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Abstract :   
 
Pelagic fauna is expected to be impacted under climate change according to ecosystem simulations. 
However, the direction and magnitude of the impact is still uncertain and still not corroborated by 
observation-based statistical studies. Here we compile a global underwater sonar database and 20 ocean 
climate projections to predict the future distribution of sound-scattering fauna around the world’s oceans. 
We show that global pelagic fauna will be seriously compromised by the end of the twenty-first century if 
we continue under the current greenhouse emission scenario. Low and mid latitudes are expected to lose 
from 3% to 22% of animal biomass due to the expansion of low-productive systems, while higher latitudes 
would be populated by present-day temperate fauna, supporting results from ecosystem simulations. We 
further show that strong mitigation measures to contain global warming below 2 °C would reduce these 
impacts to less than half. 
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The pelagic zone—the vast volume of open-ocean water from the surface to the seabed—is the largest 26 

living space of the planet. This three-dimensional environment holds half of the global primary production 27 

and sustains most of the animal biomass on earth1,2. Dominated by small crustaceans, fish, molluscs and a 28 

variety of gelatinous life-forms, this mid-trophic level community channels primary production to the top 29 

of the food web3, being the fundamental forage base for apex predators such as marine mammals, seabirds, 30 

and major commercial fish stocks4,5. In addition, a substantial proportion of mid-trophic level fauna is 31 

involved in diel vertical migration6, the largest movement of animals on earth7, and a fundamental pathway 32 

of biomass exchange between epipelagic (0-200 m) and mesopelagic (200-1000 m) waters8,9. By respiring, 33 

defecating, and occasionally being predated at depth, vertical migrants inject large amounts of carbon into 34 

the ocean interior, contributing to the sequestration of atmospheric CO210–12.  35 

Projections of ocean warming, deoxygenation and primary production declines in response to climate 36 

change13,14 have led to concerns about the future evolution of mid-trophic level fauna. This fostered the 37 

emergence of global marine ecosystem models that include this critical component in their simulations15. 38 

These models, forced by future physical and biogeochemical oceanic model outputs, are used to simulate 39 

marine ecosystems, from primary producers to top predators. Overall, ecosystem models project a global 40 

decline of animal biomass by the end of the 21st century, primarily driven by increasing temperature and 41 

decreasing primary production16–19. However, because of their complex design and diverse representation 42 

of ecological processes15, these models still project a wide range of directional changes at regional scale, 43 

even within the same climate simulation experiment20. Most importantly, ecosystems models lack ground 44 

truth validation of mid-trophic level fauna at global-scale. 45 

Primary producers and other plankton components can be remotely sensed from space or continuously 46 

sampled from moorings and ships of opportunity21,22, however, research on mid-trophic level fauna requires 47 

large sampling nets and complex deep water operations23,24. As a result, knowledge on its distribution, 48 

diversity, and response to environmental factors has long been limited to regional research or to global 49 

reviews based on variable methodological approaches25,26. Observations with ship-borne acoustic 50 

echosounders are an alternative approach that, while not taxonomically precise, provide consistent and 51 

large-scale data on predominantly mid-trophic level fauna from pelagic ecosystems27,28. These observations 52 

are increasingly available over large ocean regions29,30 and have recently permitted to revise estimates of 53 

global mesopelagic fish biomass31 as well as to describe sound-scattering and migration in major ocean 54 

basins32,33. Linear statistical modelling between environmental drivers and the intensity of sound-scattering 55 

layers also allowed for an assessment of future mesopelagic fish biomass in response to climate change34. 56 

This study indicates that ocean warming and decreased primary production is expected to cause an increase 57 

of fish biomass by the end of the 21st century34, in contradiction with projections from all ecosystem models 58 
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forced under comparable climate scenarios16–19. Such discrepancies between statistical and mechanistic 59 

modelling illustrate that there is still no consensus on the fate of pelagic fauna under multiple global 60 

climate stressors. 61 

To shed light on this issue, we constructed a global atlas of sound-scattering mid-trophic level fauna, based 62 

on the largest acoustic dataset available to date. This database includes fundamental oceanic biomes that 63 

were previously unrepresented, such as coastal upwelling, oxygen-minimum, and equatorial zones. The 64 

structure and distribution of mid-trophic level fauna is projected worldwide for the present period, and 65 

under different future climate change scenarios, based on the latest generations of Earth system models 66 

from the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP513 and CMIP614). These projections 67 

relied on twenty different climate simulations, an optimized suite of environmental predictors, and non-68 

linear statistical modelling based on machine learning. With this design, we project strong declines of mid-69 

trophic level fauna in a warmer and less productive ocean by the end of the 21st century, corroborating 70 

ecosystem model projections with an observationally-based approach. 71 

Acoustic seascape classification. We compiled a database with publicly available acoustic data at 38 kHz, 72 

the most widely used frequency for observing mid-trophic level fauna at epipelagic and mesopelagic 73 

depths. The database covered more than 350,000 km around the globe, extended from 20 to 750 m depth, 74 

and spanned from year 2001 to 2020 (Supplementary Table 1). The ocean was gridded into 4x4 degree cells 75 

and average day and night profiles were computed for each cell (Extended Data Fig. 1). In total, we 76 

obtained 459 cells, which represented 16% of the ocean surface, from open to coastal-boundary systems 77 

and from 66ºS to 50ºN. We transformed the vertically discretized data of profiles into continuous curves 78 

and explored the variation of these curves—day and night together—using functional principal component 79 

analysis35. The principal components that accounted for more than 90% of the total backscatter variance of 80 

profiles were used to classify the data through hierarchical clustering (see Methods and Extended Data 81 

Figs. 2 and 3).  82 

We identified six acoustic seascape classes associated with subpolar, gyre, subtropical, temperate, 83 

upwelling, and low-oxygen upwelling waters (Fig. 1a). Vertically-integrated backscatter of acoustic 84 

profiles—a proxy of pelagic biomass—was minimum in subpolar and oligotrophic-gyre waters, moderate 85 

in subtropical waters, and higher in rich temperate and upwelling waters, including those in oxygen 86 

minimum zones (Fig. 1b-m). With the exception of subpolar waters, this distribution was consistent with 87 

patterns of pelagic biomass worldwide, according to net-sampling studies25,36. The most distinctive feature 88 

in the classification was the shape of acoustic profiles, which illustrated the vertical structure of marine life 89 

across oceanic systems. While subpolar profiles were characterized by a smooth depth-increasing 90 

backscatter signal (Fig. 1b,c), those in rich upwelling and low-oxygen areas presented prominent peaks in 91 
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epipelagic and mesopelagic waters (Fig. 1j-m). These peaks denoted the presence of strong sound-92 

scattering layers, which were also present—albeit with lower intensity and deeper depths—in gyre, 93 

subtropical and temperate systems (Fig. 1d-i). The classification also showed the main factors modulating 94 

the distribution of sound-scattering layers at global-scale. First, increased light penetration in oligotrophic 95 

ocean-gyre areas push mesopelagic fauna to deep waters37, while in productive systems, the presence of 96 

subsurface oxygen minimum zones constrains organisms to thinner layers near the surface38,39. Second, the 97 

intensity of these animal layers is expected to be higher in productive oceanic areas such as temperate, 98 

upwelling, and low-oxygen-upwelling systems31, as shown by our classification. The differences between 99 

day and night profiles—in particular the exchange of backscatter maxima between epipelagic and 100 

mesopelagic waters—illustrates that diel vertical migration is more intense in productive areas. In principle, 101 

the integrated backscatter of profiles was expected to be higher at night due to the incorporation of migrants 102 

from waters below our sampling range, however, that was not the case for upwelling and low-oxygen 103 

regions (Fig. 1j-m). While vertical migration itself is the main source of day and night differences in water-104 

column backscatter, changes in the swimbladder condition of fish during these excursions are also known to 105 

have important effects on how sound is reflected back to surface40. Additionally, part of the night 106 

backscatter signal of migrants might be hidden above our sampling depth range. Due to this diel variation 107 

of backscatter , we ultimately used day and night acoustic estimates as complementary indicators of pelagic 108 

biomass in the remainder of this study. Both indicators together provided a more complete view of the 109 

global variation of biomass, by including the two possible backscattering scenarios in the water column. 110 

Present-day global seascape. We tested ten supervised learning algorithms, as well as ten potential 111 

environmental predictors, to extend our seascape classification beyond the observation locations. Cross-112 

validation tests and recursive elimination of weak predictors revealed that the best performance was 113 

achieved with a random forest classifier trained with satellite-derived chlorophyll concentration, subsurface 114 

dissolved oxygen, and sea surface temperature (78% predictive accuracy, see model selection and  115 

performance assessment in Methods and Extended Data Figs. 4-6). We extended the classification with this 116 

model at global scale, using the mean environmental conditions for the period 2000-2020. Seascape classes 117 

were coherently distributed along large-scale oceanographic systems associated with subpolar, gyre, 118 

subtropical, temperate, upwelling, and low-oxygen upwelling waters (Fig. 2a). As this partitioning relied on 119 

the combined day and night structure of acoustic profiles, their boundaries reflected not only differences in 120 

water-column biomass but in qualitative community properties such as the vertical distribution or the 121 

migration patterns of pelagic fauna. Indeed, net-based studies on the distribution of mesopelagic fish—122 

likely the major contributor to backscatter41—show comparable community transitions between ocean-123 

gyre, equatorial, coastal-boundary, and mid-latitude temperate systems25,26,42. Regionalisations based on 124 
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broader pelagic fauna inventories also identified fairly similar oceanographic biomes43–45. We therefore 125 

consider these acoustic seascape classes as “echobiomes”, as they represent sound-scattering communities 126 

with comparable structural and functional properties but not necessarily geographically connected or 127 

sharing the same species composition44. The vertical integral of the acoustic profiles predicted by our 128 

model can also be regarded as an indicator of pelagic biomass around the globe (Fig. 2b). Day and night 129 

biomass proxies presented similar spatial patterns, with minimum values in ocean-gyre and subpolar 130 

systems, and maximum in equatorial, temperate, and coastal-boundary systems (see night projections in 131 

Supplementary Fig. 1). Differences between low and high backscatter areas were however larger when 132 

using daytime data. These extended global projections were also consistent with large-scale biomass charts 133 

derived from net sampling25,36. The only exception occurred in subpolar echobiomes, where net based 134 

estimates were not as low in comparison to other regions 25,36. 135 

Future global seascape. Future changes in the distribution of echobiomes were then calculated by 136 

rerunning our model with average environmental conditions projected for 2080-2100. These were initially 137 

obtained from simulations of 13 different CMIP6 climate models forced by the “business-as-usual” high-138 

emission scenario SSP5-8.5 (see Methods).  Our results point to a massive redistribution of the acoustic 139 

seascape by the end of the 21st century, largely driven by the expansion of low-productive ocean-gyre and 140 

subtropical echobiomes towards current equatorial, temperate, and coastal-boundary rich systems (Fig. 2c-141 

e). Overall, this rearrangement of the seascape would modify 20% of the total ocean surface analysed in 142 

comparison to present-time values (Fig. 3e).  The expansion of ocean-gyres against surrounding systems is 143 

expected to promote a generalized biomass decline between 40°S and 40°N, while the poleward migration 144 

of temperate systems would result in biomass gains at higher latitudes. These regional biomass changes 145 

could locally reach up to 40% (Fig. 2f). According to our projections, biomass changes will be significant 146 

and consistent across latitudes and ocean basins, for most climate forcings considered, and regardless of 147 

whether day or night backscatter is used as proxy of biomass (Fig. 3a). Considering the day backscatter 148 

biomass proxy, expected biomass losses from 40°S and 40°N would range  between 3 and 22%, with major 149 

losses in the tropics. Biomass gains at subpolar latitudes would range between 9 and 16% in the northern 150 

hemisphere, and between 8 and 31% in the southern hemisphere (Fig. 3a). Despite the opposing changes 151 

between low and high latitudes, projected losses would far outweigh projected gains as the ocean’s surface 152 

between 40°S and 40°N represent 70% of the total. The picture was qualitatively similar when the night 153 

backscatter proxy is considered, but the magnitude of biomass change would be lower (see Fig. 3a and 154 

Supplementary Tables 2 and 3). Both day and night biomass changes were largely driven by mesopelagic 155 

fauna and, to a lesser extent, by migratory epipelagic fauna at night (see Supplementary Fig. 1). Further, the 156 

displacement of echobiomes is expected to affect the vertical distribution of biomass around the globe. The 157 
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most significant and consistent change would take place in tropical upwelling regions, where epipelagic 158 

and mesopelagic fauna is expected to deepen from 10 to 100 meters. This process would result from an 159 

expansion of the deep sound-scattering fauna, currently in warm low-productive regions, into tropical 160 

upwelling systems (see Supplementary Fig. 2). 161 

Likely future. Mid-trophic level fauna projections presented above are based on changes in environmental 162 

conditions projected by the average of the latest generation of Earth system models, CMIP6, and 163 

considering the high carbon emission scenario SSP5-8.5. While CMIP6 is the current baseline for climate-164 

based socioeconomic and ecosystem assessments46, comparative studies with the previous generation of 165 

climate models indicate that CMIP6 projects stronger warming but weaker and less consistent declines in 166 

primary production than CMIP513,14. This raises the question of the sensitivity of our projections under such 167 

differences in climate forcing. To address this, we extended our analysis and forced our projections with a 168 

wide variety of CMIP5 and CMIP6 individual model outputs, under equivalent high carbon emission 169 

scenarios, RCP8.5 and SSP5-8.5 (see Supplementary Figs. 3-10). The most significant finding of this 170 

intercomparison was that 19 out of 20 different climate forcings provided results consistent with the 171 

average CMIP6 projection shown here. Virtually, all future oceans projected by Earth system models over 172 

the last decade produce the same outcome: biomass losses in low and mid-latitudes and gains in subpolar 173 

ecosystems. In fact, our model projects very similar average biomass changes across latitudes when forced 174 

by CMIP5 or CMIP6 average environmental conditions (maximum median differences of 3 percentage 175 

points, see Fig. 3b). However, larger differences across CMIP6 simulations resulted in more uncertain 176 

biomass change projections. We further conducted an assessment on how environmental drivers would 177 

affect mid-trophic level fauna if they acted separately. Such analysis showed that the major source of 178 

uncertainty in CMIP6-forced biomass projections comes from chlorophyll. It also shows that biomass 179 

losses in tropical and subtropical zones would be primarily driven by a combination of warming and 180 

chlorophyll decline, while biomass gains at higher latitudes would be fundamentally promoted by warming 181 

(Fig. 3c). This contrasting response of mid-trophic level fauna is explained by the different primary 182 

production regimes that comes along with warming in low and high latitude systems. Warming is assumed 183 

to increase metabolic rates such as feeding, respiration, or growth20. In a food-limited scenario, as indicated 184 

by our low-chlorophyll projections in tropical and subtropical waters,  this would promote a decline in the 185 

consumer biomass stock47. On the other hand, warming where primary production is not limiting would 186 

promote species expansions, growth and reproduction, as it has been already observed in temperate-polar 187 

transitions zones affected by ocean warming48,49. Temperature and chlorophyll persist as the major drivers 188 

of biomass change in both CMIP5 and CMIP6 projections (Extended Data Figs. 7 and 8), but most 189 
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importantly, these changes would still take place even if only warming occurred, the most likely and 190 

unequivocal ocean change projected by Earth system models13,14.  191 

Alternative future. We additionally projected biomass changes of mid-trophic level fauna, forced by 192 

CMIP6 environmental conditions in 2080-2100 under the low-emission scenario SSP1-2.6 (Fig. 3d). That 193 

is, if nations achieved strong mitigation measures to keep global warming below 2°C14. Our results show 194 

that such measures would largely halt the redistribution of echobiomes in comparison to the high-emission 195 

scenario. The contraction of echobiomes in upwelling and subpolar regions would be strongly mitigated, 196 

while oligotrophic gyres would remain virtually unaffected (Extended Data Figs. 9-10). In terms of 197 

biomass, these strong mitigation measures would contain changes below 10% in virtually all climate zones, 198 

and near zero in temperate systems (Fig. 3d). According to our calculations, all biomass changes projected 199 

under the CMIP6 low-emission scenario, either positive or negative, would be mitigated by 4 to 11 200 

percentage points with respect to the high-emission scenario. This implies that the impact will drop by at 201 

least two thirds at all latitudes.  Similar mitigation rates were estimated under CMIP5 forcing or when using 202 

night backscatter as proxy of biomass  (impact reductions from 3 to 13 percentage points, see  203 

Supplementary Tables 2 and 3).  204 

Interpreting climate-forced acoustic-based projections. Our projected biomass changes are consistent 205 

with virtually all marine ecosystem models under comparable climate change scenarios, both in magnitude 206 

and direction16–19, reconciling acoustic-based and ecosystem model projections for the first time34. The way 207 

our model works stands out for its simplicity. Understanding species physiology or ecological interactions 208 

is not required to determine their response to ocean warming and shifts in primary production. This is often 209 

a difficult task in the implementation of ecosystem models and a major source of uncertainty in marine 210 

fauna projections15,20. Our approach simply links sonar observations of sound-scattering fauna with current 211 

environmental conditions and projects the future distribution of this fauna under new conditions. As such, it 212 

assumes that current echobiomes will follow their environmental niches. This assumption, which is 213 

ecologically coherent, has further been corroborated by studies that already detected large-scale shifts in the 214 

distribution of multiple species following new thermal niches due to ocean warming48,49. Yet, as any 215 

observational approach, our method presents limitations that must be taken into consideration. 216 

Echosounders detect organisms that are efficient sound reflectors at certain frequencies according to their 217 

physical properties. For instance, the frequency used here, 38 kHz, is known to maximize the signal of gas-218 

bearing organisms such as small mesopelagic fish or siphonophores50. Weaker fluid-like organism might 219 

hence be under-represented and this should be taken into consideration when comparing our results with 220 

more specific fauna compartments from ecosystem models. In relation to this issue, the acoustic signal in 221 

subpolar echobiomes was the only one that misrepresented pelagic biomass charts elaborated with fishing 222 
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gears25,36. It is unlikely that rich subpolar systems host less animal biomass than low-productive ocean 223 

gyres. We therefore believe that the subpolar decay of signal observed is related to documented latitudinal 224 

changes in the backscatter-to-biomass ratio51, and due to the reduction of gas-bearing organisms in subpolar 225 

sytems52–54. Because of this, the expansion of rich temperate echobiomes over subpolar echobiomes might 226 

amplify our projected biomass gains at high latitudes. We attribute therefore a greater uncertainty to 227 

biomass change projections in subpolar waters, not only for the aforementioned reasons, but also because 228 

this echobiome lacked observations in the North hemisphere. Future assessments will therefore require to 229 

investigate on basin-scale acoustic properties of pelagic fauna, and increase observations at high latitudes, 230 

including the Arctic. Another limitation relates to the model’s inability to predict new echobiomes in 231 

regions where  projected environmental changes have no analog with historical observations. New climate 232 

will emerge in  tropical waters, where existing species are expected to reduce in size and biomass due to  233 

extreme warming and low productivity conditions55. As these processes are not captured, this might 234 

constitute another source of underestimation in our projected declines of ocean fauna. Finally, our 235 

projections, as any other, inherit the uncertainties of climate simulations13,14. Our results should then be 236 

revisited under future simulation exercises, especially those projecting primary production and low trophic 237 

level compartments, as they currently represent the largest source of uncertainty in mid-trophic level fauna 238 

projections14,19.  239 

Concluding remarks. We use the last-generation of Earth system models, CMIP5 and CMIP6, along with 240 

sonar observations, to project the future distribution of ocean fauna under multiple scenarios of climate 241 

change. As such, this study constitutes a ground-truth reference for ecosystem model simulations and 242 

provides an alternative empirical approximation to envisage and anticipate the effects of climate change 243 

with greater confidence.20 Our results indicate that ocean warming and shifts in primary production will 244 

result in 1) substantial reorganization of biogeographical provinces, 2) significant reductions of mid-trophic 245 

level fauna in low and mid latitude systems, and  3) massive expansion of temperate species towards high-246 

latitudes systems. Nearly 70% of the global ocean is projected to lose animal biomass. Such loss is 247 

expected to bring food insecurity worldwide56 and declines of carbon export mediated by vertical migration 248 

or the sinking of matter produced by animals57. Mid-trophic level fauna may hence constitute a new 249 

feedback loop component in the global climate system which may accelerate the risks and time horizons 250 

projected by the IPCC46. We further show that strong mitigation measures to contain global warming below 251 

2°C would reduce our projected biomass changes by at least two thirds in comparison to the high-emission 252 

scenario. Paradoxically, now that ambitious actions need to be taken to halt the worst effects of climate 253 

change, mesopelagic fish, likely the largest unexploited stock of mid-trophic level fauna worldwide31, is in 254 

the spotlight of the fishing industry58,59. Based on these results, we call for caution in managing this 255 
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fundamental component of pelagic ecosystems and urge to place mid-trophic level fauna at the very centre 256 

of global climate policies and research. 257 
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Figure legends 
Figure 1: Acoustic seascape classification. a, The shape of day and night acoustic profiles was used to classify the ocean seascape through 271 
hierarchical clustering. b-m, Day and night profiles for each seascape class are shown in top and bottom panels, respectively. Central and side 272 
curves represent the median and interquartile range (Sv, dB re m-1). The vertical integration of these curves—a proxy for pelagic biomass—is 273 
indicated in grey at the bottom of each profile (nautical area scattering coefficient, m2 nmi-2). Colours indicate the acoustic seascapes identified, 274 
which were associated to subpolar (brown), ocean-gyre (olive), subtropical (cyan), temperate (orange), upwelling (red), and low-oxygen 275 
upwelling (purple) waters. 276 
 277 
Figure 2: Biogeography and acoustic-based biomass. Distribution of subpolar (SP), gyre (G), subtropical (ST), temperate (T), upwelling 278 
(UW), and low-oxygen (LO) echobiomes and daytime water column backscatter (m2 nmi-2) as a proxy of animal biomass. Results are shown 279 
for 2000-2020 in a and b, for 2080-2100 projections in c and d, and as the present-to-future change between these two periods in e and f. 280 
Biogeographic change in e is represented with light and bold colour shades, indicating the present distribution and future expansion of 281 
echobiomes, respectively. Backscatter change in f is indicated as percentage, relative to present-time values.  Future projections are forced by 282 
the average climate outputs from 13 CMIP6 Earth system models. Contour dashed and continuos lines indicate areas where the standard 283 
deviation of projected changes exceeded values of 15 and 20, respectively. 284 
 285 
Figure 3: Biomass changes by 2080-2100 under variable climate forcing. a, Day (red) and night (black) biomass projected latitudinal 286 
changes forced by CMIP6 climate projections under high-emission scenario. b, Day biomass forced by CMIP6 (red) and CMIP5 (black) 287 
climate projections under high-emission scenario. c, Day biomass projected changes forced by CMIP6 climate projections under high-emission 288 
scenario if sea surface temperature (SST, pink), subsurface dissolved oxygen (SDO, blue), or chlorophyll (CHL, green) projected 289 
environmental drivers occurred in isolation. d, Day biomass projected changes forced by CMIP6 under high (red) and low (black) emission 290 
scenarios. e, Percentage of the global ocean’s area for each latitudinal range. Fixed and changing features of biomass projections are indicated 291 
at the top and at the bottom of each panel, respectively. Boxes show the median and the interquartile range while whiskers indicate the 5-95% 292 
percentile range. They represent the spread of biomass changes due to different climate forcing (7 CMIP5 or 13 CMIP6 climate forcings). Low 293 
and high emissions respectively designate SSP5-8.5 and SSP1-2.6 IPCC greenhouse emission scenarios.    294 
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Methods 295 

Data collection and processing. Georeferenced single-beam acoustic data at 38 kHz, spanning from 2001 296 

to 2020, was collated from public databases, sourced by Australian, British, French, Peruvian and Spanish 297 

research programs in the Pacific, Atlantic and Indian Oceans (Supplementary Table 1). Most of data were 298 

already available as quality-controlled, calibrated processed data, with the exception of the Malaspina 299 

circumnavigation expedition data, which were processed for this study following standard procedures. This 300 

processing included background noise correction60, automatic removal of corrupted signal61, manual 301 

cleaning of persistent corrupted signal and aliased seabed, and resampling to 10 m height and 1000 m wide 302 

data cells, using Matecho v6.762. Acoustic profiles were required to present consistent depth range and 303 

resolution, and continuous water column signal, in order to be transformed into functional curves (see 304 

section below). We therefore limited all profiles to the common largest depth range available in the dataset, 305 

from 20 to 750 m depth, and they were interpolated to a consistent vertical resolution of 10 m. To ensure 306 

the continuity of the water column signal, we remove from the dataset any profile with either missing or 307 

extremely weak backscatter, the later likely introduced when cleaning low signal-to-noise regions60. The 308 

threshold below which a profile was considered to be altered by this pre-processing step was set to -130 dB, 309 

since no biological backscatter is expected below this level63. This threshold permitted to remove profiles 310 

where the continuity of the signal was compromised by noise conditions without the risk of removing 311 

backscatter from animals.  Profiles where the seabed was above 1000 m depth were removed to exclude 312 

continental shelves from the analysis, and profiles where the sun was between 0° and 18° below the horizon 313 

were removed to avoid vertical migration events during dawn and dusk, following the astronomical 314 

definition of twilight. GPS time and position of profiles along with global bathymetry data64 were used to 315 

estimate the solar azimuth angle and seabed at the time of data acquisition. Profiles that passed the filtering 316 

process (equivalent to more than 350,000 km around the globe, see Supplementary Table 1) were grouped 317 

and averaged into geographical cells of 4 degrees longitude and 4 degrees latitude. Only cells with at least 318 

10 km of acoustic data recorded were accepted to compute average profiles. This was done separately for 319 

day and night acoustic data, i.e, we generated two global datasets with day and night profiles. As the 320 

resulting averaged profiles might result from different sampling missions across the annual cycle, the 321 

monthly sampling effort for each averaged profile was recorded. This was used afterwards to correct the 322 

environmental inputs used for training the acoustic seascape predictive model (see below). In total, mean 323 

profiles were computed for 465 cells, which represented the 16% of the ocean surface (Extended data Fig. 324 

1).  325 
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Functional data analysis. Functional data analysis (FDA35) was used to describe and analyse the variation 326 

of the acoustic signal along the depth dimension.  The analysis was implemented using the FDA module  327 

available in EchoPY v1.165. This included turning the discretized data of profiles into functions and use the 328 

descriptors of these functions to explore the main modes of signal variation in the water column through 329 

functional principal components analysis (fPCA35). In the present study, each observation consisted of a 330 

4x4 cell with two variables: day and night Sv profiles. Each profile was decomposed into a sequence of 18 331 

basis functions (see Extended Data Fig. 2). We used cubic splines as the most suitable basis functions to 332 

represent non-periodic functional data66. With 18 basis functions from 20 to 750 m depth, each cubic spline 333 

was adjusted to the data every ~40 m. At ocean-basin scale, 38 kHz layers are usually 100 m wide or 334 

larger32, we therefore considered this resolution appropriate to outline the vertical structure of 38 kHz 335 

profiles without over-fitting. In a functional scenario, and for the application of fPCA, the counterparts of 336 

the Sv values are the function coefficients35, which were concatenated from day and night profiles. In total, 337 

36 coefficients (18+18) for each of the 465 geographical cells were used to build a cross-covariance matrix 338 

and find a suitable number of principal components (PCs) explaining most of the dataset variance (Fig. 339 

Extended Data Fig. 2). One of the most significant advantages of fPCA with respect to the conventional one 340 

is the possibility to access the variance contained within each principal component as a function of depth35. 341 

This allowed diagnosing the main modes of profile variance in the system (Extended Data Fig. 3), 342 

simultaneously during day and night. This was essential for later interpretation of the acoustic seascape 343 

classification. Further details on the implementation of fPCA can be found in Ramsay and Silverman 344 

(2005)35. 345 

Seascape classification. Day-night profiles averaged for each geographical cell were classified using 346 

agglomerative hierarchical clustering from the scikit-learn Python module67. We used the function 347 

coefficients decomposed in 8 principal components (PCs) as descriptors for the classification, which 348 

accounted for more than 90% of the dataset variance. Agglomerative hierarchical clustering was chosen  349 

because it is suitable to classify globularly distributed data67 , provides valuable information on the 350 

hierarchical similarity of profiles between clusters, and showed fairly consistent results in comparison with 351 

other classification tools (see Extended Data Fig. 5) . The same first 8 PCs used in the classification were 352 

used to reconstruct the acoustic profiles, that is, keeping more than 90% of profile variance in the dataset 353 

(Extended Data Fig. 3). These profiles were then averaged for each acoustic seascape class (median and 354 

interquartile range, see Fig. 1). 355 

Future environmental conditions. We initially analysed simulation outputs from 13 climate models 356 

extracted from the CMIP6 archive68. For each model, we use the first member of the historical experiments 357 

and the corresponding member of a low and high emission future scenario from the Shared 358 
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Socioeconomical Pathways (SSP), namely the SSP126 and SSP585. While the SSP585 scenario assumes 359 

accelerated globalization and rapid economic and social development of developing countries coupled with 360 

the exploitation of abundant fossil fuel resources, SSP126 is an optimistic scenario designed with the aim 361 

of simulating a development that is compatible with the 2°C target, assuming climate protection measures 362 

being taken. The model selection procedure was based on the availability of temperature, chlorophyll and 363 

oxygen data for the three experiments selected for a given model. Future mean anomalies for each of these 364 

models were calculated as the averaged annual difference between the 2080-2100 and the 1995–2014 365 

historical periods. All data were then compiled over the  same 4° × 4° grid. For the sake of comparison 366 

with the previous CMIP exercise and based on the same selection procedure, we also analysed simulations 367 

outputs from 7 CMIP569 climate models: for each model, we used one member of the historical experiment 368 

and the corresponding member of the high emission scenario RCP85. The RCP 8.5 scenario has an identical 369 

radiative forcing level to SSP5-8.5 (i.e., 8.5 W m−2 at 2100). Future mean anomalies for these models were 370 

calculated as the averaged annual difference between the 2080-2100 and the 1986-2005 periods. 371 

Seascape predictive model. We used a machine learning approach trained with clustering results, in order 372 

to project the acoustic seascape beyond our observations70,71. A Random Forest learning algorithm was 373 

used to predict the acoustic profiles at global scale. This method was used among others after testing the 374 

prediction accuracy of up to 10 models from the Python Scikit-learn classifier module72 by means of cross-375 

validation analyses (Extended Data Figs. 4-6). The model was trained with sea surface temperature, 376 

subsurface dissolved oxygen (150-500 m depth), and chlorophyll as inputs, while acoustic seascape classes 377 

were used as the output. We used temperature and dissolved oxygen data from the 2018 World Ocean 378 

Atlas73,74 and chlorophyll from the Ocean Colour Climate Change Initiative75. The data period chosen was 379 

between years 2000 and 2020 in order to encompass the time coverage of the acoustic dataset. A wider set 380 

of predictors were tested initially, such as temperature and dissolved oxygen at several depth intervals, the 381 

depth of mixed layer, or primary production. The optimal selection of predictors was decided using a 382 

backward elimination approach, starting with all candidate variables and recursively removing the one with 383 

less involvement in the classification result. In order of importance, subsurface oxygen, chlorophyll, and 384 

sea surface temperature were the variables that—combined—provided the best prediction accuracy during 385 

cross-validation tests. These tests were performed using a 75% of the acoustic classification as the training 386 

dataset and the remaining 25% for validating the results. The operation was repeated 100 times with 387 

random subsets for training and validation to obtain average prediction accuracy metrics (F1 score). Each 388 

time, a random shuffle operation was selected to improve randomization  (see Extended Data Fig. 4). To 389 

overcome the problem of the uneven season coverage in the acoustic dataset, the model was trained with 390 

monthly-weighted environmental predictors for the period 2000-2020, based on the monthly sampling 391 
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effort of each acoustic profile in the dataset (see Extended Data Fig. 1). For instance, if the mean acoustic 392 

profile of a given geographical cell was computed with a sample of profiles biased to the summer season, 393 

temperature, dissolved oxygen, and chlorophyll predictors for training the model would be biased to the 394 

same direction. For that particular case, only mean summer environmental conditions for the period 2000-395 

2020 would be used as predictors. 396 

Seascape and biomass projections. Once the Random Forest classifier was trained, acoustic seascape 397 

classes were projected at global scale using mean environmental conditions of temperature, subsurface 398 

dissolved oxygen, and chlorophyll as inputs, for the periods 2000-2020 and 2080-2100. Contemporary 399 

environmental variables were obtained from the same sources as for training the model. For future 400 

variables, we computed historical-to-future mean anomalies from CMIP6 or CMIP5 Earth System model 401 

ensemble projections and we added these anomalies to contemporary environmental observations (see 402 

“Future environmental conditions” section). Our projections include day and night acoustic seascapes in the 403 

epipelagic and mesopelagic domains (Supplementary Fig. 1), global maps with the depth distribution of 404 

epipelagic and mesopelagic sound scattering (Supplementary Fig. 2), and vertically integrated backscatter 405 

maps, as an indicator of water-column biomass across multiple CMIP5 and CMIP6 Earth system models, 406 

and under both high-emission and strong-mitigation scenarios (Fig. 2 and Supplementary Fig. 3-10). The 407 

Random Forest projection provided the probability of each acoustic seascape class to be allocated in a 408 

given location. The most voted ones were used to build the global acoustic seascape and the probabilities 409 

were used to compute weighed mean profiles for these locations, using the profiles of each acoustic 410 

seascape class (see Fig. 1). The backscatter of these projected profiles was vertically integrated and used as 411 

a metric of animal biomass in the water column. To provide measures of uncertainty due to multiple climate 412 

forcing, this biomass proxy was computed with backscatter projections forced by all the environmental 413 

outputs within the CMIP6 (n=13) and CMIP5 (n=7) Earth system model ensembles (Supplementary Figs. 414 

3-10).  Median and percentile ranges (25th-75th and 5th-95th ) were provided from these computations (see 415 

Fig. 3 and Supplementary Tables 2 and 3).  416 

  417 
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Data availability  418 

All data used in the present study are publicly available. Acoustic data can be accessed through diverse 419 

internet repositories indicated in the Supplementary Table 1. Observations of sea surface temperature and 420 

dissolved oxygen are available in the 2018 World Ocean Atlas (https://www.ncei.noaa.gov/products/world-421 

ocean-atlas), and satellite chlorophyll observations can be accessed through the Ocean Climate Change 422 

Initiative data portal (http://www.esa-oceancolour-cci.org). CMIP5 and CMIP6 simulations are publicly 423 

available in the Earth System Grid Federation data portal (https://esgf-node.llnl.gov). We also provide in 424 

supplementary data the global acoustic atlases elaborated for the present study. 425 

Code availability 426 

Raw acoustic data from the Malaspina circumnavigation expedition were processed using the open-source  427 

software Matecho v6.7, following the standard procedures detailed in Methods. The rest of acoustic 428 

repositories were already available as processed data. Data analysis was conducted with custom-made 429 

analysis routines in Python v3.8 and diverse open-source Python packages indicated in Methods. All 430 

analysis routines used in the present study are available upon request.  431 
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