all data between 1980

and 2020 were included. The extracted trends were used as

reference to model the decadal trends of atmospheric CO2 by

fitting its annual increase rates with the following harmonic

function:
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trend = c0 + c1 year + c2 cos
2p  year

T1

� �

+ c3 sin
2p  year

T1

� �
+ c4 cos

2p  year
T2

� �

+ c5 sin
2p  year

T2

� �
: (2)

where T1 and T2 are time parameter in year. For training

machine learning models, the atmospheric CO2 trends obtained

by Eq.(2) were used to normalize the observed CO2 values to the

reference year 2000 by the equation:
Frontiers in Marine Science 03
CO2Wnorm = CO2Wraw yearð Þ ±oyear
i=2000trend ið Þ, (3)

where ± is positive when i<2000 and negative when i>2000.

At i=2000, the trend correction is zero. Global CO2

concentrations were constructed by adding or subtracting the

trend correction of Eq.(3) to the predicted CO2 values. The

process is the inverse of the normalization. Using atmospheric

CO2 trends for data normalization avoided problems in using

oceanic CO2 trends directly, e.g., insufficient data points in the

early and later years and the difficulty of determining the best

data length for trend extraction.
FIGURE 1

Flow chart of the iteration method for trend extraction.
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Models

We deployed three machine learning models: Random

Forest (RF), Gradient Boost Machine (GBM), and Feedforward

Neural Network (FNN). Using multiple models has the merit of

mutual overfit checking and compensating model weakness with

each other.

RF was proved to be a robust method for modelling carbon

flux at the global scale (Zeng et al., 2020) and was applied to

global ocean CO2 mapping recently (Gregor et al., 2019). RF

partitions a training dataset into subsets repeatedly by random

sampling and uses the subsets to construct trees. We used the

python library of Ranger (Wright and Ziegler, 2017) which

implements the regression algorithm using a two-stage

randomization procedure to partition trees. Given a subset, the

root node in a tree is recursively split into binary nodes until the

number of data points in the leaf nodes becomes no larger than a

specified number. In each split, the RF randomly selects a subset

of predictor variables and searches them for splitting points that

minimize node impurity (Ishwaran, 2015). In making a

prediction, a set of predictors are passed through branches of

nodes according to the splitting rule until the journey ends up in

a leaf node. The mean of the target variable in the leaf node is

taken as an estimate. Then the mean estimate of all leaf nodes is

used as the prediction. Sensitive configuration factors for the RF

include the number of trees and the number of data points in the

leaf nodes (Zeng et al., 2020). The default setting includes 500

trees and 5 data points. We raised the data points to 100 based

on our experiments with the ocean CO2 data discussed in the

data section to prevent hot spots in predicted CO2 in the

southern oceans where vast empty areas exist in certain

months. The configuration yielded good validation results.

A decision-tree-based GBM emerged in the ocean CO2

mapping recently (Gregor et al., 2019; Gregor and Gruber,

2021). Like a RF, a GBM combines weak learners into a single

strong learner (Natekin and Knoll, 2013), but in an iterative

fashion. It adds trees one at a time, and existing trees are not

changed. We used the python library of LightGBM (Ke et al.,

2017). Instead of the level-wise strategy of the RF, the GBM

grows a tree leaf-wise by splitting nodes that produce the highest

loss change until the number of leaf nodes becomes no larger

than a specified number. The observed values of the target

variable are assigned to the leaf nodes of the first tree. Then,

the residuals of the previous predictions minus observations are

assigned to the leaf nodes of a subsequent tree. A gradient

descent procedure is used to obtain parameters that improve the

accuracy of predictions. By experimenting with our ocean CO2

data and using the RF as a reference, we found that LightGBM

performed well with 500 trees and a maximum number of 100

terminal nodes in a tree.

FNN has been used for ocean CO2 mapping since the early

2010s (e.g., Landschützer et al., 2013; Zeng et al., 2014). FNN has
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a layered structure, including an input layer, one or more hidden

layers, and an output layer. Neurons between adjacent layers are

fully connected. A neuron in the hidden layer uses an activation

function to transform the weighted sum of inputs to form an

input for the neuron in the output layer, which in turn

transforms the weighted sum of inputs to form a prediction.

Details of the FNN method can be found in Svozil et al. (1997)

and abundant other references . We used python ’s

MLPRegressor model with one hidden layer and 64 hidden

neurons, which is the same as that used by Zeng et al. (2014).

Their investigations show that the setting yielded uncertainties

in the level of grid mean variation of measurements. We raised

the default maximum training iterations of MLPRegressor from

200 to 500. Our tests indicate that when the iterations were

larger than 300, doubling or tripling the number did not make a

substantial change in the flux estimate. Training the FNN took a

much longer time than training the RF and GBM. As the trend

extraction and validation discussed later involve many rounds of

training, we had to set a fixed number of training iterations so

that the training could be completed within a reasonable amount

of time. The settings also yielded results well harmonized with

those of the RF and GBM.

We validated the model performance by a leave-one-year-

out (LOYO) method. Given N years of data, N validations were

done by setting aside one year’s data for validation and using the

remaining N-1 years of data for training. A model’s performance

was evaluated by the mean bias. The validation method has an

advantage over the conventional n-fold method in that the

validation data of LOYO are more likely to come from

unsampled domains of the training data. Another advantage is

that LOYO can also be used to detect trends. If the target variable

has an increasing trend, a model trained with data in early years

tends to make predictions smaller than the observations in later

years and vice versa.
Data

We extracted monthly CO2 fugacity (fCO2) in 1×1-degree

grids from the track-gridded database of SOCAT version 2021

(Sabine et al., 2013; Pfeil et al., 2013; Bakker et al., 2016). We

relaxed the criteria of Zeng et al. (2014) to include data when

fCO2 values are between 50 matm and 1000 matm and salinity is

larger than 15 g kg-1. A total of 273,456 data points were

extracted for 1980-2020. We confined the fCO2 training data

set to post-1980 due to large uncertainties in the early measuring

techniques (Sasse et al., 2013). The sources of predictor variables

are shown in Table 1. The monthly climatology of MODIS-

AQUA and MODIS-TERRA of 2002-2019 in 0.083×0.083-

degree grids (Hu et al., 2012.) were combined and re-binned

into 1x1-degree grids. The values of CHL and MDL were scaled

by log(1+CHL) and log(1+MDL) to reduce the skewness of
frontiersin.org
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sample distribution. Filling missing CHL data in high latitudes

with a small constant is a common practice (Gregor and Gruber,

2021; Chau et al., 2022). We filled the missing CHL in a grid with

the smallest observed value in that grid. The data of SST (Ishii

et al., 2005) and SSS (Zweng et al., 2019) were used without pre-

processing. For flux calculation, we used the wind speed

(WIND) and surface pressure (Ps) of the fifth generation

ECMWF atmospheric reanalysis of the global climate (ERA5)

(Hersbach et al., 2020), and the mole fraction of air CO2

(xCO2A) of NOAA’s Marine Boundary Layer Reference

(Conway et al., 1994; Dlugokencky et al., 2021). The monthly

WIND and Ps in 0.25×0.25 degrees were averaged to 1×1 degree.

The surface xCO2A in sine latitude grids was interpolated to

1×1 degree.
Comparison

We compared our estimates with seven machine learning

products included in GCB-2021 (Table 2). We recalculated their

fluxes by the same procedure to eliminate the effect of using

different flux dependent data and coefficients. As each product

has a different spatial coverage, we adjusted their annual fluxes

using the equation

Fadjusted = Fmodel + FML3 − F0ML3

� �
, (4)

where FML3 (PgC a-1) is the mean annual flux of NIES-ML3

(the ensemble mean of the three models) in the available period

of a pair of products under comparison and F’ML3 (PgC a-1) is

the mean annual flux of NIES-ML3 in the grids where both

products have data. The adjustment was intended to bring fluxes
Frontiers in Marine Science 05
with different spatial coverages to the same coverage as the

NIES-ML3.
Results and discussion

CO2 trend

The ocean CO2 trends obtained using the iteration method

in Figure 1 with the longest available data are shown in

Figure 2A along with the annual increase rates of global

atmospheric CO2 concentrations (ppm) (Friedlingstein et al.,

2022). Because of data scarcity, the extracted trends fluctuate

dramatically when the data length is short and converge

gradually (Figure 2B). Sutton et al. (2019) pointed out that the

number of years of observations needed (YON) to detect a

statistically significant trend over variability ranges from 8 to 15

years at several open ocean sites. It is reasonable to assume the

same YON range for open oceans. Ideally, the trend for a year

should be extracted with the shortest data length possible. As it is

difficult to determine the smallest stabilization length and the

trend does not change much after 10 to 15 years, we presented

the trend with the maximum data length. The extracted trends

appear to track the decadal trends of the atmospheric CO2 in

1990-2015 obtained by Eq.(2) with T1 = 20 year and T2 = 40 year.

We applied the LOYO method to the data normalized by the

trends of Eq.(2). A small trend of 0.1565 matm a-1 exists in the

residual of model prediction minus observations (Figure 2C).

The p-value of the trend is 9×10-6, indicating that the trend is

significant. We subtracted the residual trend from the decadal air

CO2 trends and yielded the trends shown in magenta line in
TABLE 1 Data sources.

Variable Units Resolutions Source URL DOI or
Version

Reference

CO2W matm Monthly, 1×1 degree. https://www.socat.info/ Version-2021 (Sabine et al., 2013; Pfeil et al.,
2013; Bakker et al., 2016.)

xCO2A ppm Monthly, 0.05 sine latitude. https://www.esrl.noaa.gov/gmd/ccgg/mbl/ (Conway et al., 1994 and
Dlugokencky et al., 2019)

CHL mg m-3 Monthly climatology,
0.083x0.083 degrees.

https://oceancolor.gsfc.nasa.gov/cgi/l3 (Hu et al., 2012.)

SST °C Monthly, 1×1 degree. https://psl.noaa.gov/data/gridded/data.cobe.html
http://ds.data.jma.go.jp/tcc/tcc/library/MRCS_SV12/
explanation/cobe_sst_e.htm

(Ishii et al., 2005.)

SSS g kg-1 Monthly climatology, 1×1
degree.

https://www.nodc.noaa.gov/OC5/woa18/woa18data.html (Zweng et al., 2019)

MLD m Monthly climatology, 1×1
degree.

https://www.nodc.noaa.gov/OC5/woa18/woa18data.html

WIND m s-1 Monthly, 0.25×0.25
degrees.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-single-levels-monthly-means?tab=form

10.24381/
CDS.F17050D7

(Hersbach et al., 2020)

Ps Pa Monthly, 0.25×0.25
degrees.

Same as ERA5 WIND
CO2W, ocean CO2 fugacity (matm); xCO2A, mole fraction ratio of atmospheric CO2 (ppm); CHL, chlorophyll-a concentration (mg m-3); SST, sea surface temperature (°C); SSS, sea surface
salinity (g kg-1); MLD, mixed layer depth (m); WIND, wind speed (m s-1); Ps, surface pressure (Pa).
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Figure 2A. The numerical values of the corrected trends are

listed in Table 3. They were used for final data normalization.

The corrected trends agree well with the extracted ocean CO2

trends in 1996-2013, during which the data length used to

extract ocean CO2 trends is longer than the YON of Sutton

et al. (2019). The corrected trends in early 2000s are close to the

those obtained by Sutton et al. (2019) for the time series station

WHOTS in the subtropical North Pacific and Stratus in the

South Pacific gyre in 2004-2013. Although the corrected trends

before 1997 are smaller than those used by Takahashi et al.

(2009) and Zeng et al.,(2014) for data normalization, they are

within the range of trends summarized by Takahashi

et al. (2009).
Validation and uncertainty

The performances of the three models were evaluated by the

LOYO method with the normalized CO2. The validation yields

small biases (prediction minus observation) and good
Frontiers in Marine Science 06
correlation coefficients. The annual mean bias ranges between

-4.82 and 3.79 matm for RF, between -4.34 and 3.92 matm for

GBM, and between -5.29 and 4.95 matm for FNN (Table 3).

Their mean biases are -0.36 matm, -0.24 matm, and -0.27 matm,

respectively. The correlation coefficient R2 in individual years

ranges between 0.50 and 0.90 for RF, between 0.49 and 0.88 for

GBM, and between 0.43 and 0.89 for FNN. Their mean R2 are

0.70, 0.69, and 0.62, respectively. Figure 3 shows the goodness of

fit of the three models. The bias and R2 in the figure were

calculated directly using all validation data points and therefore

are equivalent to the weighted mean bias and R2 in Table 3.

At the CO2 level in year 2000, one unit CO2 change results in

a flux change of 0.19 PgC a-1. We calculated the flux

uncertainties approximately by multiplying this value with the

biases in Table 3. For the RF model, the uncertainty ranges from

-0.93 PgC a-1 to 0.72 PgC a-1 and the mean is -0.07 PgC a-1. The

GBM model has a smaller uncertainty range from -0.83 PgC a-1

to 0.74 PgC a-1 and a mean of -0.05 PgC a-1. The FNNmodel has

the largest uncertainty range from -1.01 PgC a-1 to 0.94 PgC a-1

and a mean of -0.05 PgC a-1.
TABLE 2 Datasets for comparison.

Dataset Period Reference Regression Trend Clustering Predictors

NIES-ML3 1980-
2020

This study RL, GBM,
and FNN

Year-dependent
rates

1 global cluster. CO2

normalized to 2000
using variable annual
rates

SST, dSST, SSS,
CHL, MLD, LAT,
LON

NIES-NN 1980-
2020

Zeng et al. (2014). (doi: 10.17595/20210806.001) FNN Linear trend 1 global cluster. CO2

normalized to 2000
using the rate of 1.54
matm a-1

SST, SSS, CHL,
MLD, dSST

JMA-MLR 1990-
2020

Iida et al. (2021) https://www.data.jma.go.jp/gmd/kaiyou/
english/co2_flux/co2_flux_data_en.html

MLR Cluster-dependent
linear trends

Manually defined
clusters by regions

SST, SSS, SSH,
CHL, MLD, TIME

MPI-
SOMFFN

1982-
2019

Landschützer et al. (2016). (https://www.ncei.noaa.gov/
data/oceans/ncei/ocads/data/0160558/MPI_SOM-FFN_
v2021/)

FNN Implicit rates
learned from air
CO2

16 clusters by self-
organization map

SST, SSS, MLD,
CHL, CO2A

CMEMS-
FFNN

1985-
2019

Chau et al. (2022). (https://resources.marine.copernicus.
eu/?option=com_csw&view=details&product_id=
MULTIOBS_GLO_BIO_CARBON_SURFACE_REP_
015_008)

FNN Implicit rates
learned from air
CO2

Clustering by month
with a window size of
three months

SST, SSS, SSH,
MLD, CHL, CO2A,
CO2C, LAT, LON

CSIR-ML6 1982-
2016

Gregor et al. (2019) (https://www.ncei.noaa.gov/access/
metadata/landing-page/bin/iso?id=gov.noaa.
nodc:0206205)

GBM, FNN,
SVR, and RF

Implicit rates
learned from air
CO2 and time

Repetition of K-mean
clustering and CO2

biomes clustering

SST, dSST, SSS,
MLD, CHL, dCHL,
WIND, CO2A,
TIME

OceanSODA-
ETHZ

1982-
2020

Gregor and Gruber (2021). (https://doi.org/10.25921/
m5wx-ja34)

GBM and
FNN

Implicit rates
learned from air
CO2

Repetition of K-mean
clustering

SST, SSS, CHL,
MLD, WIND,
CO2A

JENA 1957-
2020

Rödenbeck et al. (2013).
http://www.bgc-jena.mpg.de/CarboScope/
Version oc_021

Inversion
Model

Ocean inversion
coupled with
atmospheric
model CO2

Fixed grids Internal ocean
chemistry
Machine learning models include random forest (RF), gradient boost machine (GBM), feedforward neural network (FNN), support vector machine for regression (SVR), and multiple linear
regression (MLR). Predictors include atmospheric CO2 (CO2A), ocean CO2 climatology (CO2C), sea surface temperature (SST), sea surface temperature anomaly (dSST), sea surface
salinity (SSS), sea surface height (SSH), chlorophyll-a (CHL), chlorophyll-a anomaly (dCHL), mixed layer depth (MLD), wind speed (WIND), time (TIME), latitude (LAT), and longitude
(LON).
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FIGURE 2

Trends extraction. (A) The trend of ocean CO2 for a target year (blue) was estimated by using the iteration method with the longest data length
around the year. The final trends to be used for data normalization (magenta) are the corrected function fitting trends (orange) of the annual
increase rate of air CO2 (cyan). (B) Examples of trend variations with data length for the target years 1998-2002. (C) The trend of CO2 biases
(prediction – observation) detected by LOYO with CO2 data normalized by the uncorrected decadal trends of air CO2. The vertical lines show
the standard residuals of the regression.
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TABLE 3 Trends for data normalization and LOYO validation results.

Year Rate RF GBM FNN ND

(matm a-1) Bias STD R2 Bias STD R2 Bias STD R2

(matm) (matm) (matm) (matm) (matm) (matm)

1980 1.36 -3.31 11.39 0.90 -3.09 12.42 0.88 -5.29 13.28 0.85 339

1981 1.38 1.36 11.68 0.88 1.45 12.58 0.86 0.56 11.14 0.89 610

1982 1.39 2.32 15.58 0.55 3.43 16.26 0.49 3.63 16.43 0.48 441

1983 1.38 -2.20 16.13 0.58 -1.97 15.81 0.60 -1.20 15.47 0.62 273

1984 1.36 0.87 18.26 0.63 0.66 18.33 0.63 -1.05 20.29 0.54 504

1985 1.33 3.79 15.11 0.58 3.92 15.90 0.54 3.97 15.28 0.57 708

1986 1.30 1.67 16.80 0.70 2.29 18.79 0.62 0.67 17.76 0.66 897

1987 1.27 1.93 15.95 0.50 0.98 16.29 0.49 3.25 16.83 0.43 1587

1988 1.25 -4.08 13.27 0.82 -3.06 13.62 0.82 -2.52 15.83 0.76 1010

1989 1.23 -4.25 27.73 0.54 -2.58 28.72 0.51 -5.19 29.89 0.46 1117

1990 1.22 -3.82 12.04 0.84 -3.78 12.09 0.83 -3.20 14.31 0.78 889

1991 1.23 0.14 12.63 0.81 0.09 12.81 0.81 1.26 14.94 0.73 2011

1992 1.25 3.37 15.11 0.63 3.04 15.82 0.60 4.95 16.23 0.55 2521

1993 1.28 0.46 15.72 0.74 0.28 16.33 0.72 3.16 17.80 0.66 3398

1994 1.33 -4.09 20.75 0.73 -3.27 21.36 0.71 -3.73 22.84 0.67 3981

1995 1.39 -2.70 19.28 0.65 -2.59 18.94 0.66 -1.92 24.27 0.45 6157

1996 1.45 -2.33 20.53 0.73 -2.12 20.82 0.72 -2.52 22.46 0.67 6092

1997 1.51 1.69 22.84 0.74 1.85 23.53 0.72 0.32 26.40 0.65 4336

1998 1.58 0.86 21.87 0.56 1.09 23.01 0.52 1.18 23.96 0.47 5861

1999 1.64 -2.89 21.76 0.69 -2.09 22.78 0.66 -3.51 24.64 0.60 4081

2000 1.69 -3.79 26.38 0.60 -3.39 27.21 0.57 -5.03 29.83 0.48 4656

2001 1.74 -4.92 23.15 0.70 -4.35 22.78 0.72 -5.21 26.26 0.62 4855

2002 1.77 -0.08 18.50 0.67 -0.09 18.38 0.68 1.42 21.33 0.56 6760

2003 1.79 -1.00 18.86 0.66 -1.22 19.63 0.63 -0.73 21.20 0.57 7001

2004 1.81 0.12 16.96 0.74 0.30 17.23 0.74 -0.35 19.16 0.67 8077

2005 1.82 -1.47 16.79 0.76 -1.27 17.12 0.75 -1.74 19.10 0.69 9575

2006 1.83 0.33 18.75 0.77 0.42 18.92 0.76 0.90 21.93 0.68 12192

2007 1.83 -0.18 20.30 0.69 -0.50 20.24 0.69 0.27 23.60 0.58 12326

2008 1.84 0.36 20.72 0.73 0.51 20.85 0.73 -0.13 23.37 0.66 11526

2009 1.86 2.76 20.59 0.69 2.30 20.74 0.69 3.47 23.08 0.61 11573

2010 1.88 0.99 18.46 0.72 0.74 18.72 0.71 1.15 21.39 0.63 12822

2011 1.91 1.83 23.00 0.67 2.03 23.17 0.67 3.12 25.35 0.60 13354

2012 1.95 -0.05 23.01 0.68 -0.34 23.21 0.67 0.87 25.01 0.62 13394

2013 2.00 -0.22 21.49 0.70 -0.27 21.92 0.68 -1.06 23.61 0.63 11366

2014 2.05 3.67 24.05 0.68 3.11 23.31 0.70 3.97 26.69 0.60 13447

2015 2.11 -1.73 24.34 0.69 -2.02 24.56 0.68 -2.37 27.29 0.60 13161

2016 2.18 -0.27 17.93 0.77 -0.30 18.06 0.77 -0.63 20.48 0.70 14915

2017 2.23 0.44 19.70 0.77 0.24 19.86 0.77 0.54 22.94 0.69 14694

2018 2.29 0.92 20.11 0.70 0.82 20.23 0.70 0.93 22.95 0.61 12098

2019 2.33 -1.19 20.69 0.73 -1.27 20.46 0.73 -1.97 24.65 0.61 11417

2020 2.36 0.00 23.10 0.72 0.17 23.09 0.72 -1.32 26.82 0.62 7434

Mean 1.67 -0.36 19.06 0.70 -0.24 19.41 0.69 -0.27 21.37 0.62
Frontiers in
 Marine Science
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Bias, prediction minus observation; STD, standard deviation of the biases; R2, correlation coefficient between predictions and observations; ND, number of data points.
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FIGURE 3

Model predictions vs observations of ocean CO2 fugacity using normalized data with the trends in Table 3. Predictions come from 41 validations
for each target year between 1980 and 2020. The colour indicates the density of data points. (A) Results of the RF model. (B) Results of the
GBM model. (C) Results of the FNN model.
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Comparison

The fluxes of the products in Table 2 were recalculated by

equations in the Appendix and adjusted by Eq.(4) for comparison.

The offset added to the products is 0.00 matm for NIES-NN and

JENA, 0.22 matm for JMA-MLR, 0.01 matm for MPI-SOMFFN,

0.34 matm for CMEMS-FFNN, 0.07 matm for CSIR-ML6, and 0.01

matm for OceanSODA-ETHZ.

The difference between NIES-ML3 and NIES-NN is small in

1991-2006 but much larger in the early and late years

(Figure 4A). NIES-NN used a constant trend of 1.54 matm a-1
Frontiers in Marine Science 10
to normalize data to the reference year 2000. The trend is larger

than those in Table 3 before 1998 and smaller after that year.

This resulted in larger reconstructed CO2 in the periods. The

bias caused larger flux estimates in the years further away from

the reference year. In 1985 and 2019, NIES-NN flux is larger

than that of NIES-ML3 by 0.536 PgC a-1 and 1.057 PgC a-1

respectively. The latter is close to half of the fluxes in recent

years. Near the reference year of 2000, NIES-NN is smaller than

NIES-ML3 in the order of 0.1 PgC a-1. The JMA-MLR product

(Iida et al., 2021) also shows an arch-shaped flux trend like

NIES-NN does. Again, the differences are larger in the early and
B

A

FIGURE 4

Comparisons with machine learning products included in GSB-2021. Fluxes were recalculated by the same method and adjusted to have the
same spatial coverage of NIES-ML3. (A) Variations of annual fluxes with time. (B) Mean differences of third-party products minus NIES-ML3 in
the whole available period, the early half years, and later half years.
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late years of the comparison period, especially in the 1990s. This

is expected as the regression method of JMA-MLR includes a

linear term of time for each geographic box, which is equivalent

to using a constant trend for data normalization. The flux

estimate of JMA-MLR is larger than that of NIES-ML in all

years. In 1990 to 2020, JMA-MLR flux is larger than that of

NIES-ML3 by 0.699 PgC a-1 and 0.506 PgC a-1 respectively. They

are about a quarter of the flux in recent years.

Instead of using explicit trends to normalize data or

including a linear term of time in the regression, MPI-

SOMFFN (Landschützer et al., 2016), CMEMS-FFNN (Chau

et al., 2022), CSIR-ML6 (Gregor et al., 2019), and OceanSODA-

ETHZ (Gregor and Gruber, 2021) used atmospheric CO2 as a

predictor so that their models could learn the trends implicitly.

Their flux trend patterns indicate different implicit CO2 trends.

While the fluxes of MPI-SOMFFN and OceanSODA-ETHZ

remain rather flat before 2000 and then increase with time, the

fluxes of CMEMS-FFNN and CSIR-ML6 show a trend before the

early 1990s and after 2000 and remain at a similar level in

between. The JENA method (Rödenbeck et al., 2013) involves an

inversion model for the ocean chemistry coupled with the

atmospheric CO2 of an atmospheric transport model. It has

the largest inter-annual flux variations. Note that all products

except for JENA are monthly with a 1×1-degree spatial

resolution. We calculated the monthly mean CO2 of JENA in

2×2.5-degree grids using its daily dataset and then filled the 1x1-

degree grids with values in the nearest source grids. A different

averaging and re-gridding method may yield a different result.

The day of the year is also a predictor of CSIR-ML6.

Figure 4B reveals several patterns in the flux differences

between NIES-ML3 and other products. The black, cyan, and

orange bars represent the mean of a product minus NIES-ML3

in the whole available period, in the early half, and the latter-half

years, respectively. NIES-ML3 agrees with CSIR-ML6 and

OceanSODA-ETHZ the most in terms of the overall mean

difference, which is -0.050 PgC a-1 and -0.053 PgC a-1,

respectively. Their p-values of two tailed t-test with a

significance level of 95%, 0.615 and 0.478 respectively, indicate

that the differences are insignificant. While the flux of CSIR-

ML6 is smaller than that of NIES-ML3 in the early-half years

and larger in the latter-half years, the long-term change of NIES-

ML3 is more consistent with that of OceanSODA-ETHZ. The

differences between NIES-ML3 and MPI-SOMFFN (0.088 PgC

a-1, p-value=0.304), and between NIES-ML3 and CMEMS-

FFNN (-0.121 PgC a-1, p-value=0.151) are moderate but

insignificant. The fluxes of NIES-NN and JMA-MLR are much

larger than that of NIES-ML3, by 0.240 PgC a-1 (p-value=0.030)

and 0.267 PgC a-1 (p-value=0.000) respectively, especially in the

latter-half years of NIES-NN and the early-half years of JMA-

MLR. The largest difference was between JENA and NIES-ML3

(-0.322 PgC a-1, p-value=0.000). Overall, the difference between

NIES-ML3 and other products is small, about 0.007 PgC a-1.
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Conclusion

Our results point out that the ocean CO2 trends are an

important factor affecting the global ocean CO2 reconstruction

and flux estimate by machine learning methods. So far, explicit

trendmethods assumed a constant trend. They yieldedmuch larger

flux estimates than most implicit methods in the early and later

years of themodelled period. Because the oceanCO2 trends tend to

track the trends of air CO2 and the later increasedwith time, using a

constant ocean CO2 trend tends to underestimate the

concentration in those years. We proposed a new method to use

variant trends for an explicit method that applies machine learning

to trend removed data. On average, our flux estimates are

significantly lower those of NIES-NN and JMA-MLR.

Comparing to the implicit methods, they are smaller than that of

MPI-SOMFFN but larger than those of CSIR-ML6, OceanSODA-

ETHZandCMEMS-FFNN.Even though the differences of implicit

methods are less significant than those of the explicit methods, the

fluxes among the implicitmethods depart substantially in early and

recent years. This reveals that the oceanCO2 trends obtained by the

implicitmethods couldbe largelydifferent.All the implicitmethods

regrouped data by clustering.While themerit point of clustering to

regroupdataby their biogeochemical properties have been stressed,

its demerit point of worsening the data scarcity problemwas rarely

discussed. Therefore, our results are expected not only to enhance

the accuracy of flux estimate by machine learning but also to

provide a reference to investigate the trend differences of the

implicit methods.
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Appendix

According to Wanninkhof (2014), air-sea CO2 fluxes can be

calculated by the partial pressures of CO2 in the air (pCO2A,

matm) and seawater (pCO2W, matm):

flux = k0 · kw · pCO2W − pCO2Að Þ, (5)

where k0 (mol L-1 atm-1) denotes the solubility of CO2 in

seawater. It is a function of seawater temperature (K) and salinity

(g kg-3):

log(k0) = −58:0931 + 90:5069
100
SST

� �
+ 22:2940 · log

SST
100

� �

+ SSS 0:027766 − 0:025888
SST
100

� �
+ 0:0050578

SST
100

� �2� �
:

(6)

The gas transfer velocity kw (cm h-1) is a function of wind

speed WIND (m s-1) 10 m above the surface and the

dimensionless Schmidt number:

kw = ·WIND2 · Sc
660

� �−0:5
Sc = 2116:8 − 136:25 · SST + 4:7353 · SST2 − 0:092307 · SST3 + 0:0007555 · SST4

(7)

in which a is a coefficient and the unit of SST is Celsius.

Wanninkhof (2014) obtained a as 0.251 (cm h-1) (m s-1)-2 using
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the high-resolution data of Cross-Calibrated Multi-Platform

wind vector analysis (CCMP). The study of Fay et al. (2021)

shows that a should take a larger value when a monthly wind

with 1×1-degree resolution is used. We adopted their value of

0.271 (cm h-1) (m s-1)-2 for ERA5 wind.

The predicted fCO2 (matm) was converted to partial pressure

(matm) by the method of Weiss (1974) and Dickson et al. (2007):

pCO2W = fCO2

exp b+2 að Þ·Ps
82:05746 SSTð Þ

a = 57:7 − 0:118 SST

b = −1636:75 + 12:0408 SST − 0:0327975 SST2 + 0:0000316528 SST3   

(8)

in which the unit of SST is Kelvin. The partial pressure of air

CO2 was calculated from xCO2A by:

pCO2A = xCO2A · Ps − pH2Oð Þ : (9)

The vapor pressure of seawater pH2O (atm) was calculated

by the method of Weiss & Price (1980):

pH2O = exp 24:4543 − 67:4509 100=SSTð Þ − 4:8489 log SST=100ð Þ − 0:000544 SSSð Þ

(10)

with SST in Kelvin.
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