A large diversity of organohalogen contaminants reach the meso- and bathypelagic organisms in the Bay of Biscay (northeast Atlantic)

Munschy Catherine ^{1, *}, Spitz J. ^{2, 3}, Bely Nadege ¹, Héas-Moisan Karine ¹, Olivier Nathalie ¹, Pollono Charles ¹, Chouvelon Tiphaine ^{1, 3}

¹ Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000 Nantes, France ² Centre d'Etude Biologique de Chizé (CEBC), UMR 7372, Université de La Rochelle / CNRS, 79360

Villiers-en-Bois, France

³ Observatoire PELAGIS, UAR 3462, Université de La Rochelle / CNRS, 17000 La Rochelle, France

* Corresponding author : Catherine Munschy, email address : <u>cmunschy@ifremer.fr</u>

Abstract :

Deep-sea ecosystems play a key role in the cycling and vertical transfer of matter and energy in oceans. Although the contamination of deep-sea demersal and benthic organisms by persistent organic pollutants has been proven, deep pelagic species have been far less studied. To fill these gaps, we studied the occurrence of a large variety of hydrophobic organic contaminants including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), legacy and alternative brominated flame retardants (BFRs) and per- and polyfluoroalkyl substances (PFASs) in crustaceans and fish species collected in the Bay of Biscay, northeast Atlantic. The results highlighted the global predominance of PCBs in fish, followed by OCPs, PFASs and PBDEs, with highly variable concentrations among species. Most of the chlorinated or brominated contaminants showed increasing concentrations with increasing δ 15N values, while most PFASs showed inverse trends. The contaminant profiles and diagnostic ratios revealed species-specific metabolic capacities and peculiar contribution of highly-brominated BFRs.

Highlights

Organohalogen contaminants were ubiquitous in deep pelagic crustaceans and fish. ► PCBs were predominant in fish followed by OCPs, PFASs and PBDEs. ► BFR profiles were peculiar with high contributions of BDE-209 and DBDPE. ► Specific ratios highlight species-specific metabolic capacities.
 Long-chain PFCAs showed biodilution with increasing δ¹⁵N values.

Keywords : Deep-sea, Crustaceans, Fish, Persistent organic pollutants, Contaminants of emerging concern, Species -specific profiles

1

50 Funding sources

- 51 This research was funded by the French Ministry of Ecology ("Ministère de la Transition Écologique /
- 52 Direction de l'Eau et de la Biodiversité–MTE/DEB") within a monitoring programme for the European
- 53 Marine Strategy Framework Directive. Additional financial backing was provided by the European
- 54 project SUMMER "Sustainable Management of Mesopelagic Resources" (grant agreement ID: 817806).

55 **1.** Introduction

56 The deep-sea pelagic environment (< 200 m) is one of the largest ecosystems on Earth and supports a 57 high diversity and abundance of marine species, especially in the bathyal horizon (< 2000 m) (Rogers, 58 2015). In particular, meso- (< 1000 m) and bathypelagic (1000–2000 m) communities represent 59 essential components of oceanic biomass and important prey for higher trophic levels including large 60 pelagic fish (tunas, sharks), marine mammals and seabirds. They play a key role in the cycling and 61 vertical transfer of matter and energy in oceans (Bernal et al., 2015; Bianchi et al., 2013; Catul et al., 62 2011). As a consequence of their strong diel vertical migrations (DVM) during which some species 63 (Chouvelon et al., 2022; Eduardo et al., 2021; Takahashi et al., 2000) feed in surface waters (epipelagic 64 zone, 0-200m) at night and move back to meso- and bathypelagic zones during the day, meso- and 65 bathypelagic organisms release particulates, organic matter and associated contaminants via faecal 66 pellet egestion and may therefore increase transfers from surface waters to deeper horizons (Belcher 67 et al., 2019; Bernal et al., 2015). Furthermore, their upward migration, during which they become 68 available to surface predators, leads to the transfer of organic matter and contaminants accumulated 69 in their tissues from deep horizons back to epipelagic layers. In addition to their essential role in 70 biogeochemical cycles, mesopelagic organisms have also raised interest regarding their exploitation as 71 new resources for human consumption as well as the fish meal and oil industry (Berntssen et al., 2021; 72 Grimaldo et al., 2020).

73 Although deep-sea ecosystems have been studied for decades, most studies focused on deep demersal 74 or benthic communities and rarely on deep pelagic organisms, especially those from the ocean 75 "twilight zone" (200–1000 m), which thus remain the most understudied ones. Recent publications 76 have therefore highlighted the urgent need to increase knowledge in various research areas for these 77 deep pelagic ecosystems, including the fate and impact of organic contamination (Martin et al., 2020; 78 Sanganyado et al., 2021). Indeed, oceans and deep waters in particular are final sinks for anthropogenic 79 wastes, including chemicals produced from industrial, urban, domestic and agricultural uses 80 (Froescheis et al., 2000; Looser et al., 2000; Zhang et al., 2019). Contaminant sources to oceans are 81 numerous and include mainly (80%) land-based but also sea-based activities. Atmospheric transport, 82 continental inputs via rivers and runoff as well as direct discharges contribute to their widespread 83 occurrence in oceans (Landrigan et al., 2020; Ramu et al., 2006; Tornero and Hanke, 2016). Although 84 deep-sea ecosystems are remote from direct anthropogenic sources of pollutants, various studies have 85 shown that persistent hydrophobic organic contaminants are transported to deep oceanic waters, 86 including the hadal trenches (Cui et al., 2020; Dasgupta et al., 2018; Jamieson et al., 2017; Takahashi 87 et al., 2010; Webster et al., 2014). Because of their high hydrophobicity, long half-lives and long-88 distance transport, persistent organic pollutants (POPs) and other substances showing similar 89 properties are of particular concern in our global environment (Cousins et al., 2019; Jones, 2021).

90 Despite their regulation for decades and the remoteness of deep ecosystems from direct sources, the 91 transport of legacy POPs to the deep sea has been proven, and various deep-sea species have been 92 shown to be prone to high exposure to these contaminants, leading to their bioaccumulation at higher 93 levels than in shallower water organisms (Froescheis et al., 2000; Looser et al., 2000; Mormede and 94 Davies, 2003; Ramu et al., 2006 and references therein) and making chemical contamination by POPs 95 one of the anthropogenic pressures in the deep sea (Stemmler and Lammel, 2013). Among the legacy 96 POPs, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated 97 diphenyl ethers (PBDEs) are by far the mostly-studied organic contaminants in deep ecosystems 98 (Covaci et al., 2008; Ramu et al., 2006; Romero-Romero et al., 2017; Storelli et al., 2009; Takahashi et 99 al., 2010; Webster et al., 2014). However, most of these studies relate to demersal and benthic species 100 living near or on the bottom floor of oceans (most of the references above), while true deep pelagic 101 species are more seldom considered. Other substances with similar properties as POPs are of similar 102 concern, as very few data on their occurrence and fate in deep-sea ecosystems are available so far. 103 Among them are alternative flame-retardants such as those used in the replacement of legacy 104 compounds, for example, BTBPE (1,2-bis(2,4,6-tribromophenoxy)ethane) and DBDPE 105 (decabromodiphenylethane), which replaced penta- and deca-BDE respectively. Per- and 106 polyfluoroalkyl substances (PFASs), including the regulated long-chain perfluorocarboxylic acids

107 (PFCAs) in particular, represent another under-studied class of compounds, although increasing 108 concern has been recognised for this vast family of less hydrophobic compounds for whom oceans 109 constitute the final reservoir (Armitage et al., 2009; Yamashita et al., 2008). Their transport to deep 110 seas mainly *via* advection and settling particles has indeed been recently emphasised (Sanchez-Vidal 111 et al., 2015; Sanganyado et al., 2021; Zhang et al., 2019).

112 Despite their importance for ocean health and services and their exposure to various anthropogenic 113 threats, deep-sea ecosystems and deep pelagic ones, in particular, are still poorly studied, including 114 the "twilight zone" towards which concerns have been recently raised regarding climate change and 115 human exploitation (Martin et al., 2020). Specifically, information on organic contaminant occurrence 116 and understanding of their bioaccumulation and biomagnification in deep pelagic food webs are 117 necessary to better assess organic contaminants' ecological impacts (Sanganyado et al., 2021) and 118 assess health risks potentially associated with human exploitation of these deep resources (Grimaldo 119 et al., 2020; Wiech et al., 2020). In this context, this study aimed to investigate the accumulation of 120 organohalogen contaminants (OCs) in meso- and bathypelagic species from the Bay of Biscay, 121 northeast Atlantic, focusing on crustaceans and fish. The studied contaminants include a large diversity 122 of organic contaminant families such as the legacy POPs listed in the Stockholm Convention (i.e. PCBs, 123 OCPs, PBDEs and PFASs such as perfluorooctane sulfonate -PFOS and perfluorohexanoic acid -PFHxA) 124 and other regulated contaminants (i.e. long-chain PFCAs). The contamination was notably studied 125 using the stable carbon and nitrogen isotope compositions (δ^{13} C and δ^{15} N values) concomitantly 126 analysed on organisms, as respective trophic tracers of organic matter sources sustaining them and of 127 their trophic position within the deep pelagic community studied. The results are expected to serve as 128 a benchmark in future studies and are of prime interest to characterise and evaluate the chemical 129 exposure of various organisms having a central role in marine ecosystems. This study provides another 130 light on the contamination of the species living in the twilight zone in addition to the previously 131 published results on major and trace elements analysed in the same samples (Chouvelon et al., 2022).

132

133 **2.** Materials and methods

134 **2.1.** Sampling

135 Samples were collected on the French slope of the Bay of Biscay (NE Atlantic) during the annual EVHOE 136 R/V October fishery survey, on board the Ifremer Thalassa in 2017 137 (https://doi.org/10.17600/17002300). Fish (11 species) and crustacean (3 species) samples were 138 collected at night using a 25 m vertical opening pelagic trawl in the deep scattering layer (ca 800 m 139 depth in the water column; 1330 m bottom floor). All samples were collected during the same haul of 140 60 min at a speed of approximately 4 knots. The selected fish individuals belonged to the most 141 abundant species, including one species of Sternoptychidae and three species of Myctophidae, two of 142 the most abundant mesopelagic fish families globally (Catul et al., 2011; Valinassab et al, 2007).

143 Handling of samples was conducted on-board using rigorous protocols to avoid external 144 contamination. Samples were stored at -20 °C until further processing in the laboratory. To obtain 145 sufficient material for the quantification of OCs, the whole bodies of individuals belonging to the same 146 species were pooled by specimens of similar sizes (Table 1). Considering the sizes reported in the 147 literature, most fish except Aphanopus carbo were adult fish. A small piece of white muscle (< 3% of 148 individual total weight) was also collected for the analysis of stable isotopes of carbon and nitrogen as 149 trophic tracers. Whenever possible, fish individuals' sexes were determined and noted in the 150 composition of each pool; all pools were made of both male and female individuals except for 151 Serrivomer beanii (males only) and Stomias boa (females only). All fish stomachs were emptied from 152 their major visible content; however, most stomachs were found to be empty, suggesting either a delay 153 between the sampling and the last feeding or a fast stomach emptying. When large enough, fish were 154 analysed individually; this was the case for 3 samples of Serrivomer beanii, 2 samples of Stomias boa 155 and 3 samples of Aphanopus carbo (Table 1). After pooling, the samples were homogenised using a 156 blender with stainless steel arms, freeze-dried and finely ground up with a ball mill MM400 (Retsch) 157 using bowls and marbles with a zirconium oxide coating. Immediately after freeze-drying, the moisture

percentage was determined in each sample; they varied between 69% and 78% in crustaceans and
between 64% and 88% in fish (Table 1).

160 **2.2.** Chemical analyses

Extractable organic matter, used as a proxy for total lipid content (TLC), was determined gravimetrically using 500 mg of sample extracted with a mixture of hexane and acetone (80:20 v:v) using pressurised liquid extraction (PLE). The extracts were evaporated to dryness and TLC was expressed in % of dry weight (dw).

165 PCBs, OCPs and BFRs were determined as described by Munschy et al. (2020a). Briefly, 5-10 g of 166 samples were extracted by PLE with dichloromethane, followed by gel permeation chromatography, a 167 silica and alumina adsorption chromatography column and a two-dimensional HPLC system with two 168 columns coupled in series. Analyses were performed by gas chromatography (Agilent 6890, Palo Alto, 169 CA, USA) coupled to high-resolution mass spectrometry (AutoSpec Ultima, Waters Corp.). BDE-209, 170 DBDPE and BTBPE were analysed using an Agilent 7890B gas chromatograph coupled to a triple 171 quadrupole mass spectrometer Waters Xevo TQS-μ (Millford, US) using atmospheric pressure chemical 172 ionisation operated in the positive mode. The samples were analysed for 35 PCBs ranging from tri- to 173 decachlorinated congeners, including the 12 dioxin-like (dl-) PCBs (CB-77, -81, -105, -114, -118, -123, -174 126, -156, -157, -167, -169, -189), the 6 indicator (i-) PCBs (CB-28, -52, -101, -138, -153, -180), various 175 OCPs (p,p'-DDT, o,p'-DDT, o,p'-DDD, p,p'-DDD, p,p'-DDE, dieldrin, aldrin, hexachlorocyclohexanes – 176 HCHs and hexachlorobenzene -HCB, referred to as Σ OCPs later in the text) and BFRs including 36 PBDE 177 congeners from tri- to decabrominated ones (Table S5) and non-PBDE BFRs (HBB -hexabromobenzene, 178 BB-153 -2,2',4,4',5,5'-hexabromobiphenyl, BTBPE, DBDPE).

PFASs were determined according to Munschy et al. (2020a). Briefly, 1 g of sample was extracted using liquid-solid extraction (LSE) with a blend of MeOH/KOH and purified onto two consecutive SPE cartridges: an Oasis WAX weak anion exchange stationary phase and an Envicarb charcoal stationary phase. Analysis was performed using an Acquity ultra-performance liquid chromatograph (UPLC[®], Waters Corp.) coupled to a triple quadrupole mass spectrometer (Xevo[®] TQ-S micro, Waters Corp.) 184 interfaced with an electrospray ionisation source Z-sprayTM (Waters Corp.). The mass spectrometer 185 was operated in negative ionisation mode using multiple reaction monitoring (MRM) with argon as the 186 collision gas. PFASs were analysed for five C_{4^-} to C_{10} -perfluoroalkyl sulfonates (PFSAs) and nine C_{6^-} to 187 C₁₄ perfluorocarboxylic acids (PFCAs), namely: perfluorobutane sulfonate (PFBS); perfluorohexane 188 sulfonate (PFHxS); perfluoroheptane sulfonate (PFHpS); perfluorooctane sulfonate (PFOS); 189 perfluorodecane sulfonate (PFDS); perfluorohexanoic acid (PFHxA); perfluoroheptanoic acid (PFHpA); 190 perfluorooctanoic acid (PFOA); perfluorononanoic acid (PFNA); perfluorodecanoic acid (PFDA); 191 perfluoroundecanoic acid (PFUnDA); perfluorododecanoic acid (PFDoDA); perfluorotridecanoic acid 192 (PFTrDA) and perfluorotetradecanoic acid (PFTeDA).

Quality Assurance/Quality Control (QA/QC) procedures were carefully followed during the entire analytical protocol. This included quantification by isotopic dilution using ¹³C-labeled compounds, fiveto-six-point calibration curves in each sequence of samples to calculate relative response factors and check linearity, laboratory blank determination (whole analytical procedure), in-house quality control sample, participation in QUASIMEME (Quality Assurance of Information for Marine Environmental Monitoring in Europe) and intercomparison exercises with satisfactory Z scores. Detailed analytical parameters and QA/QC results are given in the SI.

200 **2.3.** Statistical analyses

201 All statistical analyses were performed using StatSoft Statistica software v 13.3 with a significance level 202 (α) of < 0.05. Concentrations below the limits of quantification (LOQs) were assigned as missing values 203 (i.e. counted as zero in the sums), and only compounds quantified in more than 50% of the samples 204 were considered for statistical analyses. Data were tested for normality using the Shapiro-Wilk's test 205 and parametric or non-parametric tests were performed depending on a normal distribution. 206 Correlations (e.g. between total lipid content and POP concentrations and between contaminant 207 concentrations) were tested using simple linear regression coefficients and Spearman's rank 208 correlation test was used to evaluate the strength and direction of relationships. Data comparisons 209 (biological parameters, POP concentrations and ratios) across groups were performed using nonparametric tests (Mann–Whitney: MW- and one-way ANOVA Kruskal-Wallis's: KW -test to compare independent groups) for non-normally distributed data. Results were considered significant only when both tests gave significant results. Principal component analysis (PCA) was performed on normalised concentrations to avoid the concentration effect.

3. Results and discussion

215 **3.1.** Trophic markers

216 The detailed results obtained for trophic markers on this deep pelagic community were presented in 217 Chouvelon et al. (2022). The values specifically obtained for the samples here analysed for organic 218 contaminants (a selection of those analysed for chemical elements by Chouvelon et al., 2022) are 219 summarised in Table 1. Briefly, δ^{13} C values ranged from -20.30‰ to -18.26‰, with no significant 220 differences between crustaceans and fish. This relatively small variability for δ^{13} C values (~2‰ 221 difference) indicates similar carbon sources sustaining the species (Chouvelon et al., 2022). The $\delta^{15}N$ 222 values showed more variability, ranging from 9.24‰ to 12.23‰ (Table 1). This range suggests a 223 difference of at least one trophic level (following the expected mean difference of 3.4‰ per trophic 224 level, Post, 2002) among species of the studied food web. δ^{15} N values were significantly different (MW, 225 p = 0.0017) between crustaceans (9.58 ± 0.28‰ on average, n = 5) and fish (10.76 ± 0.91‰, n = 28).

226 **3.2.** Total lipid contents (TLCs)

227 The TLCs exhibited high variations among taxa and species, ranging from $4.3 \pm 0.9\%$ dw (n = 3) in 228 Pasiphaea sivado to 51% dw in Ephyrina figueirai (n = 1) for crustaceans and, for fish, from $6.1 \pm 0.1\%$ 229 dw (n = 3) in Xenodermichthys copei to 41.9 ± 9.6% dw (n = 3) in Notoscopelus kroeyeri (Table 2). A high 230 diversity in TLCs was found between the crustacean species (rsd 130%), while the fish species could be 231 distinguished between low-TLC species (Serrivomer beanii, Xenodermichthys copei, Lampanyctus 232 crocodilus, Chauliodus sloani and Aphanopus carbo) and the other species. High lipid contents (i.e. 233 above 15% dw) were determined in the crustaceans Sergia robusta and Ephyrina figueirai as well as in 234 the Papalepididae Arctozenus risso, the Sternoptychidae Argyropelecus olfersii, the Myctophidaes

235 Myctophum punctatum and Notoscopelus kroeyeri, the Stomiidae Stomias boa and the Platytroctidae 236 Searsia koefoedi. These results agree with the energy densities reported by Spitz et al. (2010) in various 237 forage fish species from the Bay of Biscay. Except in *Stomias boa* for which the replicate made from 3 238 individuals showed extremely different values compared to the two other replicates (made of 1 239 individual each), TLCs were fairly similar between replicate pool samples of the same species, with an 240 average rsd of 24% (12-34% range excluding Stomias boa). The TLC values in Stomias boa replicates (all 241 female individuals) showed a higher rsd (69%), with high TLC values of 17.6% dw and 19.5% dw for the 242 two 35 cm and 32 cm individuals respectively, whilst the replicate made from 3 individuals of 27.7 \pm 243 1.5 cm (on average) exhibited a much lower TLC value, i.e. 2.7% dw. The only noticeable difference 244 noted during dissection was a slight difference between the maturity stages (based on gonad visual 245 observation) with a less mature stage for the smaller individuals. Concomitantly to the maturity stage, 246 ontogenic differences may also explain the difference observed in the lipid contents of Stomias boa 247 samples, as energy reserves were shown to be positively correlated with size at the fish species level 248 (Anthony et al., 2000; Cargnelli & Gross, 1997). However, at the scale of the fish community analysed 249 here, TLCs showed a significant linear inverse relationship with fish lengths (p = 0.014), indicating a 250 higher energy content for the smaller species. Classically, TLCs showed an inverse significant linear 251 relationship (p < 0.001) with humidity percentages (Spitz et al., 2010).

252 TLC values were similar to those reported previously in the literature, even though different extraction 253 methods were used (chloroform:methanol:water (1:2:1) in Sen Özdemir et al., 2019 and ether-ethyl in 254 Spitz et al., 2010 versus hexane and acetone (80:20 v:v) for our samples).

255 **3.3.** Bioaccumulation of organohalogen contaminants in the deep pelagic ecosystem

256 **3.3.1.** Organic contaminant concentrations and relative contributions show high inter-species 257 variabilities

258 The concentrations of the various OC families analysed are presented in Table 2 in both dw (all 259 contaminants) and Iw (for PCBs, OCPs and PBDEs) and details for each compound are given in Tables 260 S3 to S6.

261 In both crustaceans and fish species, PCBs showed high detection frequencies. Most PCB congeners 262 showed detection frequencies of 100%, except for CB-77 and CB-189 (97%), CB-126 and CB-169 (91%) 263 and 58% of the samples, respectively) (Table S3), whilst CB-81 was seldom detected above the LOQ 264 (6% of the samples). CBs -29, -30, -112 and -114 were never detected. Among OCPs, dieldrin, endrin, 265 and mirex were detected in all samples, similarly to the DDT isomer p,p'-DDE, whilst the other DDT 266 isomers showed detection frequencies in the 88–94% range (Table S4). Among HCHs, β -HCH was 267 detected in 100% of the samples, above γ -HCH (73%), α -HCH (58%) and δ -HCH (6%). HCB and PeCB 268 were detected in 97% and 52% of the samples, respectively. The other OCPs, namely, aldrin, isodrin, 269 α -endosulfan, β -endosulfan and endosulfan sulphate, were never detected. BDEs -28, -47, -49, -66, -270 99, -100, -119, -126, -153, -154 and -155 were the most frequently detected (> 70% of the samples), 271 while BDEs -77, -183, -184, -202, -205, -207 and -209 showed intermediate detection frequencies (27-272 55%). The other PBDE congeners, i.e. BDEs 30, -71, -85, -138, -171 and -204 were below LOQs in all 273 samples. The non-PBDE BFRs HBB, BB-153 and DBDPE were detected in 61, 73 and 76% of the samples, 274 respectively. BTBPE was only detected in 7 samples (21%). Among PFASs, PFOS, PFNA, PFDA, PFUnDA, 275 PFDoDA, PFTrDA and PFTeDA were detected in 100% of the samples. PFOA was detected in 45% of the 276 samples, PFDS in 27% and PFHpA was seldom detected (12%) (Table S4). PFHpS and PFHxA were below 277 LOQs in all samples, PFHxS was detected in one sample only and close to the LOQ.

278 Globally, concentrations (calculated on the mean values of replicates per species) ranged from 11.28 279 to 100.07 ng g⁻¹ dw, 1.20 to 62.49 ng g⁻¹ dw, 0.12 to 3.49 ng g⁻¹ dw and 3.07 to 55.69 ng g⁻¹ dw for Σ 280 PCBs, Σ OCPs, Σ PBDEs and Σ PFASs, respectively (Table 2). In crustaceans, the intra-species variability 281 of concentrations was low between the 3 Pasiphaea sivado replicate pools (6–11% rsd for PFASs, PCBs 282 and OCPs and 45% for PBDEs), but huge variations were found at the inter-species level, with rsd values 283 of 55, 67, 107 and 97% for PFASs, PCBs, OPCs and PBDEs, respectively. The different OC families' 284 contributions showed also some variations between crustacean species. PFASs showed the highest 285 contamination levels of all OC families in Pasiphaea sivado (mean of 23.83 ± 2.70 ng g⁻¹ dw, 286 representing 65% of the OCs) followed by PCBs (11.28 \pm 0.69 ng g⁻¹ dw, 31%), OCPs (1.20 \pm 0.69 ng g⁻¹ 287 dw, 3%) and PBDEs (0.12 \pm 0.05 ng g⁻¹ dw, 0.3%). This species showed the lowest contamination levels 288 of PCBs, OCPs and PBDEs, i.e. 6 times, 10-30 times and 5 times lower, respectively, than the 289 concentrations determined in Sergia robusta and Ephyrina figueirai. These OC relative contributions 290 could be partially explained by TLC values, as Pasiphae sivado, with the lowest TLC values, was hence 291 expected to show lower bioaccumulation of lipophilic OCs such as PCBs, OCPs and PBDEs. In the two 292 other crustacean species, chlorinated OCs (and PCBs in particular) were predominant, while PBDEs 293 contributed the least. The contaminant concentrations and TLCs in crustaceans showed significant 294 correlations for Σ DDTs (p < 0.0001), endrine (p = 0.015), HCB (p = 0.003), Σ HCHs (p = 0.024) and Σ 295 PBDEs (p = 0.010). However, the significance was driven by the high differences in TLCs found between 296 the 3 studied crustacean species (4 ± 1%, 15% and 51% in Pasiphaea sivado, Sergia robusta and 297 Ephyrina fiqueirai, respectively), while no correlation was evidenced for the three replicates of 298 Pasiphaea sivado. When normalised to TLCs, OCP concentrations were still lower in Pasiphaea sivado 299 versus the other two species (both being similar), while PCB concentrations were still higher in Sergia 300 robusta > Pasiphaea sivado > Ephyrina figueirai. PBDE concentrations were similar in both Sergia 301 robusta and Pasiphaea sivado (not determined in Ephyrina figueirai because of a matrix effect). PFAS 302 concentrations showed similar levels in Pasiphaea sivado and Ephyrina figueirai but a two times higher 303 level in Sergia robusta.

In fish, PCBs presented the highest concentrations (range of 18.62 ng g⁻¹ dw to 115.37 ng g⁻¹ dw, mean of 54.42 ± 28.57 ng g⁻¹ dw calculated on the replicates), followed by OCPs (5.69–98.57 ng g⁻¹ dw, mean of 21.73 ± 21.26 ng g⁻¹ dw, of which 83% were DDTs), PFASs (1.54–37.25 ng g⁻¹ dw, mean of 11.95 ± 9.58 ng g⁻¹ dw) and PBDEs (0.43–5.31 ng g⁻¹ dw, mean of 1.57 ± 1.17 ng g⁻¹ dw). These results agree with previous studies showing PCBs and DDTs as the major chlorinated contaminants in deep-sea fish worldwide, reflecting their high persistence and hydrophobicity, while PBDE levels are usually reported to be several orders of magnitude lower (Koenig et al., 2013; Webster et al., 2014).

The intra-species variability of concentrations was globally low for all contaminant families (21% rsd on average for PFASs and 29, 38% and 36% for PCB, OCP and PBDE concentrations in dw). For all 313 contaminant families, the highest variabilities (44–75% in dw, 64–80% in lw) were obtained between *Notoscopelus kroeyeri* replicates. The inter-species variability (calculated on the species means) was 315 between 43% (PCBs) and 87% (PFASs) depending on the OC family. *Xenodermichthys copei* and *Myctophum punctatum* were the least-contaminated species in PCBs, OCPs and PBDEs while *Notoscopelus kroeyeri* showed the lowest PFAS concentrations. The highest levels were determined in *Chauliodus sloani* for PCBs, in *Stomias boa* for OCPs and PBDEs and *Searsia koefoedi* for PFASs.

319 Only a limited number of lipophilic OCs (i.e. dieldrin, endrin, ∑ HCHs and each isomer, HCB) showed 320 significant (p < 0.0001 to 0.022) positive correlations with TLCs, while 5 DDTs, 5 PCBs (whether i-PCBs, 321 dl-PCBs or Σ all congeners were considered) and Σ PBDEs did not. Very few individual PCB congeners 322 (CBs -18, -28, -31, -44, -49, -52 and -66, i.e. the less-chlorinated ones) and individual PBDEs (BDEs -66 323 and -77) showed a significant linear relationship between their concentrations and TLCs. These results 324 are somewhat surprising for lipophilic contaminants. However, TLCs determined in the present 325 samples were a proxy of total lipids and it has been proven that lipophilic contaminant accumulation 326 is not governed only by lipid content but also by lipid composition (Xie et al., 2020). Our results suggest 327 complex relationships between the species' lipidic composition and the various studied chlorinated 328 and brominated OC families and would argue in favour of more investigations into the specific tissue 329 biochemical composition of species. Despite this lack of significant correlations, concentrations of 330 lipophilic OCs were normalised to TLCs to compare the concentrations between replicate samples 331 within a species (intra-species variability) and between species (inter-species variability). Normalising 332 the concentrations to TLCs did not decrease the intra-species variability (30, 29 and 39% for PCBs, OCPs 333 and PBDEs respectively) nor the inter-species variability (73–75%). However, these results were highly 334 dependent on the species; the intra-species variability decreased highly for Argyropelecus olfersii (ratio 335 between the concentrations in the two samples of 1.0, 1.4 and 1.0 in lw versus 1.4, 1.9 and 1.5 in dw 336 for PCBs, OCPs and PBDEs, respectively), while the concentrations in *Notoscopelus kroeyeri* were highly 337 variable whether they were expressed in dw (60-75%) or lw (64-80%). When both taxa were 338 compared, only PFAS and PBDE concentrations (in ng g⁻¹ dw) showed significant differences (KW and

339 MW) between crustaceans and fish (PFASs higher in crustaceans p = 0.0034, PBDEs higher in fish p =340 0.0021). Although PCBs and OCPs showed higher levels in fish than in crustaceans, the lack of 341 significant differences between both taxa could be explained by both the high inter-species variability 342 within each taxon and the smaller difference in concentrations between taxa.

343 PFASs exhibited the highest contribution among the OC families in the crustacean species Pasiphaea 344 sivado (65 ± 2% on average), while PCB contribution was the highest in all fish species (between 47% 345 and 72%, with a mean of 62 \pm 10%). PFAS contribution decreased significantly with both δ^{15} N values (p 346 = 0.0001) and TLC (p = 0.004), reflecting a relationship with the trophic magnification factors (TMFs) of 347 the studied contaminants, which are reported to be globally lower for PFASs than for PCBs (Won et al., 348 2018) and suggesting a potential link with the biochemical compositions of the studied species. Unlike 349 the lipophilic contaminants studied here (i.e. PCBs, OCPs and PBDEs), PFASs have an affinity for specific 350 proteins and phospholipids (Armitage et al., 2013; Ng and Hungerbühler, 2013). PFASs presented the 351 highest relative concentrations in the crustacean species that showed the lower TLC (lipophilic 352 contaminants being consequently less predominant), namely Pasiphaea sivado, while the lowest PFAS 353 relative contribution (17%) was found in the crustacean species Ephyrina figueirai, which showed the 354 highest TLC (and the highest lipophilic contaminant contribution). However, the two fish species 355 Serrivomer beanii and Xenodermichthys copei, despite them having been reported to have lower 356 protein contents than the other studied fish species sampled from the Bay of Biscay (Spitz et al., 2010), 357 showed higher PFAS contribution than the other fish ($30 \pm 8\%$ versus $10 \pm 6\%$ in the other species), a 358 result that could rather be explained by their lower trophic level (see section 3.3.6).

359

3.3.2. OC concentrations are in the range of those reported in other deep pelagic species in 360 the NE Atlantic

361 Although PCB, OCP and PBDE concentrations in deep-sea organisms from various oceanic regions have 362 been published previously, most of the data refer to bathydemersal and benthopelagic species, i.e. 363 living and feeding close to the bottom seafloor. In addition, the studied periods refer to sampling dates 364 of more than 10 years ago which could bias the comparison for the legacy POPs. Data on contaminants of emerging concern such as the ones we report here are still very scarce, making comparisons
impossible. With these precautions in mind, the following are some comparisons with previously
published data focusing specifically on deep pelagic species.

368 \sum_{6} PCB and \sum_{15} PBDE concentrations were determined in the muscles of 4 deep pelagic fish species 369 similar to ours (namely Benthosema glaciale, Xenodermichthys copei, Argyropelecus hemigymnus, 370 Gonostoma bathyphilum) and collected at 1200–1500 m depths in a submarine canyon in the south 371 Bay of Biscay in 2012–2013 ranged between 134 and 756 ng g^{-1} lw and between <LOD and 23 ng g^{-1} lw, 372 respectively (Romero-Romero et al., 2017). These levels compare with our concentration ranges (i.e., 373 31.2–1072.9 ng g $^{-1}$ lw and 0.92–43.37 ng g $^{-1}$ lw for PCBs and PBDEs respectively). \sum_7 ICES PCB (i.e. the 374 International Council for the Exploration of the Sea PCBs, the major and mostly-used congeners) was 375 found in mean concentrations of between 91.6 \pm 116 and 613 \pm 739 ng g⁻¹ lw in the muscle of adult 376 Aphanopus carbo (black scabbardfish) collected from the west of Scotland in 2006–2012 and of 377 between 267 ± 150 and 521 ± 301 ng g⁻¹ lw in their livers (Webster et al., 2014), which compares closely 378 to our results in whole fish (524–651 ng g⁻¹ lw), although younger individuals were considered in our 379 study. In the same individuals, the \sum_{9} PBDEs were between 1.1 ± 3.0 and 42.5 ± 26.4 ng g⁻¹ lw in the 380 flesh and between 2.4 \pm 3.9 and 25.8 \pm 8.2 ng g⁻¹ lw in the liver (Webster et al., 2014), while our result 381 showed concentrations of a similar order of magnitude with $13.0-17.1 \text{ ng g}^{-1}$ lw range in whole fish. 382 Various organic contaminant concentrations (namely, PCBs, HCB, dieldrin and DDTs) were reported in 383 the livers of black scabbardfish collected from the NE Atlantic (from Madeira off the coasts of Marocco 384 to Ireland) in 1999 (Mormede and Davies, 2003). Surprisingly, these contaminant concentrations did 385 not differ drastically from our data, considering the difference in time of sampling, studied areas and 386 targeted tissues (Σ_7 ICES PCBs: 91 ng g⁻¹ lw to 7660 ng g⁻¹ lw versus 524–651 ng g⁻¹ lw in our fish samples; 387 HCB: 5.3 to 30.3 ng g⁻¹ lw versus 11.4–18.8 ng g⁻¹ lw; dieldrin: 22.0-40.9 ng g⁻¹ lw versus 20.5–25.0 ng 388 g^{-1} lw) except for the Σ DDTs, which was lower in our samples (239.5–397.8 ng g^{-1} lw versus 384–4350 389 ng g⁻¹ lw in Mormede and Davies' study), potentially reflecting a higher decrease of DDT inputs over 390 the studied periods.

391 Specific congener analysis reveals untypical BFR profiles

392 Indicator PCBs (i-PCBs) were predominant compared to dioxin-like congeners (dl-PCBs) in all species, 393 and i-PCB and dl-PCB concentrations were highly correlated (r = 0.93, p < 0.05). The average ratio (i-394 PCBs/dl-PCBs) was 7 ± 1 and showed no significant difference between taxa. Detailed PCB mean 395 concentrations per congener and taxon are given in Table S3. The most abundant congener was CB-396 153 with concentrations ranging from 1.73 to 15.03 ng g^{-1} dw (mean of 6.663 ± 6.776 ng g^{-1} dw) in 397 crustaceans and from 2.40 to 23.27 ng g^{-1} dw (mean of 10.71 ± 6.10 ng g^{-1} dw) in fish. Hexa- and 398 heptachlorinated congeners (i.e. CB-153, CB-138, CB-180 and CB-187, each one contributing to 10-19% 399 of the Σ PCBs) were the most abundant ones, which is consistent with previous findings in deep-sea 400 ecosystems (Koenig et al., 2013; Romero-Romero et al., 2017; Storelli et al., 2009; Takahashi et al., 401 2010; Webster et al., 2014). The i-PCBs contributed to 47% of the 5 PCBs while dl-PCBs counted for 7% 402 of the Σ PCBs, pointing out the importance of determining more than the classic 18 congeners to better 403 assess total PCB bioaccumulation in marine organisms. Congeners with 5 and more chlorine atoms 404 showed the highest cross-correlations, which underline their similar sources and behaviours.

405 DDTs were by far the most abundant OCPs in all species (0.53–86.23 ng g⁻¹ dw range, mean of 16.35 ± 406 18.90 ng g^{-1} dw), followed by dieldrin (0.25–6.83 ng g^{-1} dw range, mean of 1.96 ± 1.34 ng g^{-1} dw) > HCB 407 $(0.32-3.93 \text{ ng g}^{-1} \text{ dw range, mean of } 1.07 \pm 0.91 \text{ ng g}^{-1} \text{ dw}) > \text{endrin } (0.028-0.73 \text{ ng g}^{-1} \text{ dw range, mean})$ 408 of 0.25 \pm 0.19 ng g⁻¹ dw) = Σ HCHs (0.01–0.61 ng g⁻¹ dw range, mean of 0.20 \pm 0.18 ng g⁻¹ dw) (Table 409 S4). These results bring evidence that DDT is still a major organochlorine pesticide in marine 410 ecosystems, which is in line with its global past usage and environmental persistence (Li and 411 Macdonald, 2005). 5 DDTs showed significant positive correlations with all other organochlorine 412 pesticides except Σ HCHs, possibly related to HCH physico-chemical properties and environmental 413 behaviour (Salvado et al., 2019). The highest correlations were between Σ DDTs and mirex (0.91) while 414 dieldrin and endrine showed weaker ones (0.70 and 0.42, respectively).

Among DDTs, the p,p'-DDE isomer was the most prevalent in all samples (80 ± 11% of Σ DDTs), in accordance with the common profiles observed in marine biota including deep-sea organisms (Koenig 417 et al., 2013; Ramu et al., 2006; Storelli et al., 2009). The o,p'-DDT/p,p'-DDT concentration ratio was 418 0.36 ± 0.17 , on average, in all fish species and showed high inter-species variations (0.03–0.55 range). 419 This ratio is commonly used to distinguish DDT sources, with values in the 0.2–0.3 range in technical 420 DDT (Kalantzi et al., 2001) whereas a ratio above 0.34 is usually attributed to DDT's origin from dicofol 421 acaricide impurities (Suarez et al., 2013). This ratio was particularly low in Stomias boa (0.03 ± 0.01) 422 because of peculiar low contributions of o,p'-DDT (0.4 ± 0.2% versus 3.3 ± 1.9% in the other fish 423 species). These results show that the use of this ratio should be interpreted with caution and suggest 424 that species-specific parameters may also influence DDT isomeric profiles.

425 BFR profiles were dominated by BDE-209 (mean contribution of 38% of the 12 summed congeners 426 quantified in more than 50% of the samples) followed by BDE-47 (21%), BDE-155 (19%) and BDE-154 427 (14%). The other mostly-detected congeners (i.e. BDEs -28, -49, -66, -99, -100, 119, -126, -153) 428 contributed each to less than 10%, on average, to the summed 12 BDEs. As BDE-47 is generally 429 reported as the major PBDE congener in biota, the present PBDE profile is therefore atypical due to 430 the high contribution of BDE-209. The BDE-209 congener is usually reported as poorly bioaccumulable 431 in fish because of its very high log K_{ow} (12.1, Kelly et al., 2008), high molecular size and degradation 432 propensity via metabolism (Stapleton et al. 2004a, Roberts et al., 2011). Following our results, this 433 highly brominated congener has been previously identified at higher abundance (17% of Σ PBDEs) in 434 deep-sea organisms compared to those from the shelf (Romero-Romero et al., 2017). Although all fish 435 stomachs and intestines were emptied of major debris (after visual inspection) before analysis, it 436 cannot be ruled out that high BDE-209 concentrations were also due to non-ingested particles still 437 present in the digestive tracts. However, the presence of a high diversity of several high-brominated 438 congeners, as well as species-specific profiles, rather suggests BDE-209 bioaccumulation and 439 biotransformation, as detailed in section 3.3.4 below.

Another peculiar result was the high contribution of DBDPE, quantified in 76% of the samples at concentrations as high as 16.48 ng g⁻¹ dw in *Searsia koefoedi*. Similar to BDE-209, DBDPE is characterised by a very high log K_{ow} (11.1, Covaci et al. 2011) that should limit its bioaccumulation at

443 high levels in fish and generally leads to its biodilution in trophic webs (Tao et al., 2019). However, 444 unlike for BDE-209, no debromination of DBDPE has been reported in fish and its bioaccumulation 445 factor was reported to be 10 times higher than BDE-209's one (He et al., 2012), which would argue in 446 favour of its occurrence at higher levels than BDE-209. Similar to BDE-209, the DBDPE occurrence at 447 particularly high levels in some of the studied samples (i.e. Serrivomer beanii, Stomias boa, Aphanopus 448 carbo and Searsia koefoedi) could be the result of undigested particles in their digestive tracts. DBDPE 449 sources in the marine environment include plastics from electronic and electrical equipment wastes 450 (Stubbings et al., 2021). However, whether DBDPE found in some fish originated from its adsorption 451 on particulate matter or plastics, or plastics themselves (eventually extracted following whole fish 452 analyses) cannot be proven. In oceanic waters off the Californian coast (Monterey Bay, US), the highest 453 concentrations of microplastics have been reported between 200 m and 600 m (Choy et al., 2019), and 454 microplastics have been reported in the digestive tracts of mesopelagic fish feeding at these depths, 455 although at very different occurrence frequencies depending on locations (35% in Boerger et al., 2010; 456 9% in Davison and Asch, 2011; 11% in Lusher et al., 2016; 24% specifically in Myctophidae in Savoca et 457 al., 2020; 73% in Wieczorek et al., 2018). Among the various species studied by Wieczorek et al. (2018), 458 Serrivomer beanii and Lampanyctus macdonaldi were among those presenting the highest frequency 459 of plastic occurrence, while Serrivomer beanii and Myctophum punctatum were two species presenting 460 the highest number of plastic debris in their gut. Despite the digestive tracts of fish from our study 461 being emptied from visible material before analysis, the presence of small parts of food residues 462 (including those of plastic origin) that could have still be present in the digestive tracts (i.e. not 463 assimilated/absorbed into the organism's tissues) is not unrealistic. The fact that high variations were 464 sometimes found between replicates of the same species (as in Aphanopus carbo, with concentrations 465 of 81, 4762 and 7803 pg g⁻¹ dw in each of the three replicates made from individual fish, or in 466 *Xenodermichthys copei* with < LOQ, 148 and 1940 pg g⁻¹ dw in pooled samples) argues in favour of 467 undigested particles with a short-time and erratic occurrence rather than a long-term accumulation in 468 tissues. On the opposite hand, species such as Stomias boa showed high DBDPE concentrations in all

replicates (3075, 5963 and 7840 pg g⁻¹ dw, rsd = 43%), while others such as *Myctophum punctatum* or *Lampanyctus crocodilus* exhibited systematically lower concentrations (< LOQ, 42 and 193 pg g⁻¹ dw and 436, 682 and 938 pg g⁻¹ dw, respectively).

472 Interestingly, in our study, the highest DBDPE concentrations (in both dw and lw) were determined in 473 the longest fishes studied, i.e. Serrivomer beani (64.3 \pm 9.2 cm), Stomias boa (31.6 \pm 3.7 cm) and 474 Aphanopus carbo (61.7 ± 0.6 cm). These species are all characterised by elongate shapes and therefore 475 have potentially longer digestive tracts, which would lead to a higher retention potential in the gut. A 476 higher occurrence of microplastics in larger fish compared to smaller ones has previously been 477 observed in various freshwater species from a lake in Ontario, Canada (McIllwraith et al., 2021). 478 Despite its relatively smaller length (15 cm), Searsia koefoedi exhibited the highest concentration of all 479 species (16.48 ng g⁻¹ dw) but these results would need to be confirmed as only one pool of 3 individuals 480 was analysed. However, this result is consistent with this species' non-migratory behaviour (at least 481 towards epipelagic waters at night for feeding, but possible migrations deeper into the bathypelagic 482 zone; Novotny, 2018), as DBDPE has been shown to be high in deeper waters (Zhen et al., 2021). The 483 ratio between DBDPE and BDE-209 concentrations has been suggested as a useful tracer of sources 484 and processes, with a higher DBDPE/BDE-209 ratio being observed in deep waters compared to the 485 surface ones because of the higher affinity to fine particles and stability of DBDPE compared to BDE-486 209 (Zhen et al., 2021). However, using this ratio in biota has limitations and no correlation was found 487 between BDE-209 and DBDPE in our set of samples. Among the species reputed to undergo no DVM 488 (i.e., Arctozenus risso and Searsia koefoedi), only the latter one showed a high DBDPE/BDE-209 ratio 489 (16 versus 1.2 in Arctozenus risso). Indeed, this ratio was highly variable between species (median value 490 of 3.0 in all fish samples), ranging from 0.11 in Myctophum punctatum (the only species in which BDE-491 209 was higher than DBDPE) to 19 in Aphanopus carbo. Globally, our results highlight that mesopelagic 492 fish could, in addition to transferring very hydrophobic contaminants to higher trophic level organisms, 493 contribute to their transfer from surface waters to deeper waters and eventually to the bottom sea.

494

3.3.3. Chlorinated and brominated OC profiles and diagnostic ratios reveal species-specific

495

metabolic capacities

496 Because PCB bioaccumulation depends on their chlorine number and position, which both are source-497 and metabolism-related, PCB profiles can be examined by their number of Cl atoms and their structure-498 activity group (SAG) classification (Boon et al., 1997; Yunker et al., 2011). While the lower-chlorinated 499 congeners are associated with atmospheric transport and feeding at lower trophic levels, the heavier 500 congeners reflect continental inputs from rivers and prey of higher trophic levels. In our samples, 3-Cl 501 and 4-Cl showed higher contributions to the Σ PCBs in crustaceans compared to fish, which is 502 consistent with crustaceans' lower trophic levels (i.e. lower $\delta^{15}N$ values), although the difference was 503 significant only for the 3-Cl congeners ($10 \pm 5\%$ in crustaceans versus $4 \pm 5\%$ in fish, MW and KW tests). 504 However, inter-species differences were high when only fish were considered, and similar 505 contributions to those of crustaceans were found in some fish species such as Arctozenus risso, 506 Argyropelecus olfersii and Myctophum punctatum (Fig. 1A). These species are among those showing 507 the lowest δ^{15} N values among the studied fish species, but other species with low δ^{15} N values (such as 508 Serrivomer beanii or Xenodermichthys copei) did not show such a high 3-Cl contribution (Fig. 1A), 509 suggesting that the trophic level does not solely explain these results. Indeed, the lower chlorinated 510 congeners are also the most metabolisable ones (SAG III and IV), while the most refractory ones (6-,7-511 and 8-CI) belong to SAG I and II groups. No significant differences were observed between taxa 512 regarding SAG groups. The three crustacean species showed discrepancies in their PCB profiles, with 513 Sergia robusta being characterised by higher SAG I and II group contributions (72% in total) than the 514 other two species (52 ± 5%). Among fish species, Arctozenus risso, Argyropelecus olfersii and 515 Myctophum punctatum showed the highest SAG III and IV (metabolisable congeners) and the lowest 516 SAG I and II (refractory congeners) contributions. On the opposite hand, Serrivomer beanii, 517 Xenodermichthys copei, Aphanopus carbo, Lampanyctus crocodilus and Searsia koefoedi were 518 characterised by higher SAG I and II (6 to 8 Cl) contributions (Fig. 2). More specifically, the CB-149/CB-519 153 and CB-132/CB-153 concentration ratios, which could be used as metabolism tracers (i.e. a ratio

between hexachlorinated congeners from SAG IV and V and a typical refractory one from SAG I), showed higher values in *Arctozenus risso*, *Argyropelecus olfersii*, *Myctophum punctatum* and *Notoscopelus kroeyeri*, indicating a lower metabolic activity towards CB-149 and CB-132 in these species (Fig. 2).

524 The $(p,p'-DDE + p,p'-DDD)/\Sigma$ DDTs ratio was 0.85 ± 0.06 in all samples, which globally indicates old DDT 525 inputs (Suarez et al., 2013) and is consistent with the ban of DDT usage since the 1970s or 1980s in 526 most countries worldwide (Kalantzi et al., 2001). The p,p'-DDE isomer contribution was significantly 527 (MW and KS p < 0.1) higher in crustaceans and particularly high in *Pasiphaea sivado* replicates, which 528 was mainly due to p,p'-DDD and p,p'-DDT < LOQs in these samples. Some variations in p,p'-DDE 529 contributions were also observed between fish species (Fig. 1B). Among Myctophidae, both 530 Myctophum punctatum and Notoscopelus kroeyeri exhibited similar DDT profiles (p,p'-DDE and p,p'-531 DDD at 65 ± 5% and 12 ± 1%, respectively) and were different from those of the third Myctophid species 532 Lampanyctus crocodilus, in which higher p,p'-DDE (84 ± 2%) and lower p,p'-DDD (5 ± 1%) contributions 533 were found. These results could suggest a species-specific DDT profile due to different metabolic 534 capacities, which would be in line with the higher metabolic capacity of PCBs observed in Lampanyctus 535 crocodilus. In addition, Lampanyctus crocodilus was the leanest of the three studied Myctophid species 536 (by a factor of 4 to 5, Table 2), which could influence DDT isomer's relative bioaccumulation. Indeed, 537 in the studied fish species, p,p'-DDE contribution showed a significant decrease with increasing TLC (p 538 < 0.0001).

Regarding PBDE profiles (Fig. 1C), the nona-BDEs BDE-207 and BDE-208, the octa-BDEs BDE-202, BDE-205 and BDE-197 and the hepta-BDEs BDE 184 and BDE-183 were quantified in 18–48% of our samples, although at low levels (their total contribution was 6% of the sum of all congeners determined above LOQs). In addition, the hexa-BDEs BDE-155 and BDE-154, ranking third and fourth in our samples, have both been reported as debromination products of octa-BDEs (Stapleton et al., 2004b; Zeng et al., 2012). As the nona- to hexa-brominated congeners identified in our samples are not present in technical mixtures (La Guardia et al., 2006; Munschy et al., 2011), their occurrence might be explained 546 by either i) assimilation and further metabolisation by fish or ii) metabolisation by the prey and 547 bioaccumulation in fish via trophic transfer. Indeed, these congeners are among those (ranging from 548 nona- to tetra-BDEs) that have been reported in various fish species following BDE-209 metabolic 549 degradation (Roberts et al., 2011). BDE-154 could result from the debromination in the meta position 550 of BDE-183, while BDE-155 could result from successive debrominations in the meta positions of BDE-551 207, BDE-197 and BDE-184, which were all detected in our samples, although at low concentrations 552 compared to their debrominated counterparts. If these congeners originate from BDE-209 553 metabolism, their detection at concentrations above the LOQs reveals exposure of the studied species 554 to BDE-209. The high variability in PBDE profiles between species could therefore result from species-555 specific metabolism, as evidenced by various studies in fish (Roberts et al., 2011; Stapleton et al., 2006; 556 Yokota et al., 2021). The results suggest that BDE-183, BDE-197 and BDE-207 could be potential 557 intermediate debromination products of BDE-209 resulting in the formation of BDE-154, and that the 558 removal of Br atoms in the meta position was favoured. However, no significant relationship was found 559 between BDE-209 and either BDEs -183, -197 or -207 (although the latter two congeners showed low 560 detection frequencies), nor with BDE-154 or BDE-155. Interestingly, BDE-154 and BDE-155 were highly 561 correlated (n = 28, r = 0.96) in fish, which could reflect their common origin (i.e. BDE-209 562 biotransformation).

563 Specific ratios such as BDE-99/BDE-100 concentration ratios (BDE-99 being metabolised while BDE-100 564 is not, a low ratio is indicative of a high metabolic capacity towards BDE-99) or congener relative 565 contributions are commonly used to reveal metabolic capacities in fish (Koenig et al., 2013; Voorspoels 566 et al., 2003). In our samples, BDE-99/BDE-100 ratios were highly variable depending on species and 567 were highly consistent between replicate pools within the same species. The lowest ratios were 568 identified in Lampanyctus crocodilus (0.11 ± 0.03), while the highest were found in Argyropelecus 569 olfersii (1.56 ± 0.56). In Xenodermichthys copei, BDE-99 was below the LOQ in the three replicate pools, 570 suggesting high degradation of BDE-99 in this species. This ratio was not trophic level-dependent but 571 rather highly species-dependent (inter- and intra-family). Indeed, within the Myctophydae family, high variations were found, with both *Myctophum punctatum* and *Notoscopelus kroeyeri* showing high values $(1.36 \pm 0.23 \text{ and } 1.29 \pm 0.18$, respectively), while *Lampanyctus crocodilus* showed a mean ratio of 0.11 ± 0.03 (i.e. a higher metabolism). Concurrently, BDE-154's highest contributions were determined in *Lampanyctus crocodilus* (20 ± 6.2), indicating a higher degradation capacity in this species. Indeed, as BDE-154 could potentially originate from the debromination of higher-brominated congeners, its relative contribution would be indicative of the metabolic capacities of fish, with a high contribution being indicative of a higher degradation capacity into BDE-154.

579

3.3.4. Perfluorinated substances' molecular profiles are dominated by odd chain length

580

PFCAs

581 PFOS was the only PFSA detected in 100% of the samples, at concentrations ranging from 0.38 to 10.61 582 ng g⁻¹ dw (mean of 3.72 \pm 3.9615 ng g⁻¹ dw) in crustaceans and between 0.350 and 10.04 ng g⁻¹ dw 583 (mean of $3.00 \pm 2.22 \text{ ng g}^{-1} \text{ dw}$) in fish. PFDS was detected in 27% of the samples (crustaceans and fish) 584 at levels ranging from 0.04 to 0.09 ng g^{-1} dw (mean of 0.06 ± 0.02 ng g^{-1} dw). Among PFCAs, the long-585 chain PFCAs perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid 586 (PFUnDA), perfluorododecanoic acid (PFDoDA), perfluorotridecanoic acid (PFTrDA) and 587 perfluorotetradecanoic acid (PFTeDA) were detected in 100% of the samples, while perfluorooctanoic 588 acid (PFOA) was detected in 45% of the samples. Perfluoroheptanoic acid (PFHpA) was detected in only 589 four samples (Sergia robusta, Xenodermichthys copei and Searsia koefoedi) at a mean concentration 590 of 0.05 \pm 0.03 ng g⁻¹ dw. The mean concentrations of the most-detected PFCA ranged from 0.18 \pm 0.17 591 ng g⁻¹ dw (PFOA) to 4.40 \pm 4.51 ng g⁻¹ dw (PFTrDA). PFCA concentrations ranked in the order PFTrDA > 592 PFUnDA > PFNA = PFDA > PFTeDA > PFDoDA > PFOA, showing higher bioaccumulation with increasing 593 carbon chain length, which is consistent with their higher BAF (Houde et al., 2006; Martin et al., 2003; 594 Ng and Hungerbühler, 2014). In fish, all PFCA concentrations except PFOA's were: i) significantly inter-595 correlated and ii) correlated with PFOS concentrations but iii) not correlated to the other contaminant 596 families. This could reflect different sources and/or bioaccumulation processes. In most samples, 597 PFCAs were predominant compared to PFOS (by far the predominant PFSA) with a mean contribution

598 of 75 ± 12% (mean PFCAs/PFOS ratio = 5.4 considering all species), although some variations were 599 observed within taxon and species (Fig. 1D). PFCA contributions were significantly (p = 0.002) higher in 600 crustaceans (89 \pm 6%) than in fish (72 \pm 11%). The crustacean species *Ephyrina figueirai* showed a 601 peculiar high PFCA contribution (Σ PFCAs/PFOS ratio of 59) due to a low PFOS concentration (0.379 ng 602 g^{-1} dw), while its 5 PFCA concentration was similar to the ones determined in the other crustacean 603 species Pasiphae sivado. On the opposite hand, Chauliodus sloani (although only one sample was 604 analysed) was the only species with lower Σ PFCA concentrations than PFOS ones, with a Σ PFCAs/PFOS 605 ratio of 0.75, due to a particularly high PFOS contribution (57% of Σ PFASs). The Σ PFCA contribution 606 was also higher (87 ± 2%) in Serrivomer beanii, the fish species with the lowest $\delta^{15}N$ values and 607 comparable with the ratio determined in crustaceans.

608 The occurrence of the longer chain PFCAs (> C_8) in biota is commonly explained by their release in the 609 environment as impurities from fluorotelomer and C₉-based products (Wang et al., 2014) and their 610 subsequent higher bioaccumulation compared to the shorter chain ones (Houde et al., 2006; Conder 611 et al., 2008; Ng and Hungerbühler, 2014). Besides, PFCAs might also originate from the in vivo 612 biotransformation of precursors, which would increase their biomagnification in food webs (Gebbing 613 et al., 2016). Various experimental studies showed that when selected fluorotelomer alcohol (FTOH) 614 precursors were administrated to fish, PFOA, PFNA, PFDA and PFHpA were formed, although with low 615 yields (Brandsma et al., 2011; Butt et al., 2014). However, recent results showed that PFCAs could also 616 be formed by yet-unidentified precursor degradation (Simmonet-Laprade et al., 2019) and suggest that 617 direct exposure to PFCAs is not a predominant source to explain PFCA profiles in fish. The 618 predominance of the odd-numbered PFCAs PFTrDA (C13) and PFUnDA (C11) has been previously 619 reported in marine fish worldwide (Fujii et al., 2015, 2019; Munschy et al., 2020b; Schultes et al., 2020 620 and references therein) and explained by direct inputs from industrial releases (Gewurtz et al., 2013; 621 Simonnet-Laprade et al., 2019) and/or by the degradation of precursors (FTOHs), either in the 622 atmosphere, soil or organisms, followed by preferential accumulation of the longer chain length PFCAs 623 (i.e. $C_{11} > C_{10}$ and $C_{13} > C_{12}$). However, FTOH degradation leads to 10-times more abundant even chain 624 length PFCAs than odd chain length PFCAs (Franklin et al., 2016; Gebbink et al., 2016). In our samples, 625 the mean $(C_{11} + C_{13})/(C_{10} + C_{12})$ ratio was 4.2 ± 1.4, showing a higher occurrence of odd chain length 626 PFCAs in all species (no significant difference was observed between taxa). Washington et al. (2020) 627 used the $(C_{11} + C_{13})$ - $(C_{10} + C_{12})$ values to reveal PFAS sources in soils, allowing them to distinguish 628 between direct release (higher values) and fluorotelomer degradation. In biota, this parameter could 629 be influenced by in vivo degradation of precursors into PFCAs, which are not expected to further 630 degrade in organisms. This ratio could therefore give an integrated view of direct exposure and 631 subsequent bioaccumulation, combined with the effect of precursor biotransformation. Interestingly, 632 this ratio showed strong differences between i) the crustaceans and the fish species Serrivomer beanii 633 and Searsia koefoedi that show high values (14420 ± 3968) and ii) the other fish species that presented 634 lower values (3243 ± 2360). The higher $(C_{11} + C_{13}) - (C_{10} + C_{12})$ values suggest that these PFCAs were 635 less derived from precursors in crustaceans and the fish species Serrivomer beanii and Searsia koefoedi 636 than in the other fish species. This assumption would agree with species-specific precursor 637 biotransformation as already reported for PFOS in freshwater invertebrates and fish (Babut et al., 638 2017) and would suggest a lower precursor metabolism in these species.

- 639

640

food chain, while PFASs exhibit a contrasted behaviour

3.3.5. Most of the chlorinated and brominated OCs show biomagnification across the studied

641 Despite legacy POP concentrations in deep-sea organisms (mostly demersal or benthic) having been 642 reported in the literature, very few studies have examined their biomagnification in deep-sea food 643 webs (but see Cresson et al., 2016) and especially in the deep pelagic. In the present study, significant 644 linear relationships were found between PCB log-transformed concentrations in Iw and $\delta^{15}N$ values 645 (Table S6). However, CBs -18, -28 and -31 showed significant negative linear relationships with $\delta^{15}N$ 646 values, indicating their biodilution in the food web, while the higher chlorinated congeners (5 chlorine 647 atoms and above) showed significant positive linear relationships (Fig. 3A, Table S7). Among DDT 648 isomers, p,p'-DDE, p,p'-DDD and p,p'-DDT, but neither o,p'-DDT or o,p'-DDD, concentrations showed 649 significant positive linear relationships with δ^{15} N values, as well as dieldrin, endrin, HCB and mirex (Fig. 650 3A, Table S8). On the opposite hand, neither Σ HCHs nor individual isomers showed any significant 651 relationship. 5 PBDEs and individual congeners, except BDEs -28, -66, -77, and -183, showed significant 652 positive linear relationships with δ^{15} N values (Fig. 3B, Table S9). Among the alternative brominated 653 flame retardants, BB-153 showed significant positive linear relationships (p = 0.005), while HBB did 654 not. These results agree with the biomagnification of lipophilic compounds in marine pelagic food webs 655 reported previously, including in deep-sea ecosystems (Romero-Romero et al., 2017; Takahashi et al., 656 2010). Indeed, the congeners showing no significant relationship with $\delta^{15}N$ values are those with the 657 lowest reported trophic magnification factors (TMFs) (Walters et al., 2016). The lack of 658 biomagnification of the lower-chlorinated PCB congeners such as CBs -18, -28, -31, HCHs and HBB 659 might be related to their moderate hydrophobicity and potential elimination via respiration (Kelly et 660 al., 2007; Takahashi et al., 2010). Besides, low TMFs might also result from the compound 661 hydrophobicity and size, which limit their bioaccumulation (e.g. BDE-209). The limited extent of the 662 trophic level covered by the food web studied here (i.e. one theoretical trophic level if referring to the 663 average difference of 3.4‰ reported between two trophic levels, Post, 2002) might also have 664 restrained the possibility of detecting high contaminant biomagnification for lipophilic compounds 665 (Brandsma et al., 2015; Won et al., 2018).

Peculiar results were obtained for BDE-209 and DBDPE: both compounds are superhydophobic ones and their concentrations (in Iw) showed contrasting relationships with $\delta^{15}N$ values; while BDE-209 concentrations were not significantly related to $\delta^{15}N$ values, DBDPE exhibited biomagnification (Fig. 3B, Table S9), which could be due to its presence at high levels in *Stomias boa*, *Aphanopus carbo* and *Searsia koefoedi* (see section above).

Among PFASs, individual PFCAs showed a significant decrease with increasing δ^{15} N values when both crustaceans and fish were considered, while PFOS showed no significant trend. However, no significant trend was detected in fish only, whether individual PFCAs or PFOS were considered (Fig. 3C, Table S10), which shows that the significant relationship was due to the influence of the high concentrations observed in crustaceans. This lack of observed biomagnification for both PFOS and PFCAs in fish 676 contrasts with some previously reported results. Indeed, various PFASs, including PFOS and long-chain 677 PFCAs have been reported to biomagnify in marine trophic webs (Loi et al., 2011; Munoz et al., 2017; 678 Pan et al., 2021; Tomy et al., 2004), but some opposing results lacking evidence of long-chain PFCA 679 biomagnification have also been reported when only piscivore food webs were considered (Du et al., 680 2021; Kelly et al., 2009; Mazzoni et al., 2020; Miranda et al., 2021; Pan et al., 2021). This has partially 681 been explained by PFCA's high aqueous solubility (due to the carboxylate functional group) and 682 preferential distribution in blood, leading to their efficient respiratory elimination via blood-water 683 exchange in the gills (Kelly et al., 2009). Our results show the complexity of interpretation of PFAS 684 bioaccumulation along marine trophic webs in a given ecosystem, as the observed results could be 685 reflecting different accumulation and/or depuration processes depending on species and potential 686 metabolic capacities towards precursors.

687

3.3.6. PCBs and PBDEs exceed OSPAR BACs in the majority of samples

688 To identify marine regions of potential environmental concern, OSPAR (Oslo/Paris Convention for the 689 Protection of the Marine Environment of the North-East Atlantic) defined Background Assessment 690 Concentrations (BACs) for PCBs (OSPAR, 2017). BACs are used as thresholds to assess whether 691 concentrations are close to background levels. Although these values were initially defined in the 692 muscle of flatfish in coastal areas, a comparison was made with the present set of samples based on 693 the determination of concentrations in whole fish. All samples showed higher concentrations (by a 694 factor of 11-24 on average) than the corresponding BACs for CBs -138 (0.09 ng g⁻¹ ww), -153 (0.10 ng 695 g^{-1} ww) and -180 (0.11 ng g^{-1} ww), while CBs -52, -105 and -118 levels were above the BACs in 86% of 696 the samples (by a factor of 3, 2 and 5, respectively). CBs -28 and -156 were above BACs in 57% of the 697 samples (3 and 1.5 times respectively). Similarly, a BAC of 0.065 ng g⁻¹ lw was recommended for each 698 PBDE congener BDEs -28, -47, -66, -85, -99, -100, -126, -153, -154, -183 and -209 (OSPAR, 2021). The 699 BACs were exceeded for the predominant congeners BDEs -47, -9, -100 and -154 in more than 80% of 700 the samples (by 33, 7, 17 and 27 times, respectively), while BDEs -28, -66, -126, -153 and -209 BACs 701 were exceeded in 34% (by 1.4 times, on average), 44% (1.4 times), 44% (1.8 times), 63% (3 times) and

53% (100 times) of the samples, respectively. BDE-183 was barely above the BAC (3% of the sample by 1.6 times) and BDE-85 was never detected above the LOQ. In addition, Environmental Assessment Criteria (EACs, in Iw) defined as concentrations below which biological effects are unlikely to occur have also been established in fish. EACs were exceeded only for CB-118 (25 ng g⁻¹ lw) in 30% of the samples (*Lampanyctus crocodilus, Chauliodus sloani, Stomias boa* and *Aphanopus carbo*), in agreement with the OSPAR intermediate assessment conducted within the period 1995–2015 (OSPAR, 2017).

708 4. Conclusions and implications for higher trophic level consumers

709 The results obtained in the present study bring evidence of the contamination of deep-sea pelagic 710 organisms from the Bay of Biscay by both legacy POPs and substances of emerging concern, showing 711 that major organohalogen contaminant families (whether chlorinated, brominated or fluorinated) 712 reach meso- and bathypelagic ecosystems. Despite being regulated for decades, PCBs were the major 713 organic contaminant family in fish followed by OCPs, making chlorinated organic contaminants the 714 major contributors to the targeted halogenated ones. On the opposite hand, PBDEs contributed the 715 least to the contaminant load in both taxa. PFASs ranked third in fish while in crustaceans, PFAS and 716 chlorinated contaminant contributions were similar. The significant contribution of PFASs (and among 717 them the long-chain ones) to the load of organic contaminants in the studied deep-sea species, in 718 addition to the lack of data on a large number of emerging contaminants, emphasises the importance 719 of considering this family of compounds together with the legacy POPs in future studies.

Altogether, contaminant profiles and specific ratios suggest that the studied species exhibited metabolic capacities, especially towards PBDEs, and that the metabolic activity was highly speciesdependent. Selective bioaccumulation of the investigated OC families was evidenced and shown to be related to taxa and species, trophic parameters and potential metabolic capacities. While most chlorinated and brominated contaminants showed biomagnification along the studied trophic assemblage, most PFASs showed biodilution.

This high inter-species variability observed in terms of OC concentrations induce important
 consequences in terms of matter fluxes in oceanic ecosystems. Variability in species abundance will

728 have a direct impact on the total amount of the different OCs that will be spatially transferred in the 729 environment during vertical migration, as well as transfer to higher trophic level through food webs. 730 For example, in oceanic waters of the Bay of Biscay, the lipid-rich Myctophid species N. kroeyeri was 731 shown to largely dominate the diet of oceanic common dolphins (55% by mass of fresh reconstructed 732 diet, Pusineri et al., 2007) while the lean Alepocephalid X. copei is not consumed at all. At a similar 733 fresh mass of prey ingested, the consumption of N. kroeyeri thus represents a much higher intake of 734 PCBs, OCPs and PBDEs for common dolphins than if they consumed X. copei (1.8 to 2.6 higher on 735 average depending on OCs). On the other hand, N. kroeyeri provides 6 times less PFASs than X. copei 736 at equivalent fresh mass ingested. Finally, in the perspective of the developpement of fishing activities 737 targeting these mesopelagic ressources, our study pinpoints a potential issue regarding matter 738 transfers, considering an exploitation of a selection of species and given the high inter-species 739 variability in OC concentrations.

740 In conclusion, our results provide essential data for understanding and predicting some impacts of 741 anthropogenic activities on deep pelagic ecosystems, filling a gap regarding the need to increase 742 knowledge on the fate of human-induced organic contamination in the deep ocean. These original 743 results may also allow a better assessment of contaminant vertical transport and transfer to higher 744 trophic levels. In the actual context of climate change and global increase of human pressures, which 745 might affect contaminant cycle dynamics and increase chemical pressures, it appears crucial to better 746 monitor, characterise and understand chemicals' behaviour in offshore marine environments including 747 in the deep sea. To these ends, more efforts are still needed to further assess the impact of the 748 anthropogenic chemical contamination on deep-sea species and, ultimately, on ecosystem 749 functioning.

750 **Credit author statement**

Catherine Munschy: Conceptualisation, Investigation, Formal analysis, Writing - original draft, review
& editing. Jérôme Spitz: Conceptualisation, Funding acquisition, Sample acquisition, Writing - review &
editing. Nadège Bely: Data acquisition. Karine Héas-Moisan: Data acquisition. Nathalie Olivier: Data
acquisition. Charles Pollono: Data acquisition, Validation. Tiphaine Chouvelon: Conceptualisation,
Funding acquisition, Sample acquisition, Writing - review & editing.

756

757 Acknowledgements

The authors thank the crew of the Ifremer R/V Thalassa and all colleagues involved in the collection of samples at sea during EVHOE 2017 (https://doi.or g/10.17600/17002300). Claire Steinberg (Ifremer, BE, Master internship) is gratefully acknowledged for her help in preparing the samples, as well as Benoit Lebreton and Gaël Guillou from the "Plateforme de Spectrométrie Isotopique" of the LIENSs laboratory at La Rochelle (France) for their assistance during carbon and nitrogen stable isotope analyses. Finally, we thank Aourell Mauffret and Nathalie Wessel from the team of descriptor 8 of the Marine Strategy Framework Directive at Ifremer for their support during the study.

766

767 References

- 768 Anthony, J.A., Roby, D.D., Turco, K.R., 2000. Lipid content and energy density of forage fishes from
- the northern Gulf of Alaska. Journal of Experimental Marine Biology and Ecology 248, 53–78.
- 770 https://doi.org/10.1016/S0022-0981(00)00159-3
- 771 Armitage, J.M., MacLeod, M., Cousins, I.T., 2009. Modeling the Global Fate and Transport of
- Perfluorooctanoic Acid (PFOA) and Perfluorooctanoate (PFO) Emitted from Direct Sources Using a
- 773 Multispecies Mass Balance Model. Environ. Sci. Technol. 43, 1134–1140.
- 774 https://doi.org/10.1021/es802900n
- 775 Armitage, J.M., Arnot, J.A., Wania, F., Mackay, D., 2013. Development and evaluation of a
- 776 mechanistic bioconcentration model for ionogenic organic chemicals in fish. Environmental
- 777 Toxicology and Chemistry 32, 115–128. <u>https://doi.org/10.1002/etc.2020</u>
- 778 Babut, M., Labadie, P., Simonnet-Laprade, C., Munoz, G., Roger, M.-C., Ferrari, B.J.D., Budzinski, H.,
- 579 Sivade, E., 2017. Per- and poly-fluoroalkyl compounds in freshwater fish from the Rhône River:
- 780 Influence of fish size, diet, prey contamination and biotransformation. Science of The Total
- 781 Environment 605–606, 38–47. <u>https://doi.org/10.1016/j.scitotenv.2017.06.111</u>
- 782 Belcher, A., Saunders, R.A., Tarling, G.A., 2019. Respiration rates and active carbon flux of
- 783 mesopelagic fishes (Family Myctophidae) in the Scotia Sea, Southern Ocean. Marine Ecology
- 784 Progress Series 610, 149–162. <u>https://doi.org/10.3354/meps12861</u>
- 785 Bernal, A., Olivar, M.P., Maynou, F., Fernández de Puelles, M.L., 2015. Diet and feeding strategies of
- 786 mesopelagic fishes in the western Mediterranean. Progress in Oceanography 135, 1–17.
- 787 https://doi.org/10.1016/j.pocean.2015.03.005
- 788 Berntssen, M.H.G., Thoresen, L., Albrektsen, S., Grimaldo, E., Grimsmo, L., Whitaker, R.D., Sele, V.,
- 789 Wiech, M., 2021. Processing Mixed Mesopelagic Biomass from the North-East Atlantic into
- Aquafeed Resources; Implication for Food Safety. Foods 10, 1265.
- 791 https://doi.org/10.3390/foods10061265

- 792 Bianchi, D., Stock, C., Galbraith, E.D., Sarmiento, J.L., 2013. Diel vertical migration: Ecological controls
- and impacts on the biological pump in a one-dimensional ocean model. Global Biogeochemical
- 794 Cycles 27, 478–491. <u>https://doi.org/10.1002/gbc.20031</u>
- 795 Boerger, C.M., Lattin, G.L., Moore, S.L., Moore, C.J., 2010. Plastic ingestion by planktivorous fishes in
- the North Pacific Central Gyre. Marine Pollution Bulletin 60, 2275–2278.
- 797 https://doi.org/10.1016/j.marpolbul.2010.08.007
- Boon, J.P., Meer, J. van der, Allchin, C.R., Law, R.J., Klungsøyr, J., Leonards, P.E.G., Spliid, H., Storr-
- Hansen, E., Mckenzie, C., Wells, D.E., 1997. Concentration-Dependent Changes of PCB Patterns in
- 800 Fish-Eating Mammals: Structural Evidence for Induction of Cytochrome P450. Archives of
- 801 Environmental Contamination and Toxicology 33, 298–311.
- 802 <u>https://doi.org/10.1007/s002449900257</u>
- 803 Brandsma, S.H., Smithwick, M., Solomon, K., Small, J., de Boer, J., Muir, D.C.G., 2011. Dietary
- 804 exposure of rainbow trout to 8:2 and 10:2 fluorotelomer alcohols and
- 805 perfluorooctanesulfonamide: Uptake, transformation and elimination. Chemosphere 82, 253–258.
- 806 https://doi.org/10.1016/j.chemosphere.2010.09.050
- 807 Brandsma, S.H., Leonards, P.E.G., Leslie, H.A., de Boer, J., 2015. Tracing organophosphorus and
- 808 brominated flame retardants and plasticizers in an estuarine food web. Science of The Total
- 809 Environment 505, 22–31. <u>https://doi.org/10.1016/j.scitotenv.2014.08.072</u>
- 810 Butt, C.M., Muir, D.C.G., Mabury, S.A., 2014. Biotransformation pathways of fluorotelomer-based
- 811 polyfluoroalkyl substances: A review. Environmental Toxicology and Chemistry 33, 243–267.
- 812 <u>https://doi.org/10.1002/etc.2407</u>
- 813 Cargnelli, L.M., Gross, M.R., 1997. Notes: Fish Energetics: Larger Individuals Emerge from Winter in
- 814 Better Condition. Transactions of the American Fisheries Society 126, 153–156.
- 815 https://doi.org/10.1577/1548-8659(1997)126<0153:NFELIE>2.3.CO;2
- 816 Catul, V., Gauns, M., Karuppasamy, P.K., 2011. A review on mesopelagic fishes belonging to family
- 817 Myctophidae. Rev Fish Biol Fisheries 21, 339–354. <u>https://doi.org/10.1007/s11160-010-9176-4</u>

- 818 Chouvelon, T., Munschy, C., Bruzac, S., Caurant, F., Churlaud, C., Crochet, S., Guillou, G., Mauffret, A.,
- 819 Méndez-Fernandez, P., Niol, J., Sireau, T., Steinberg, C., Wessel, N., Spitz, J., 2022. High inter-
- 820 species variability in elemental composition of the twilight zone fauna varies implications for
- 821 predators and exploitation by humans. Environmental Research 204, 112379.
- 822 <u>https://doi.org/10.1016/j.envres.2021.112379</u>
- 823 Choy, C.A., Robison, B.H., Gagne, T.O., Erwin, B., Firl, E., Halden, R.U., Hamilton, J.A., Katija, K., Lisin,
- 824 S.E., Rolsky, C., S. Van Houtan, K., 2019. The vertical distribution and biological transport of
- 825 marine microplastics across the epipelagic and mesopelagic water column. Sci Rep 9, 7843.
- 826 https://doi.org/10.1038/s41598-019-44117-2
- 827 Conder, J.M., Hoke, R.A., De Wolf, W., Russell, M.H., Buck, R.C., 2008. Are PFCAs bioaccumulative? A
- 828 critical review and comparison with regulatory lipophilic compounds. Environ. Sci. Technol. 42,
- 829 995–1003. <u>https://doi.org/Doi 10.1021/Es070895g</u>
- Cousins, I.T., Ng, C.A., Wang, Z., Scheringer, M., 2019. Why is high persistence alone a major cause of
 concern? Environmental Science: Processes & Impacts 21, 781–792.
- 832 <u>https://doi.org/10.1039/C8EM00515J</u>
- 833 Covaci, A., Losada, S., Roosens, L., Vetter, W., Santos, F.J., Neels, H., Storelli, A., Storelli, M.M., 2008.
- 834 Anthropogenic and Naturally Occurring Organobrominated Compounds in Two Deep-Sea Fish
- 835 Species from the Mediterranean Sea. Environ. Sci. Technol. 42, 8654–8660. <u>https://doi.org/Doi</u>
- 836 <u>10.1021/Es8016528</u>
- 837 Covaci, A., Harrad, S., Abdallah, M.A.-E., Ali, N., Law, R.J., Herzke, D., de Wit, C.A., 2011. Novel
- brominated flame retardants: A review of their analysis, environmental fate and behaviour.
- 839 Environment International 37, 532–556. <u>https://doi.org/10.1016/j.envint.2010.11.007</u>
- 840 Cresson, P., Fabri, M.C., Miralles, F.M., Dufour, J.L., Elleboode, R., Sevin, K., Mahe, K., Bouchoucha,
- 841 M., 2016. Variability of PCB burden in 5 fish and sharks species of the French Mediterranean
- 842 continental slope. Environ. Pollut. 212, 374–381. <u>https://doi.org/10.1016/j.envpol.2016.01.044</u>

- 843 Cui, J., Yu, Z., Mi, M., He, L., Sha, Z., Yao, P., Fang, J., Sun, W., 2020. Occurrence of Halogenated
- 844 Organic Pollutants in Hadal Trenches of the Western Pacific Ocean. Environ. Sci. Technol. 54,
- 845 15821–15828. https://doi.org/10.1021/acs.est.0c04995
- B46 Dasgupta, S., Peng, X., Chen, S., Li, J., Du, M., Zhou, Y.H., Zhong, G., Xu, H., Ta, K., 2018. Toxic
- anthropogenic pollutants reach the deepest ocean on Earth. Geochem Perspect Let 7, 22–26.
- 848 https://doi.org/10.7185/geochemlet.1814
- B49 Davison, P., Asch, R., 2011. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical
- 850 Gyre. Mar. Ecol. Prog. Ser. 432, 173–180. <u>https://doi.org/10.3354/meps09142</u>
- B51 Du, D., Lu, Y., Zhou, Y., Li, Q., Zhang, M., Han, G., Cui, H., Jeppesen, E., 2021. Bioaccumulation, trophic
- transfer and biomagnification of perfluoroalkyl acids (PFAAs) in the marine food web of the South
- 853 China Sea. Journal of Hazardous Materials 405, 124681.
- 854 <u>https://doi.org/10.1016/j.jhazmat.2020.124681</u>
- 855 Eduardo, L.N., Bertrand, A., Mincarone, M.M., Martins, J.R., Frédou, T., Assunção, R.V., Lima, R.S.,
- 856 Ménard, F., Le Loc'h, F., Lucena-Frédou, F., 2021. Distribution, vertical migration, and trophic
- 857 ecology of lanternfishes (Myctophidae) in the Southwestern Tropical Atlantic. Progress in
- 858 Oceanography 199, 102695. <u>https://doi.org/10.1016/j.pocean.2021.102695</u>
- 859 Fanelli, E., Papiol, V., Cartes, J.E., Rodriguez-Romeu, O., 2014. Trophic ecology of Lampanyctus
- 860 crocodilus on north-west Mediterranean Sea slopes in relation to reproductive cycle and
- 861 environmental variables. Journal of Fish Biology 84, 1654–1688.
- 862 https://doi.org/10.1111/jfb.12378
- 863 Franklin, J., 2016. How reliable are field-derived biomagnification factors and trophic magnification
- factors as indicators of bioaccumulation potential? Conclusions from a case study on per- and
- 865 polyfluoroalkyl substances. Integrated Environmental Assessment and Management 12, 6–20.
- 866 https://doi.org/10.1002/ieam.1642
- 867 Froescheis, O., Looser, R., Cailliet, G.M., Jarman, W.M., Ballschmiter, K., 2000. The deep-sea as a final
- 868 global sink of semivolatile persistent organic pollutants? Part I: PCBs in surface and deep-sea

- dwelling fish of the North and South Atlantic and the Monterey Bay Canyon (California).
- 870 Chemosphere 40, 651–660. <u>https://doi.org/Doi 10.1016/S0045-6535(99)00461-0</u>
- 871 Fujii, Y., Sakurada, T., Harada, K.H., Koizumi, A., Kimura, O., Endo, T., Haraguchi, K., 2015. Long-chain
- 872 perfluoroalkyl carboxylic acids in Pacific cods from coastal areas in northern Japan: A major source
- of human dietary exposure. Environmental Pollution 199, 35–41.
- 874 https://doi.org/10.1016/j.envpol.2015.01.007
- 875 Fujii, Y., Tuda, H., Kato, Y., Kimura, O., Endo, T., Harada, K.H., Koizumi, A., Haraguchi, K., 2019. Levels
- and profiles of long-chain perfluoroalkyl carboxylic acids in Pacific cod from 14 sites in the North
- 877 Pacific Ocean. Environmental Pollution 247, 312–318.
- 878 <u>https://doi.org/10.1016/j.envpol.2019.01.006</u>
- 879 Gebbink, W.A., Bignert, A., Berger, U., 2016. Perfluoroalkyl Acids (PFAAs) and Selected Precursors in
- the Baltic Sea Environment: Do Precursors Play a Role in Food Web Accumulation of PFAAs?
- 881 Environ. Sci. Technol. 50, 6354–6362. <u>https://doi.org/10.1021/acs.est.6b01197</u>
- 882 Gewurtz, S.B., Backus, S.M., De Silva, A.O., Ahrens, L., Armellin, A., Evans, M., Fraser, S., Gledhill, M.,
- 883 Guerra, P., Harner, T., Helm, P.A., Hung, H., Khera, N., Kim, M.G., King, M., Lee, S.C., Letcher, R.J.,
- 884 Martin, P., Marvin, C., McGoldrick, D.J., Myers, A.L., Pelletier, M., Pomeroy, J., Reiner, E.J.,
- 885 Rondeau, M., Sauve, M.-C., Sekela, M., Shoeib, M., Smith, D.W., Smyth, S.A., Struger, J., Spry, D.,
- 886 Syrgiannis, J., Waltho, J., 2013. Perfluoroalkyl acids in the Canadian environment: Multi-media
- assessment of current status and trends. Environment International 59, 183–200.
- 888 https://doi.org/10.1016/j.envint.2013.05.008
- 889 Grimaldo, E., Grimsmo, L., Alvarez, P., Herrmann, B., Møen Tveit, G., Tiller, R., Slizyte, R., Aldanondo,
- 890 N., Guldberg, T., Toldnes, B., Carvajal, A., Schei, M., Selnes, M., 2020. Investigating the potential
- for a commercial fishery in the Northeast Atlantic utilizing mesopelagic species. ICES Journal of
- 892 Marine Science 77, 2541–2556. <u>https://doi.org/10.1093/icesjms/fsaa114</u>
- He, M.J., Luo, X.J., Chen, M.Y., Sun, Y.X., Chen, S.J., Mai, B.X., 2012. Bioaccumulation of
- polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a

highly industrialized area, South China. Sci. Total Environ. 419, 109–115. <u>https://doi.org/DOI</u>

896 <u>10.1016/j.scitotenv.2011.12.035</u>

- Houde, M., Martin, J.W., Letcher, R.J., Solomon, K.R., Muir, D.C.G., 2006. Biological monitoring of
- 898 polyfluoroalkyl substances: A review. Environ. Sci. Technol. 40, 3463–3473. <u>https://doi.org/Doi</u>
- 899 <u>10.1021/Es052580b</u>
- 900 Jamieson, A.J., Malkocs, T., Piertney, S.B., Fujii, T., Zhang, Z., 2017. Bioaccumulation of persistent
- 901 organic pollutants in the deepest ocean fauna. Nature Ecology & Evolution 1, 0051.
- 902 https://doi.org/10.1038/s41559-016-0051
- 903 Jones, K.C., 2021. Persistent Organic Pollutants (POPs) and Related Chemicals in the Global
- 904 Environment: Some Personal Reflections. Environ. Sci. Technol.
- 905 https://doi.org/10.1021/acs.est.0c08093
- 906 Kalantzi, O.I., Alcock, R.E., Johnston, P.A., Santillo, D., Stringer, R.L., Thomas, G.O., Jones, K.C., 2001.
- 907 The global distribution of PCBs and organochlorine pesticides in butter. Environ. Sci. Technol. 35,
- 908 1013–1018. <u>https://doi.org/Doi 10.1021/Es0002464</u>
- 909 Kelly, B.C., Ikonomou, M.G., Blair, J.D., Morin, A.E., Gobas, F.A.P.C., 2007. Food Web–Specific
- 910 Biomagnification of Persistent Organic Pollutants. Science.
- 911 https://doi.org/10.1126/science.1138275
- 912 Kelly, B.C., Ikonomou, M.G., Blair, J.D., Gobas, F.A.P.C., 2008. Hydroxylated and methoxylated
- 913 polybrominated diphenyl ethers in a Canadian Arctic marine food web. Environ. Sci. Technol. 42,
- 914 7069–7077. <u>https://doi.org/Doi 10.1021/Es801275d</u>
- 915 Kelly, B.C., Ikonomou, M.G., Blair, J.D., Surridge, B., Hoover, D., Grace, R., Gobas, F.A.P.C., 2009.
- 916 Perfluoroalkyl Contaminants in an Arctic Marine Food Web: Trophic Magnification and Wildlife
- 917 Exposure. Environ. Sci. Technol. 43, 4037–4043. <u>https://doi.org/10.1021/es9003894</u>
- 918 Koenig, S., Huertas, D., Fernandez, P., 2013. Legacy and emergent persistent organic pollutants
- 919 (POPs) in NW Mediterranean deep-sea organisms. Sci. Total Environ. 443, 358–366.
- 920 https://doi.org/DOI 10.1016/j.scitotenv.2012.10.111

- 921 La Guardia, M.J., Hale, R.C., Harvey, E., 2006. Detailed polybrominated diphenyl ether (PBDE)
- 922 congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant
- 923 mixtures. Environ. Sci. Technol. 40, 6247–6254. <u>https://doi.org/10.1021/es060630m</u>
- 924 Landrigan, P.J., Stegeman, J.J., Fleming, L.E., Allemand, D., Anderson, D.M., Backer, L.C., Brucker-
- 925 Davis, F., Chevalier, N., Corra, L., Czerucka, D., Bottein, M.Y.D., Demeneix, B., Depledge, M.,
- 926 Deheyn, D.D., Dorman, C.J., Fenichel, P., Fisher, S., Gaill, F., Galgani, F., Gaze, W.H., Giuliano, L.,
- 927 Grandjean, P., Hahn, M.E., Hamdoun, A., Hess, P., Judson, B., Laborde, A., McGlade, J., Mu, J.,
- 928 Mustapha, A., Neira, M., Noble, R.T., Pedrotti, M.L., Reddy, C., Rocklov, J., Scharler, U.M.,
- 929 Shanmugam, H., Taghian, G., van de Water, J., Vezzulli, L., Weihe, P., Zeka, A., Raps, H., Rampal, P.,
- 930 2020. Human Health and Ocean Pollution. Annals of Global Health 86, 64.
- 931 <u>https://doi.org/10.5334/aogh.2831</u>
- Li, Y.F., Macdonald, R.W., 2005. Sources and pathways of selected organochlorine pesticides to the
- 933 Arctic and the effect of pathway divergence on HCH trends in biota: a review. Science of The Total
- 934 Environment, Sources, Occurrence, Trends and Pathways of Contaminants in the Arctic 342, 87–
- 935 106. https://doi.org/10.1016/j.scitotenv.2004.12.027
- Loi, E.I.H., Yeung, L.W.Y., Taniyasu, S., Lam, P.K.S., Kannan, K., Yamashita, N., 2011. Trophic
- 937 Magnification of Poly- and Perfluorinated Compounds in a Subtropical Food Web. Environ. Sci.
- 938 Technol. 45, 5506–5513. https://doi.org/10.1021/es200432n
- Looser, R., Froescheis, O., Cailliet, G.M., Jarman, W.M., Ballschmiter, K., 2000. The deep-sea as a final
- 940 global sink of semivolatile persistent organic pollutants? Part II: organochlorine pesticides in
- 941 surface and deep-sea dwelling fish of the North and South Atlantic and the Monterey Bay Canyon
- 942 (California). Chemosphere 40, 661–670. <u>https://doi.org/Doi 10.1016/S0045-6535(99)00462-2</u>
- 943 Lusher, A.L., O'Donnell, C., Officer, R., O'Connor, I., 2016. Microplastic interactions with North
- 944 Atlantic mesopelagic fish. ICES Journal of Marine Science 73, 1214–1225.
- 945 https://doi.org/10.1093/icesjms/fsv241

- 946 Martin, A., Boyd, P., Buesseler, K., Cetinic, I., Claustre, H., Giering, S., Henson, S., Irigoien, X., Kriest, I.,
- 947 Memery, L., Robinson, C., Saba, G., Sanders, R., Siegel, D., Villa, M., Guidi, L., 2020. Study the
- 948 twilight zone before it is too late. Nature, 580, 26-28.
- 949 Mazzoni, M., Ferrario, C., Bettinetti, R., Piscia, R., Cicala, D., Volta, P., Borga, K., Valsecchi, S.,
- 950 Polesello, S., 2020. Trophic Magnification of Legacy (PCB, DDT and Hg) and Emerging Pollutants
- 951 (PFAS) in the Fish Community of a Small Protected Southern Alpine Lake (Lake Mergozzo,
- 952 Northern Italy). Water-Sui 12. <u>https://doi.org/ARTN 1591 10.3390/w12061591</u>
- 953 McIlwraith, H.K., Kim, J., Helm, P., Bhavsar, S.P., Metzger, J.S., Rochman, C.M., 2021. Evidence of
- 954 Microplastic Translocation in Wild-Caught Fish and Implications for Microplastic Accumulation
- 955 Dynamics in Food Webs. Environ. Sci. Technol. 55, 12372–12382.
- 956 https://doi.org/10.1021/acs.est.1c02922
- 957 Miranda, D. de A., Leonel, J., Benskin, J.P., Johansson, J., Hatje, V., 2021. Perfluoroalkyl Substances in
- 958 the Western Tropical Atlantic Ocean. Environ. Sci. Technol. 55, 13749–13758.
- 959 <u>https://doi.org/10.1021/acs.est.1c01794</u>
- 960 Mormede, S., Davies, I.M., 2003. Horizontal and vertical distribution of organic contaminants in deep-
- 961 sea fish species. Chemosphere 50, 563–574. <u>https://doi.org/10.1016/S0045-6535(02)00493-9</u>
- 962 Munoz, G., Budzinski, H., Babut, M., Drouineau, H., Lauzent, M., Menach, K.L., Lobry, J., Selleslagh, J.,
- 963 Simonnet-Laprade, C., Labadie, P., 2017. Evidence for the Trophic Transfer of Perfluoroalkylated
- 964 Substances in a Temperate Macrotidal Estuary. Environ. Sci. Technol. 51, 8450–8459.
- 965 https://doi.org/10.1021/acs.est.7b02399
- 966 Munschy, C., Heas-Moisan, K., Tixier, C., Boulesteix, L., Morin, J., 2011. Classic and novel brominated
- 967 flame retardants (BFRs) in common sole (*Solea solea* L.) from main nursery zones along the French
- 968 coasts. Sci. Total Environ. 409, 4618–4627. <u>https://doi.org/DOI 10.1016/j.scitotenv.2011.07.021</u>
- 969 Munschy, C., Bely, N., Héas-Moisan, K., Olivier, N., Pollono, C., Hollanda, S., Bodin, N., 2020a. Tissue-
- 970 specific bioaccumulation of a wide range of legacy and emerging persistent organic contaminants

- 971 in swordfish (Xiphias gladius) from Seychelles, Western Indian Ocean. Marine Pollution Bulletin
- 972 158, 111436. <u>https://doi.org/10.1016/j.marpolbul.2020.111436</u>
- 973 Munschy, C., Vigneau, E., Bely, N., Héas-Moisan, K., Olivier, N., Pollono, C., Hollanda, S., Bodin, N.,
- 974 2020b. Legacy and emerging organic contaminants: Levels and profiles in top predator fish from
- 975 the western Indian Ocean in relation to their trophic ecology. Environmental Research 188,
- 976 109761. <u>https://doi.org/10.1016/j.envres.2020.109761</u>
- 977 Ng, C.A., Hungerbühler, K., 2013. Bioconcentration of Perfluorinated Alkyl Acids: How Important Is
- 978 Specific Binding? Environ. Sci. Technol. 47, 7214–7223. <u>https://doi.org/10.1021/es400981a</u>
- 979 Ng, C.A., Hungerbühler, K., 2014. Bioaccumulation of Perfluorinated Alkyl Acids: Observations and
- 980 Models. Environ. Sci. Technol. 48, 4637–4648. <u>https://doi.org/10.1021/es404008g</u>
- 981 Noël P., 2015. La sivade blanche *Pasiphaea sivado* (Risso, 1816). In Muséum national d'Histoire
- 982 naturelle [Ed.], 25 avril 2015. Inventaire national du Patrimoine nature l, pp. 1-8 ;
- 983 http://inpn.mnhn.fr
- 984 Novotny, M., 2018. The Assemblage Structure and Trophic Ecology of a Deep-Pelagic Fish Family
- 985 (Platytroctidae) in the Gulf of Mexico. https://nsuworks.nova.edu/occ_stuetd/486
- 986 OSPAR, 2017. https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-
- 987 2017/pressures-human-activities/contaminants/pcb-fish-shellfish/
- 988 OSPAR, 2021. Background document on Background Assessment Concentrations (BAC) for
- 989 Polybrominated Diphenyl Ethers (PBDE) in fish and shellfish. 796/2021.
- Pan, C.-G., Xiao, S.-K., Yu, K.-F., Wu, Q., Wang, Y.-H., 2021. Legacy and alternative per- and
- 991 polyfluoroalkyl substances in a subtropical marine food web from the Beibu Gulf, South China:
- 992 Fate, trophic transfer and health risk assessment. Journal of Hazardous Materials 403.
- 993 https://doi.org/10.1016/j.jhazmat.2020.123618
- 994 Post, D.M., 2002. Using Stable Isotopes to Estimate Trophic Position: Models, Methods, and
- 995 Assumptions. Ecology 83, 703–718. <u>https://doi.org/10.1890/0012-</u>
- 996 <u>9658(2002)083[0703:USITET]2.0.CO;2</u>

- 997 Pusineri, C., Magnin, V., Meynier, L., Spitz, J., Hassani, S., Ridoux, V., 2007. Food and Feeding Ecology
- 998 of the Common Dolphin (*Delphinus delphis*) in the Oceanic Northeast Atlantic and Comparison with
- 999 Its Diet in Neritic Areas. Marine Mammal Science 23, 30–47. https://doi.org/10.1111/j.1748-

1000 <u>7692.2006.00088.x</u>

- 1001 Ramu, K., Kajiwara, N., Mochizuki, H., Miyasaka, H., Asante, K.A., Takahashi, S., Ota, S., Yeh, H.-M.,
- 1002 Nishida, S., Tanabe, S., 2006. Occurrence of organochlorine pesticides, polychlorinated biphenyls
- 1003 and polybrominated diphenyl ethers in deep-sea fishes from the Sulu Sea. Marine Pollution
- 1004 Bulletin 52, 1827–1832. <u>https://doi.org/10.1016/j.marpolbul.2006.09.013</u>
- 1005 Roberts, S.C., Noyes, P.D., Gallagher, E.P., Stapleton, H.M., 2011. Species-Specific Differences and
- 1006 Structure-Activity Relationships in the Debromination of PBDE Congeners in Three Fish Species.
- 1007 Environ. Sci. Technol. 45, 1999–2005. <u>https://doi.org/Doi 10.1021/Es103934x</u>
- 1008 Rogers, A.D., 2015. Environmental Change in the Deep Ocean. Annual Review of Environment and
- 1009 Resources 40, 1–38. https://doi.org/10.1146/annurev-environ-102014-021415
- 1010 Romero-Romero, S., Herrero, L., Fernández, M., Gómara, B., Acuña, J.L., 2017. Biomagnification of
- 1011 persistent organic pollutants in a deep-sea, temperate food web. Sci. Total Environ. 605–606,
- 1012 589–597. <u>https://doi.org/10.1016/j.scitotenv.2017.06.148</u>
- 1013 Salvadó, J.A., Grimalt, J.O., López, J.F., Palanques, A., Canals, M., 2019. Influence of deep water
- 1014 formation by open-sea convection on the transport of low hydrophobicity organic pollutants in
- 1015 the NW Mediterranean Sea. Science of The Total Environment 647, 597–605.
- 1016 https://doi.org/10.1016/j.scitotenv.2018.07.458
- 1017 Sanchez-Vidal, A., Llorca, M., Farré, M., Canals, M., Barceló, D., Puig, P., Calafat, A., 2015. Delivery of
- 1018 unprecedented amounts of perfluoroalkyl substances towards the deep-sea. Science of The Total
- 1019 Environment 526, 41–48. <u>https://doi.org/10.1016/j.scitotenv.2015.04.080</u>
- 1020 Sanganyado, E., Chingono, K.E., Gwenzi, W., Chaukura, N., Liu, W., 2021. Organic pollutants in deep
- sea: Occurrence, fate, and ecological implications. Water Research 205, 117658.
- 1022 <u>https://doi.org/10.1016/j.watres.2021.117658</u>

- 1023 Santos, A.R., Trueman, C., Connolly, P., Rogan, E., 2013. Trophic ecology of black scabbardfish,
- 1024 Aphanopus carbo in the NE Atlantic—Assessment through stomach content and stable isotope
- analyses. Deep Sea Research Part I: Oceanographic Research Papers 77, 1–10.

1026 https://doi.org/10.1016/j.dsr.2013.02.009

- 1027 Savoca, M.S., McInturf, A.G., Hazen, E.L., 2021. Plastic ingestion by marine fish is widespread and
- 1028 increasing. Global Change Biol n/a. https://doi.org/10.1111/gcb.15533
- 1029 Schultes, L., Sandblom, O., Broeg, K., Bignert, A., Benskin, J.P., 2020. Temporal Trends (1981-2013) of
- 1030 Per- and Polyfluoroalkyl Substances and Total Fluorine in Baltic cod (Gadus morhua). Environ.
- 1031 Toxicol. Chem. 39, 300–309. <u>https://doi.org/10.1002/etc.4615</u>
- 1032 Şen Özdemir, N., Parrish, C.C., Parzanini, C., Mercier, A., 2019. Neutral and polar lipid fatty acids in
- 1033 five families of demersal and pelagic fish from the deep Northwest Atlantic. ICES Journal of
- 1034 Marine Science 76, 1807–1815. <u>https://doi.org/10.1093/icesjms/fsz054</u>
- 1035 Simmonet-Laprade, C., Budzinski, H., Babut, M., Le Menach, K., Munoz, G., Lauzent, M., Ferrari,
- 1036 B.J.D., Labadie, P., 2019. Investigation of the spatial variability of poly- and perfluoroalkyl
- substance trophic magnification in selected riverine ecosystems. Sci. Total Environ. 686, 393–401.
- 1038 <u>https://doi.org/10.1016/j.scitotenv.2019.05.461</u>
- 1039 Spitz, J., Mourocq, E., Schoen, V., and Ridoux, V. 2010. Proximate composition and energy content of
- 1040 forage species from the Bay of Biscay: high- or low-quality food? ICES Journal of Marine Science,
- 1041 67: 909–915.
- 1042 Stapleton, H.M., Alaee, M., Letcher, R.J., Baker, J.E., 2004a. Debromination of the Flame Retardant
- 1043 Decabromodiphenyl Ether by Juvenile Carp (*Cyprinus carpio*) following Dietary Exposure. Environ.
- 1044 Sci. Technol. 38, 112–119. <u>https://doi.org/10.1021/es034746j</u>
- 1045 Stapleton, H.M., Letcher, R.J., Baker, J.E., 2004b. Debromination of polybrominated diphenyl ether
- 1046 congeners BDE 99 and BDE 183 in the intestinal tract of the common carp (*Cyprinus carpio*).
- 1047 Environ. Sci. Technol. 38, 1054–1061. <u>https://doi.org/Doi 10.1021/Es0348804</u>

- 1048 Stapleton, H., 2006. In Vivo and In Vitro Debromination of Decabromodiphenyl Ether (BDE 209) by
- 1049 Juvenile Rainbow Trout and Common Carp. Environ. Sci. Technol.
- 1050 Stemmler, I., Lammel, G., 2013. Evidence of the return of past pollution in the ocean: A model study.
- 1051 Geophysical Research Letters 40, 1373–1378. <u>https://doi.org/10.1002/grl.50248</u>
- 1052 Storelli, M.M., Losada, S., Marcotrigiano, G.O., Roosens, L., Barone, G., Neels, H., Covaci, A., 2009.
- 1053 Polychlorinated biphenyl and organochlorine pesticide contamination signatures in deep-sea fish
- 1054 from the Mediterranean Sea. Environ Res 109, 851–856.
- 1055 <u>https://doi.org/10.1016/j.envres.2009.07.008</u>
- 1056 Stubbings, W.A., Abdallah, M.A.-E., Misiuta, K., Onwuamaegbu, U., Holland, J., Smith, L., Parkinson,
- 1057 C., McKinlay, R., Harrad, S., 2021. Assessment of brominated flame retardants in a small mixed
- 1058 waste electronic and electrical equipment (WEEE) plastic recycling stream in the UK. Science of
- 1059 The Total Environment 780, 146543. <u>https://doi.org/10.1016/j.scitotenv.2021.146543</u>
- 1060 Suárez, P., Ruiz, Y., Alonso, A., San Juan, F., 2013. Organochlorine compounds in mussels cultured in
- 1061 the Ría of Vigo: Accumulation and origin. Chemosphere 90, 7–19.
- 1062 https://doi.org/10.1016/j.chemosphere.2012.02.030
- 1063 Takahashi, S., Tanabe, S., Kawaguchi, K., 2000. Organochlorine and butyltin residues in mesopelagic
- 1064 myctophid fishes from the western North Pacific. Environ. Sci. Technol. 34, 5129–5136.
- 1065 <u>https://doi.org/10.1021/es991446m</u>
- 1066 Takahashi, S., Oshihoi, T., Ramu, K., Isobe, T., Ohmori, K., Kubodera, T., Tanabe, S., 2010.
- 1067 Organohalogen compounds in deep-sea fishes from the western North Pacific, off-Tohoku, Japan:
- 1068 Contamination status and bioaccumulation profiles. Mar. Pollut. Bull. 60, 187–196.
- 1069 <u>https://doi.org/DOI 10.1016/j.marpolbul.2009.09.027</u>
- 1070 Tao, L., Zhang, Y., Wu, J.-P., Wu, S.-K., Liu, Y., Zeng, Y.-H., Luo, X.-J., Mai, B.-X., 2019. Biomagnification
- 1071 of PBDEs and alternative brominated flame retardants in a predatory fish: Using fatty acid
- signature as a primer. Environment International 127, 226–232.
- 1073 <u>https://doi.org/10.1016/j.envint.2019.03.036</u>

- 1074 Tomy, G.T., Budakowski, W., Halldorson, T., Helm, P.A., Stern, G.A., Friesen, K., Pepper, K., Tittlemier,
- 1075 S.A., Fisk, A.T., 2004. Fluorinated organic compounds in an eastern Arctic marine food web.
- 1076 Environ. Sci. Technol. 38, 6475–6481. <u>https://doi.org/Doi 10.1021/Es049620g</u>
- 1077 Tornero, V., Hanke, G., 2016. Chemical contaminants entering the marine environment from sea-
- 1078 based sources: A review with a focus on European seas. Marine Pollution Bulletin 112, 17–38.
- 1079 https://doi.org/10.1016/j.marpolbul.2016.06.091
- 1080 Valinassab, T., Pierce, G.J., Johannesson, K., 2007. Lantern fish (Benthosema pterotum) resources as a
- target for commercial exploitation in the Oman Sea. J Appl Ichthyol 23, 573–577.
- 1082 https://doi.org/10.1111/j.1439-0426.2007.01034.x
- 1083 Voorspoels, S., Covaci, A., Schepens, P., 2003. Polybrominated diphenyl ethers in marine species from
- 1084 the Belgian North Sea and the Western Scheidt Estuary: Levels, profiles, and distribution. Environ.
- 1085 Sci. Technol. 37, 4348–4357. <u>https://doi.org/Doi 10.1021/Es034503r</u>
- 1086 Walters, D.M., Jardine, T.D., Cade, B.S., Kidd, K.A., Muir, D.C.G., Leipzig-Scott, P., 2016. Trophic
- 1087 Magnification of Organic Chemicals: A Global Synthesis. Environ. Sci. Technol. 50, 4650–4658.
- 1088 https://doi.org/10.1021/acs.est.6b00201
- 1089 Wang, Z., Cousins, I.T., Sheringer, M., Buck, R.C., Hungerbühler, K., 2014. Global emission inventories
- 1090 for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I:
- 1091 production and emissions from quantifiable sources. Environment International 70, 62-75. doi:
- 1092 http://dx.doi.org/10.1016/j.envint.2014.04.013.
- 1093 Washington, J.W., Rosal, C.G., McCord, J.P., Strynar, M.J., Lindstrom, A.B., Bergman, E.L., Goodrow,
- 1094 S.M., Tadesse, H.K., Pilant, A.N., Washington, B.J., Davis, M.J., Stuart, B.G., Jenkins, T.M., 2020.
- 1095 Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey
- 1096 soils. Science 368, 1103–1107. https://doi.org/10.1126/science.aba7127
- 1097 Webster, L., Russell, M., Walsham, P., Hussy, I., Lacaze, J.P., Phillips, L., Dalgarno, E., Packer, G., Neat,
- 1098 F., Moffat, C.F., 2014. Halogenated persistent organic pollutants in relation to trophic level in
- 1099 deep sea fish. Mar. Pollut. Bull. 88, 14–27. <u>https://doi.org/10.1016/j.marpolbul.2014.09.034</u>

- 1100 Wiech, M., Silva, M., Meier, S., Tibon, J., Berntssen, M.H.G., Duinker, A., Sanden, M., 2020.
- 1101 Undesirables in Mesopelagic Species and Implications for Food and Feed Safety—Insights from
- 1102 Norwegian Fjords. Foods 9, 1162. https://doi.org/10.3390/foods9091162
- 1103 Wieczorek, A.M., Morrison, L., Croot, P.L., Allcock, A.L., MacLoughlin, E., Savard, O., Brownlow, H.,
- 1104 Doyle, T.K., 2018. Frequency of microplastics in mesopelagic fishes from the Northwest Atlantic.
- 1105 Frontiers in marine science 5. <u>https://doi.org/10.3389/fmars.2018.00039</u>
- 1106 Won, E.-J., Choi, B., Hong, S., Khim, J.S., Shin, K.-H., 2018. Importance of accurate trophic level
- 1107 determination by nitrogen isotope of amino acids for trophic magnification studies: A review.
- 1108 Environmental Pollution 238, 677–690. <u>https://doi.org/10.1016/j.envpol.2018.03.045</u>
- 1109 Xie, J., Bian, Z., Lin, T., Tao, L., Wu, Q., Chu, M., 2020. Global occurrence, bioaccumulation factors and
- 1110 toxic effects of polychlorinated biphenyls in tuna: A review. Emerging Contaminants 6, 388–395.
- 1111 https://doi.org/10.1016/j.emcon.2020.11.003
- 1112 Yamashita, N., Taniyasu, S., Petrick, G., Wei, S., Gamo, T., Lam, P.K.S., Kannan, K., 2008.
- 1113 Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere
- 1114 70, 1247–1255. <u>https://doi.org/DOI 10.1016/j.chemosphere.2007.07.079</u>
- 1115 Yokota, K., Matsuzawa, Y., Fukuda, S., Takada, H., Mizukawa, K., 2021. Species-specific debromination
- of BDE99 in teleost fish: The relationship between debromination ability and bioaccumulation
- 1117 patterns of PBDEs. Science of The Total Environment 151265.
- 1118 https://doi.org/10.1016/j.scitotenv.2021.151265
- 1119 Yunker, M.B., Ikonomou, M.G., Sather, P.J., Friesen, E.N., Higgs, D.A., Dubetz, C., 2011. Development
- and Validation of Protocols To Differentiate PCB Patterns between Farmed and Wild Salmon.
- 1121 Environ. Sci. Technol. 45, 2107–2115. <u>https://doi.org/10.1021/es1038529</u>
- 1122 Zeng, Y.-H., Luo, X.-J., Chen, H.-S., Yu, L.-H., Chen, S.-J., Mai, B.-X., 2012. Gastrointestinal absorption,
- 1123 metabolic debromination, and hydroxylation of three commercial polybrominated diphenyl ether
- mixtures by common carp. Environmental Toxicology and Chemistry 31, 731–738.
- 1125 <u>https://doi.org/10.1002/etc.1716</u>

- 1126 Zhang, X., Lohmann, R., Sunderland, E.M., 2019. Poly- and Perfluoroalkyl Substances in Seawater and
- 1127 Plankton from the Northwestern Atlantic Margin. Environ. Sci. Technol. 53, 12348–12356.
- 1128 https://doi.org/10.1021/acs.est.9b03230
- 1129 Zhen, X., Li, Y., Tang, J., Wang, X., Liu, L., Zhong, M., Tian, C., 2021. Decabromodiphenyl Ether versus
- 1130 Decabromodiphenyl Ethane: Source, Fate, and Influencing Factors in a Coastal Sea Nearing Source
- 1131 Region. Environ. Sci. Technol. 55, 7376–7385. <u>https://doi.org/10.1021/acs.est.0c08528</u>

Fig. 1. Relative contributions (% of the summed compounds) of (A) individual PCBs (presented per number of chlorine atoms), (B) DDTs (5 isomers, DDDs in green, DDTs in red/orange), (C) PBDEs (12 congeners, tri-, tetra, penta-, hexa- and deca-Br congeners are presented in blue, green, orange, purple and brown, respectively) and (D) PFASs (odd-chain PFCAs in green, even-chain PFCAs in orange) in deep pelagic crustacean and fish species collected in the Bay of Biscay in October 2017. Species names according to Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Projection of the principal component analysis conducted on normalised profiles of PCBs categorized according to their SAG group in deep <u>pelagic fish</u> species collected in the Bay of Biscay in October 2017. Projection of variables (A) and individuals (B) on the first two principal components are presented. CB-149/CB-153 and CB-132/CB-153 were used as supplementary variables. Species abbreviations Ac = Aphanopus carbo, Ao = Argyropelecus olfersii, Ar = Arctozenus risso, Cs = Chauliodus sloani, Lc = Lampanyctus crocodilus, Mp = Myctophum punctatum, Nk = Notoscopelus kroeyeri, Sb = Serrivomer beanii, Sbo = Stomias boa, Sk = Searsia koefoedi, Xc = Xenodermichthys copei.

Fig. 3. Relationships between <u>organic contaminant</u> concentrations and $\delta^{15}N$ values (‰) in crustaceans (black dots) and fish (white dots) collected in deep pelagic waters of the Bay of Biscay in October 2017. Concentrations of organochlorinated compounds (A) and organobrominated compounds (B) were log-transformed and expressed in ng g⁻¹ lw and pg g⁻¹ lw respectively; PFAS concentrations (C) were log-transformed and expressed in ng g⁻¹ dw. Significant relationships are indicated by dashed lines when significant for crustaceans and fish together (and for fish alone as well), by continuous lines when significant for fish only, by dotted lines when significant for crustaceans and fish only (i.e. not for fish alone). General linear model statistical parameters are given in Tables S7–S10.

