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Abstract :   
 
Surface waters of the modern Western Tropical Pacific (WTP) are in equilibrium with atmospheric CO2. 
However, air-sea exchange of CO2 in this region may have been modulated in the past by oceanic-
atmospheric fluctuations in the tropical Pacific such as the East Asian monsoon and the El Niño-Southern 
Oscillation (ENSO) and extratropical mode waters such as Antarctic Intermediate Water. Thus, 
understanding controls on the sea-surface carbonate system in the WTP is important for forecasting future 
carbon-cycle changes in this region. Here, we reconstruct sea-surface pH and pCO2 since Marine Isotope 
Stage 6 (MIS 6; 155 ka) based on B/Ca ratios of the planktic foraminifer Globigerinoides ruber (white) in 
sediment Core MD06–3052 from the western Philippine Sea, and we then calculate the difference 
between oceanic and atmospheric pCO2 (ΔpCO2(sw-atm)) in order to evaluate the history of air-sea CO2 
exchange. ΔpCO2(sw-atm) changes were strongly modulated by the ~20-kyr precession cycle. The 
results of cross-spectral analysis demonstrate a close connection between the East Asian summer 
monsoon (EASM) and air-sea CO2 exchange since MIS 6, demonstrating that precession-driven EASM 
can affect air-sea CO2 exchange through regulation of surface productivity and thermocline depth. In 
contrast, the East Asian winter monsoon (EAWM) and ENSO-like conditions are not major influences on 
air-sea CO2 exchange in the study area at precession-band frequencies. In addition, enhanced upwelling 
of Southern Ocean-sourced deepwater rich in dissolved inorganic carbon (DIC) affected the upper water 
column during transitions from cold to warm stages (i.e., deglaciations). In conclusion, these findings 
suggest that orbital precession influences can affect oceanic conditions not only through climate change 
and biological processes but also through sea-surface carbonate chemistry. 
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Highlights 

► Reconstruction of sea-surface pH and pCO2 in Western Tropical Pacific since MIS-6. ► EAWM and 
ENSO-like conditions do not affect ΔpCO2(sw-atm) of WTP in precession band. ► Precession-driven EASM 
affects air-sea CO2 exchange by regulating productivity & DOT. ► Surface carbonate system in WTP 
linked to upwelling of Southern Ocean deep waters. ► Upwelling strongest during cold-to-warm stage 
transitions (MIS 6/5, 5b/5a, 4/3, 2/1). 

 

Keywords : planktic foraminifera, B/Ca, El Niño-Southern Oscillation, productivity, thermocline, 
precession 
 
 

 

 



1. Introduction 

Although details of the mechanisms are still emerging, fluctuations in the atmospheric 

partial pressure of carbon dioxide (pCO2-atm) over the past 800,000 years can be attributed 

primarily to oceanic processes (Broecker, 1982; Sigman and Boyle, 2000; Lüthi et al., 2008; 

Sigman et al., 2010; Yu et al., 2020). Various paleoceanographic records from the Western 

Tropical Pacific (WTP), including productivity (Beaufort et al., 2001; Li et al., 2010; Bolliet 

et al., 2011; Diester-Haass et al., 2018), deep-water carbonate ion concentrations (Qin et al., 

2017, 2018), redox-sensitive elements (Xiong et al., 2012; Xu et al., 2020), and terrigenous 

material inputs (Wan et al., 2017; Xu et al., 2020), have been investigated to improve our 

understanding of the relationships between pCO2-atm and oceanic conditions, confirming that 

processes in the WTP play a key role in pCO2-atm variation. Given direct contact of the 

surface ocean with the atmosphere, the carbonate chemistry of surface seawater is closely 

related to atmospheric pCO2 levels. Hence, reconstructing sea-surface carbonate-system 

parameters is potentially a promising method for identifying the mechanisms and effects of 

CO2 partitioning between atmosphere and ocean in the WTP. 

The net air-sea CO2 flux indicates that surface seawater of the modern WTP is in 

equilibrium with atmospheric pCO2 (Takahashi et al., 2009), which might be taken as 

evidence that the surface seawater in this region has little influence on atmospheric CO2 

levels. However, tropical and extratropical influences may have played important roles in the 

air-sea CO2 exchange of the WTP in the past (Beaufort et al., 2001; Feely et al., 2002; 

Anderson et al., 2009; Yuan et al., 2011; Xiong et al., 2022). Specifically, interannual-decadal 

variability in the El Niño-Southern Oscillation (ENSO) exerts a strong influence on air-sea 
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CO2 exchange in this region. During El Niño (La Niña) conditions, this area is a weak CO2 

source (sink) to the atmospheric CO2 reservoir due to thermocline shoaling (deepening) 

(Inoue and Sugimura, 1992; Feely et al., 2002). In addition, seasonal variations in the East 

Asian monsoon (EAM) not only affect air-sea CO2 exchange but also regulate biological 

activity (Yuan et al., 2011). For example, East Asian summer monsoon (EASM)-induced 

upwelling brought nutrient- and DIC-rich deep waters to the surface, enhancing primary 

production and CO2 release in coastal waters (Yin, 2002; Yuan et al., 2011). Southern 

Ocean-sourced watermasses such as Subantarctic Mode Water (SAMW) and Antarctic 

Intermediate Water (AAIW) can carry chemical signatures (e.g., nutrient- and CO2-rich) from 

the upwelled deep watermass to low-latitude areas (Sarmiento et al., 2004), a process that 

promoted CO2 release from the equatorial Pacific during the last deglaciation (Kubota et al., 

2014, 2019). These processes regulate atmosphere CO2 variation through the sea-surface 

carbonate system. However, previous studies have rarely used carbonate chemistry to link 

these influences with the record of secular pCO2-atm variation (Li et al., 2010; Xu et al., 2020), 

so the underlying controls on such variation remain incompletely understood. 

Paleorecords related to the carbon cycle in the WTP, such as productivity and shell 

weight, exhibit considerable power at orbital periodicities, especially the ~20-kyr precession 

cycle (Beaufort et al., 2001; Fraser et al., 2014; Su et al., 2015; Qin et al., 2020). Although 

physical (e.g., upwelling) and biological (e.g., production) processes are known regulators of 

air-sea CO2 exchange (Gottschalk et al., 2016; Gray et al., 2018), the detailed mechanisms 

and pathways by which orbital precession affects the carbon cycle in the WTP are not 

well-established. Late Quaternary strengthening of the EASM associated with precession 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



drove upwelling intensity, enhanced organic flux, and thermocline shoaling in the South 

China Sea (SCS) (Jian et al., 2001). In addition, ENSO activity exhibits pronounced 

precession-band variance in marine proxy records in the late Quaternary (Koutavas et al., 

2002; Zhang et al., 2021b), with the potential to influence tropical Pacific surface 

productivity and thermoclinal depth (Su et al., 2015; Zhang et al., 2021b). Thus, orbital 

precession may regulate air-sea CO2 exchange through links to monsoonal intensity, ENSO 

activity, surface productivity, and thermoclinal depth. 

The main aim of the present study is to investigate the influence of the surface seawater 

carbonate system on air-sea CO2 exchange in the WTP as well as the role of the tropical West 

Pacific in the global carbon cycle. Proxies for reconstructing past carbonate-system 

parameters have been developed in previous studies, including shell weight (Barker and 

Elderfield, 2002; Qin et al., 2017), boron isotopes (δ
11

B) (Hönisch and Hemming, 2005; Rae 

et al., 2018), and B/Ca (Yu et al., 2007; Dang et al., 2019; Guo et al., 2019; Osborne et al., 

2020) of planktic foraminifera. The B/Ca proxy has been widely used owing to its relative 

speed, minimal sample consumption, and low cost, yielding records of sea-surface pH and 

pCO2 (Yu et al., 2007; Foster, 2008; Tripati et al., 2009) and bottom-water [CO3
2-

] (Yu and 

Elderfield, 2007; Yu et al., 2020). In this paper, we analyzed B/Ca ratios of the planktic 

foraminifer G. ruber (white) in Core MD06-3052 from the western Philippine Sea (WPS). 

Combining Mg/Ca-paleothermometry and stable oxygen isotope measurements of G. ruber in 

Core MD06-3052 (Qiu et al., 2014a), we presented new sea-surface pH and pCO2 records for 

the WTP since Marine Isotope Stage 6 (MIS 6). Together, these data allow us to (1) describe 

glacial-interglacial changes of the surface seawater carbonate system in the WTP; (2) 
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investigate the influence of various marine environmental factors on air-sea CO2 exchange; 

and (3) identify possible controls on air-sea CO2 exchange in the late Quaternary WTP. 

 

2. Oceanographic setting 

Core MD06-3052 is located in the WPS of the WTP, in the area affected by the 

bifurcation of the North Equatorial Current (NEC) (Figure 1a). The NEC separates into two 

branches near the eastern coast of the Philippine islands (Toole et al., 1990). The northward 

branch forms the main section of the Kuroshio Current (KC), whereas the southward branch 

produces the Mindanao Current (MC), which flows southward feeding the North Equatorial 

Counter Current (NECC) (Fig. 1a). The NEC bifurcation exhibits annual and seasonal 

changes in its latitudinal position owing to dynamic influences linked to ENSO and the East 

Asian monsoons (Kim et al., 2004; Hu et al., 2015). The NEC and its branches are the most 

important surface currents in the Philippine Sea. The intermediate circulation of the southern 

Philippine region is dominated by AAIW, which can be traced to about 12° N off Mindanao 

(Qu et al., 1999). Thus, AAIW may carry chemical signatures from upwelled deep waters of 

the Southern Ocean to the present study area (Sarmiento et al., 2004; Talley et al., 2011). 

The difference between seawater pCO2 (pCO2-sw) and pCO2-atm across the air-sea 

interface (∆pCO2(sw-atm)) is the thermochemical driving potential for the net transfer of CO2 

between the atmosphere and the surface ocean, and it can be used to identify carbon sources 

and sinks (Takahashi et al., 2009). Geographic variation in mean annual ∆pCO2(sw-atm) for the 

modern tropical Pacific ranges from –50 ppmv to 100 ppmv, indicating that this region can 

act as a carbon sink or source of atmosphere CO2 (Fig. S1; Takahashi et al., 2011). The major 
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carbon source area is observed in the Eastern Tropical Pacific (Fig. S1), which is an 

upwelling area that can bring deep waters with low pH and high pCO2-sw to the surface 

(Raven et al., 2005; Takahashi et al., 2009). The major carbon sink area is observed in the 

southwestern tropical Pacific (Fig. S1), which is a region of high biological production and 

export (Raven et al., 2005; Takahashi et al., 2009). In contrast, ∆pCO2(sw-atm) values in the 

WTP (including the WPS) are close to 0 ppmv, which indicates that air-sea CO2 exchange in 

this region is in equilibrium. 

 

3. Materials and methods 

3.1 Materials 

Core MD06-3052 was retrieved using a Calypso piston corer during the Chinese-French 

joint cruise Marco Polo 2 aboard the R/V Marion Dufresne in 2006. The core is located on the 

Bicol Shelf, offshore of Luzon Island, in the WPS at a water depth of 732 m (14°48.6042' N, 

123°29.3983′ E) (Fig. 1). The dominant lithology is olive-gray to gray silty clay and silt. The 

age model of the study core is based on accelerator mass spectrometry (AMS) 
14

C dates and 

correlation of the G. ruber δ
18

O record with the standard δ
18

O curve (Qiu et al., 2014a). 

Based thereon, this 19.48-m-long sediment core covers the last 155 kyr, from MIS 6 to the 

recent, accumulating at an average sedimentation rate of ~12.5 cm/kyr (Qiu et al., 2014a). 

 

3.2 Foraminiferal B/Ca analysis 

The studied core was subsampled at 8 cm intervals, yielding a total of 218 samples for 

foraminiferal B/Ca analysis. The samples were dried, disaggregated by soaking in water for 
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48 h, wet sieved (63-μm sieve), and dried again to collect the coarse fraction. Foraminiferal 

shells (approximately 40 tests per sample) of the planktic species G. ruber were picked from 

the 250-300 μm fraction, to minimize vital effects on shell geochemistry (Elderfield et al., 

2002; Ni et al., 2007; Guo et al., 2015). Cleaning and B/Ca analysis of foraminiferal shells 

were conducted in the State Key Laboratory of Marine Geology, Tongji University, Shanghai. 

Before analysis, the foraminiferal tests were first gently cracked to open the individual 

chambers, then successively treated with methanol, hydrazine/ammonium citrate solution, 

and buffered H2O2 solution to remove clays, metal oxides and organic material, next leached 

with a 0.001 mol/L HNO3 solution for removal of any adsorbed contaminants on the test 

fragments, and finally dissolved in 0.15 mol/L HNO3 (Lea et al., 2000; Martin and Lea, 2002; 

Barker et al., 2003). 

B/Ca ratios were analyzed on an inductively coupled plasma mass spectrometer 

(ICP-MS) following the method of Yu et al. (2005). All samples were analyzed at similar Ca 

concentrations (~100 ppm) to overcome potential matrix effects on B/Ca ratios. After every 

three samples, a standard (Check Std) was analyzed to monitor the accuracy of the results and 

to correct for drift and mass bias effects. A total of 125 analyses of the standard yielded a 

mean B/Ca value (110.641 μmol/mol) and relative standard deviation (0.635%) in conformity 

with its published composition (110.357 μmol/mol). The mean relative uncertainty of G. 

ruber B/Ca measurements is 2.4% (corresponding to 3.03 μmol/mol), as determined from 

replicate analyses of samples (n = 136) over the 14-month interval of analytical work. Al/Ca 

and Mn/Ca were also measured to monitor the efficiency of the removal steps for clays and 

Mn-oxyhydroxides. Neither Al/Ca nor Mn/Ca exhibits a correlation with B/Ca, indicating the 
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effectiveness of the cleaning method. 

 

3.3 Estimation of seawater pH and pCO2 from foraminiferal B/Ca 

Based on the temperature (T) derived from G. ruber Mg/Ca in the Core MD06-3052 

(Qiu et al., 2014a), the partition coefficient, KD, between calcium carbonate and seawater was 

calculated as (Yu et al., 2007): 

𝐾𝐷(× 1000) = (0.047 ± 0.022)𝑒(0.131±0.017)𝑇                (1) 

Combined with the B/Ca ratio of the planktic foraminifer G. ruber from Core MD06-3052, 

the [𝐵(𝑂𝐻)4
− 𝐻𝐶𝑂3

−]⁄  of surface seawater in the WTP was then obtained as (Hemming and 

Hanson, 1992; Yu et al., 2007): 

[𝐵(𝑂𝐻)4
−/𝐻𝐶𝑂3

−]𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟 = [𝐵/𝐶𝑎]𝐶𝑎𝐶𝑂3 / 𝐾𝐷                  (2) 

Following the method given in Hönisch and Hemming (2005), two models were 

employed to calculate surface seawater salinity (SSS) and total alkalinity (ALK) in the WTP. 

In the first model, δ
18

Osw-iv was first obtained using δ
18

O and Mg/Ca data measured in G. 

ruber from Core MD06-3052 (Qiu et al., 2014a) by removing temperature and global ice 

volume effects following the method of Bemis et al. (1998) and Waelbroeck et al. (2002), and 

the local SSS was then calculated by the following equation (Xiong et al., 2022): 

SSS = [(14.244±0.961) + δ
18

Osw-iv] / (0.424±0.029)                (3) 

In the second model, SSS was estimated using the relative sea level (RSL) (Waelbroeck et al., 

2002; Hönisch and Hemming, 2005). In both models, ALK was estimated as (Xiong et al., 

2022): 

𝐴𝐿𝐾 = (70.22 ± 3.01) × 𝑆𝑆𝑆 − (154.42 ± 103.24)              (4) 
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Based on the above processes, we reconstructed sea-surface pH and pCO2 in the tropical 

West Pacific using two methods. In the first method (Tripati et al., 2009), ‘practical alkalinity’ 

is used as an approximation for ALK in seawater (Eq. 5; Zeebe and Wolf-Gladrow, 2001): 

[𝐴𝐿𝐾] = [𝐻𝐶𝑂3
−] + 2[𝐶𝑂3

2−] + [𝐵(𝑂𝐻)4
−] + [𝑂𝐻−] − [𝐻+]          (5) 

Equations (6)-(9) are then substituted into Equation (5): 

[𝐶𝑂3
2−] = [𝐻𝐶𝑂3

−] × 𝐾2/[𝐻+]                         (6) 

[𝐵(𝑂𝐻)4
−] = [𝐵𝑡𝑜𝑡] × 𝐾𝐵/([𝐻+] + 𝐾𝐵)                    (7) 

[𝑂𝐻−] = 𝐾𝑤 [𝐻+]⁄                              (8) 

[𝐻𝐶𝑂3
−] = 𝐾𝐵 × 𝐵𝑡𝑜𝑡 × ([𝐻+] + 𝐾𝐵) × ([𝐵(𝑂𝐻)4

−] [𝐻𝐶𝑂3
−]⁄ )          (9) 

We obtained a third-order polynomial equation with a single unknown ([H
+
]) by algebraic 

manipulation of the resultant equation. Finally, the surface seawater pH in the WTP since 

MIS 6 was determined by solving this polynomial equation for the unknown ([H
+
]). Based on 

ALK and pH in addition to temperature, salinity, and pressure (depth), pCO2-sw can be 

calculated using CO2sys.xls (Pelletier et al., 2007).  

The second method for reconstructing sea-surface pH and pCO2 is based on an iterative 

method (Yu et al., 2007). First, B(OH)4
-
 is calculated from Equation (7) using an assumed pH 

value. Second, given ALK, temperature, salinity, and pressure (depth), along with estimated 

pH, it is possible to calculate pCO2-sw and HCO3
-
 using CO2sys.xls (Pelletier et al., 2007), 

from which B(OH)4
-
/ HCO3

-
 is then determined. Third, B/Ca ratios are calculated from 

Equation (2) and compared with the measured B/Ca ratios. Finally, the sequence of steps 

above are iterated until calculated and measured B/Ca ratios converge, yielding the most 

robust estimates of sea-surface pH and pCO2. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



The calculations for estimating sea-surface pH and pCO2 in the tropical West Pacific 

made use of carbonate dissociation constants K1 and K2 from Mehrbach et al. (1973) as 

refitted by Lueker et al. (2000), KB and Kw from DOE (1994), KSO4 from Dickson (1990), 

[B]tot from Lee et al. (2010), and total pH scale. Four pH, pCO2-sw and ΔpCO2(sw-atm) records 

were generated based on the two models for salinity estimation and the two pH-pCO2 

calculation methods. For records of pH, pCO2-sw and ΔpCO2(sw-atm), the uncertainty produced 

by the four results calculated from the two models for SSS and two calculation methods is 

negligible (Fig. S2). Hence, we present only the records calculated by using the δ
18

O-derived 

SSS and the iterative calculation method to illustrate the variations of the surface seawater 

carbonate system in the WTP since MIS 6 (Fig. 2).  

The total uncertainty of the reconstructed pH and pCO2-sw values is based on the 

propagated 2σ uncertainties of B/Ca, SST, SSS, and ALK. This calculation made use of initial 

uncertainties of ±3.03 μmol/mol for B/Ca, ±0.07 mmol/mol for Mg/Ca, and ±0.06‰ for δ
18

O, 

which yielded uncertainties of ±0.2 °C for SST, ±0.5 psu for SSS, and ±34 μmol/kg for ALK. 

These values are small compared to the errors of ±1 °C in SST, ±1 psu in SSS, and ±100 

μmol/kg applied in some recent studies (Hönisch et al., 2019; Xiong et al., 2022), so we 

chose the larger (i.e., published) uncertainties for our error propagation. The final errors 

associated with pH and pCO2-sw are ±0.073 units in pH and ±65.5 ppmv in pCO2-sw on 

average, propagated from the individual uncertainties of B/Ca (±3.03 μmol/mol, 

corresponding to ±0.011 units in pH and ±9.7 ppmv in pCO2-sw on average), SST (±1 °C, 

corresponding to ±0.069 units in pH and ±63.6 ppmv in pCO2-sw on average), SSS (±1 psu, 

corresponding to ±0.006 units in pH and ±11.8 ppmv in pCO2-sw on average), and ALK (±100 
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μmol/kg, corresponding to ±0.020 units in pH and ±3.6 ppmv in pCO2-sw on average).  

 

3.4 Caveats 

Although the benthic foraminiferal B/Ca proxy has been well calibrated and widely 

applied in paleoceanographic studies (e.g., Yu and Elderfield, 2007; Yu et al., 2014), controls 

on the planktic foraminiferal B/Ca proxy have yet to be fully identified. There are two forms 

of dissolved boron in seawater: B(OH)4
-
 and B(OH)3, the proportions of which are highly 

pH-dependent (Hershey et al., 1986). Because B(OH)4
-
 is the main species incorporated into 

carbonates, seawater paleo-pH can be estimated using the B/Ca ratios of planktic 

foraminifera given an accurate constraint on KD in Equation (2) (Hemming and Hanson, 1992; 

Yu et al., 2007). Since KD is thought to be temperature-dependent (Yu et al., 2007), questions 

have arisen  regarding use of the planktic B/Ca proxy. Various studies have reported both 

positive and negative correlations between KD and temperature (Yu et al., 2007; Foster, 2008; 

Tripati et al., 2009). Foster (2008) found that seawater [CO3
2-

] also can affect KD. In addition, 

DIC (Allen and Hönisch, 2012; Haynes et al., 2017), light intensity (Babila et al., 2014), 

[PO4
3-

] (Henehan et al., 2015), growth and calcification rates (Ni et al., 2007; Salmon et al., 

2016), and salinity (Allen et al., 2011; Henehan et al., 2015) have been reported as 

influencing the incorporation of boron into foraminiferal calcite. However, culture 

experiments have inferred that temperature has little influence on KD (Allen et al., 2011), and 

that shell growth rate does not appear to determine B/Ca ratios (Haynes et al., 2017).  

Although interpretation of the planktic B/Ca proxy may be controversial due to its 

possible dependence on vital effects and/or various seawater physicochemical properties (Ni 
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et al., 2007; Salmon et al., 2016; Haynes et al., 2017), this proxy is known to respond to 

variation in sea-surface pH and, thus, permits reconstruction of paleo-pCO2-sw (Yu et al., 2007; 

Foster, 2008; Yu et al., 2013; Guo et al., 2019). Considering the uncertainties surrounding the 

application of the planktic B/Ca proxy, it is crucial to assess the reliability of B/Ca-based pH 

estimates. This can be achieved using foraminiferal δ
11

B (Yu et al., 2010, 2013), which is a 

well-established and non-controversial proxy for seawater pH (Hemming and Hanson, 1992; 

Hönisch and Hemming, 2005; Foster and Rae, 2016). To evaluate the robustness of planktic 

B/Ca for reconstruction of seawater pH in the study area, we compared sea-surface pH and 

pCO2 as reconstructed from δ
11

B in the nearby Core MD06-3054 (Xiong et al., 2022) with 

our B/Ca-based pH and pCO2-sw estimates (Figs. 1 and S3). This comparison shows that 

nearly indistinguishable pH and pCO2-sw estimates are obtained from δ
11

B and B/Ca, yielding 

similar trends and absolute values, which proves that planktic foraminiferal B/Ca ratios can 

serve as a reliable proxy for sea-surface pH in the study area. 

 

3.5 Cross-spectral analysis and filters 

Cross-spectral analysis of ΔpCO2(sw-atm) versus proxies for the EAM and ENSO-like 

conditions was undertaken with the ARAND software package (Howell et al., 2006). The 

bandwidth was 0.0222. All data series were linearly interpolated at 1 kyr intervals and 

detrended prior to analysis. Because the study interval in Core MD06-3052 spans only the 

last 155 kyr, it was not possible to examine coherence between proxy records and the 100-kyr 

orbital eccentricity cycle at the 95% confidence level. Thus, our analysis of orbital forcing of 

oceanographic conditions in the WPS focuses exclusively on the ~20-kyr precession cycle. 
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Gaussian band-pass filters were applied to the ΔpCO2(sw-atm) and published proxy records 

using the Acycle software (Li et al., 2019) to extract oscillations associated with precessional 

periodicities. The center frequency of the filters was 0.043 kyr
-1

 and the bandwidth was 

0.003. 

 

4. Results 

B/Ca ratios in G. ruber from Core MD06-3052 since MIS 6 range between 83 and 143 

μmol/mol, with significant differences between glacial and interglacial stages (Fig. 2b). 

Specifically, B/Ca ratios are high in MIS 5e and MIS 1, and low in MIS 6 and MIS 5d-2. In 

addition, B/Ca ratios show a decrease from MIS 5 to MIS 2 as well as a prominent increase 

during the MIS 6/5 and MIS 2/1 deglaciations (Fig. 2b). Sea-surface pH in the WTP since 

MIS 6 also exhibits significant variations between glacial and interglacial stages, showing an 

inverse correlation with B/Ca and pCO2 (Fig. 2). pH ranges from 7.97 to 8.31, being low in 

MIS 5e and MIS 1, and high in MIS 6 and MIS 5d-2 (Fig. 2c). Contrary to B/Ca, the pH 

values in the WTP show a long-term rise from MIS 5 to MIS 2 as well as significant 

decreases during the MIS 6/5 and MIS 2/1 deglaciations (Fig. 2c). 

The pCO2-sw record derived from B/Ca shows a similar trend with that of pCO2-atm 

(Bereiter et al., 2015) (Fig. 2d). Furthermore, within uncertainty, pCO2-sw is in equilibrium 

with, or higher than, coeval pCO2-atm (Fig. 2d). To examine this relationship in more details, 

we calculated the difference between pCO2-sw and pCO2-atm (i.e., ΔpCO2(sw-atm)) (Fig. 2e). The 

ΔpCO2(sw-atm) is roughly equal to 0 ppmv in the late Holocene (i.e., 3-0 ka), indicating 

equilibrium between pCO2-sw and pCO2-atm, which conforms to proxy records of net air-sea 
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CO2 flux in the WTP for this interval (Takahashi et al., 2009) and demonstrates the reliability 

of the reconstructed sea-surface pH and pCO2 values derived from Core MD06-3052. This 

air-sea CO2 equilibrium has prevailed since MIS 6 except for relatively brief intervals during 

MIS 6, MIS 5e, MIS 4/3, and MIS 2/1 when the WTP has served as a transient, modest CO2 

source (Fig. 2e). 

 

5. Discussion 

5.1 Mechanisms for air-sea CO2 exchange in the WPS since MIS 6 

Our reconstructed ΔpCO2(sw-atm) record reveals that the WTP has been in air-sea CO2 

equilibrium, or has served as a modest CO2 source, since MIS 6 (Fig. 2e). During the 

transient intervals in which CO2 was sourced from the WTP, oceanic processes may have 

contributed to the disequilibrium in CO2 exchange between ocean and atmosphere. Air-sea 

CO2 exchange in the modern WTP is known to be influenced by the EAM and ENSO (Feely 

et al., 2002; Zhai et al., 2009; Yuan et al., 2011), the past behavior of which can be 

reconstructed from various types of proxy records. For example, a composite stalagmite δ
18

O 

record from Chinese caves characterizes changes in EASM wind intensity over the past 640 

kyr (Cheng et al., 2016), and grain-size variation (GT32, >32 μm particle content) on the 

Chinese Loess Plateau records variation in the East Asian winter monsoon (EAWM) over the 

past 880 kyr (Hao et al., 2012). In addition, the experiments of Clement et al. (1999) with the 

Zebiak-Cane ENSO model incorporating Milankovitch solar forcing yielded the NINO 3 

index for ENSO-like conditions. To investigate the effects of EAM and ENSO-like conditions 

on air-sea CO2 exchange in the study area since MIS 6, we compared the reconstructed 
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ΔpCO2(sw-atm) record of Core MD06-3052 with stalagmite δ
18

O (Cheng et al., 2016), GT32 

(Hao et al., 2012), and the NINO 3 index (Clement et al., 1999) (Fig. 3). 

 

5.1.1 ENSO-like conditions 

In the modern, ENSO controls air-sea CO2 exchange in the WTP through lateral 

advection of surface waters from the Eastern Tropical Pacific and regulation of the depth of 

thermocline (DOT) within the WTP (Inoue and Sugimura, 1992; Feely et al., 2002; Ishii et al., 

2014; Chiodi and Harrison, 2015; Chen et al., 2016). The modern Eastern Tropical Pacific, 

which is characterized by high pCO2-sw, is a major source of CO2 to the atmosphere, and the 

area of the source region extends westward during La Niña periods and retreats eastward 

during El Niño periods (Inoue and Sugimura, 1992; Takahashi et al., 2009; Ishii et al., 2014). 

During westward expansions, high pCO2-sw surface waters extend only to the easternmost 

WTP and, thus, do not influence ∆pCO2(sw-atm) in the WPS (Xiong et al., 2022). For this 

reason, ENSO in the modern ocean exerts a large impact on air-sea CO2 exchange in the 

study area mainly through its influence on DOT (Inoue and Sugimura, 1992; Feely et al., 

2002; Chiodi and Harrison, 2015; Chen et al., 2016). Specifically, El Niño periods are 

characterized by thermoclinal shallowing, which brings nutrient- and CO2-rich subsurface 

waters to the surface, charging the latter with CO2 and promoting increases in productivity 

and ∆pCO2(sw-atm). In contrast, La Niña periods are characterized by thermoclinal deepening, 

which limits migration of CO2 and nutrients between the thermocline and surface watermass, 

resulting in lower pCO2-sw, productivity and ∆pCO2(sw-atm) in surface waters of the study area 

(Inoue and Sugimura, 1992; Turk et al., 2001; Feely et al., 2002; Xiong et al., 2022). 
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Variation in the ΔpCO2(sw-atm) record of this study matches that of the NINO 3 index since 

MIS 6 (Clement et al., 1999), i.e., higher ∆pCO2(sw-atm) corresponds to La Niña-like 

conditions (Fig. 3a, f). Furthermore, the spectrum of ΔpCO2(sw-atm) is dominated by a strong 

precessional (~20 kyr) signal (Fig. 4, red line), and cross-spectral analysis of ΔpCO2(sw-atm) 

(Fig. 3f) and the NINO 3 index (Clement et al., 1999) (Fig. 3a) reveals that the former proxy 

is anti-phased with the simulated ENSO record in the precession-band frequency range at the 

95% confidence level (Fig. 4a), meaning that higher ∆pCO2(sw-atm) in the study area is 

correlated with La Niña-like conditions since MIS 6. However, this relationship is the 

opposite of that between ENSO and ∆pCO2(sw-atm) prevailing in the study area today, in which 

higher (lower) ∆pCO2(sw-atm) is related to El Niño (La Niña) periods. Thus, we infer that 

ENSO-like conditions are unlikely to have been the main cause for ∆pCO2(sw-atm) variation at 

precession-band frequencies in the study area since MIS 6. 

 

5.1.2 East Asian Monsoon 

In the modern, the EAWM causes a negative wind stress curl that enhances Ekman 

downwelling, causing the WTP to be a moderate sink for atmospheric CO2 (Tozuka et al., 

2002; Xiong et al., 2022). However, records from Core MD06-3052 indicate that the WTP 

was in air-sea CO2 equilibrium or served as a modest CO2 source during MIS 6, MIS 5e, MIS 

4/3, and MIS 2/1 (Fig. 2e). In addition, unlike the covariation between ΔpCO2(sw-atm) and 

ENSO-like conditions, the cross-spectral analysis between ΔpCO2(sw-atm) (Fig. 3f) and GT32 

in the Luochuan loess section (Hao et al., 2012) (Fig. 3b) displays insignificant coherence in 

the precession band (Fig. 4b). Hence, we infer that the EAWM has had little effect on air-sea 
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CO2 exchange at precession-band frequencies in the study area since MIS 6. 

The climatic interpretation of Chinese cave δ
18

O records remains a subject of intense 

debate, with various studies proposing influence by rainfall amount, recycling of terrestrial 

precipitation, moisture-source temperature, and moisture source region and transport pathway 

(e.g., Maher and Thompson, 2012; Parker et al., 2021; Tan, 2014). However, a nascent 

consensus has emerged based on data-model approaches that interpret Chinese cave δ
18

O as a 

record of summer monsoon intensity driven by upstream depletion of moisture, with high 

(low) δ
18

O values reflecting weak (strong) EASM intensity (e.g., Cheng et al., 2016, 2019, 

2021; Liu et al., 2014; Liu et al., 2020; Wen et al., 2016; He et al., 2021; Zhang et al., 2019, 

2021a). In the modern, the EASM is characterized by a positive wind stress curl that results 

in Ekman upwelling in the study area (Tozuka et al., 2002; Xiong et al., 2022). Ekman 

upwelling is accompanied by thermoclinal shoaling that brings nutrient- and CO2-rich 

subsurface waters to the surface layer, enhancing pCO2-sw and primary productivity (Tozuka 

et al., 2002; Raven et al., 2005; Takahashi et al., 2009). Our records show that ΔpCO2(sw-atm) 

in the study area has been in good agreement with EASM intensity since MIS 6, i.e., higher 

ΔpCO2(sw-atm) corresponds to a stronger EASM (Fig. 3c, f). This relationship implies that 

physical CO2 degassing has been more important than biological carbon sequestration in the 

study area since MIS 6. In addition, cross-spectral analysis between ΔpCO2(sw-atm) (Fig. 3f) 

and stalagmite δ
18

O (Cheng et al., 2016) (Fig. 3c) reveals anti-phased variation in the 

precession-band frequency range at the 95% confidence level (Fig. 4c), confirming the 

relationship of higher ∆pCO2(sw-atm) to stronger EASM. Thus, based on a comparison of 

paleorecords and the results of cross-spectral analysis, we infer that variations of ΔpCO2(sw-atm) 
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in the study area since MIS 6 were closely related to EASM intensity in the precession band, 

with higher ΔpCO2(sw-atm) linked to a stronger EASM. 

In order to explore the close connection between air-sea CO2 exchange in the study area 

and EASM intensity at precession-band frequencies since MIS 6, we investigated secular 

variation in DOT and primary productivity. The difference in Mg/Ca-based temperatures 

between surface-dwelling species (e.g., G. ruber) and thermocline-dwelling species (e.g., 

Neogloboquadrina dutertrei and Pulleniatina obliquiloculata) has been widely used to track 

changes in upper water column structure (Steinke et al., 2010; Hollstein et al., 2018; Jian et 

al., 2020; Zhang et al., 2021b). Specifically, a larger (smaller) temperature difference (ΔT) 

between sea-surface temperature (SST) and thermoclinal water temperature (TWT) denotes a 

larger (smaller) vertical temperature gradient and, thus, a shallower (deeper) thermocline 

(Hollstein et al., 2018; Jian et al., 2020). Spectral analysis of the ΔT record of Core 

MD06-3052 previously revealed peaks in the orbital precession band (Qiu, 2013) (Fig. S4a). 

We applied Gaussian band-pass filters to the stalagmite δ
18

O (Cheng et al., 2016) (Fig. 3c) 

and Core MD06-3052 ΔT records (Qiu, 2013) (Fig. 3d), and the results show that DOT 

generally varied in phase with EASM intensity (Fig. 3c, d), confirming the relationship 

between these parameters at precession-band frequencies in the study area since MIS 6. 

The orbital precession cycle has been found in records of late Pleistocene primary 

productivity in the study area (Fraser et al., 2014) (Fig. S4b), which is in accordance with 

other records from the WTP (Beaufort et al., 2001; Su et al., 2015). The precessional filter for 

primary productivity (Fraser et al., 2014) is strongly correlated with stalagmite δ
18

O (Cheng 

et al., 2016) (Fig. 3c, e), indicating a close connection between productivity and EASM 
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intensity. Therefore, we infer that primary productivity variation in the study area was mainly 

controlled by EASM intensity rather than ENSO-like conditions at precession-band 

frequencies since MIS 6, with higher (lower) primary productivity corresponding to a 

stronger (weaker) EASM. 

Variation in EASM intensity on orbital timescales is thought to be modulated primarily 

by precession-paced insolation (Kutzbach et al., 2008; Wang et al., 2008). Specifically, an 

increase of precession-dominated Northern Hemisphere summer insolation (NHSI) results in 

a stronger EASM (Wang et al., 2008). Analogous to the modern, EASM strengthening is 

accompanied by thermoclinal shoaling and Ekman upwelling that brings nutrient- and 

CO2-rich subsurface waters to the surface layer (Tozuka et al., 2002; Raven et al., 2005; 

Takahashi et al., 2009), leading to higher primary productivity and pCO2-sw in the surface 

watermass (Fig. 3c-e). Finally, physical CO2 degassing exceeds biological carbon 

sequestration in the study area, generating higher ΔpCO2(sw-atm) at precession-band 

frequencies since MIS 6 (Fig. 3f). As a result, the study area has served as a modest CO2 

source, especially during transient intervals of MIS 6, MIS 5e, and MIS 2/1 (Fig. 3f). By 

contrast, a decrease of precession-driven NHSI caused weaker EASM, which was 

accompanied by thermoclinal deepening and reduced primary productivity and pCO2-sw in 

surface waters of the study area, generating lower ΔpCO2(sw-atm) at precession-band 

frequencies since MIS 6 (Fig. 3c-f). Finally, lower ΔpCO2(sw-atm) led to air-sea CO2 

equilibrium in the study area within uncertainty (Fig. 3f). 

 

5.2 Control of air-sea CO2 exchange during cold-to-warm stage transitions (deglaciations) 
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The temporal agreement between marine records of the Eastern Tropical Pacific and 

ice-core records of Antarctica suggests that deglacial δ
13

C minimum signals generated at high 

latitudes can be laterally advected to the tropical Pacific by enhanced SAMW/AAIW flow 

and atmospheric CO2 (Spero and Lea, 2002). Planktic foraminiferal δ
13

C minima are also 

observed at the transitions from cold to warm stages (i.e., MIS 6/5, MIS 4/3 and MIS 2/1) in 

the study area (Qiu et al., 2014b) (Fig. 5c), coincident with extreme values of sea-surface pH 

and pCO2-sw in the study core (Fig. 2c, d). Since the formation of North Pacific Intermediate 

Water was weak and the influence of AAIW was stronger during the last deglaciation in the 

study area (Kubota et al., 2015; Yang et al., 2017), we infer that the extreme values of 

sea-surface pH, pCO2-sw, and δ
13

C in the WTP record increased upwelling and/or ventilation 

of the Southern Ocean during the glacial-interglacial transitions, and that AAIW carried the 

chemical signature from the Southern Ocean to our study area (see Section 2; Qu et al., 1999; 

Sarmiento et al., 2004; Talley et al., 2011). 

In order to further investigate whether DIC was transmitted to our study area by 

enhanced AAIW flow, we explored the relationship of our reconstructed ΔpCO2(sw-atm) profile 

to both the planktic foraminiferal δ
13

C record of study Core MD06-3052 (Qiu et al., 2014b) 

and the opal flux records of reference Cores TN057-13PC, TN057-14PC, and ODP 1094 in 

the Southern Ocean (Anderson et al., 2009; Jaccard et al., 2013) (Fig. 5). These results show 

that peak values of opal flux correspond to low values of δ
13

C and high values of 

ΔpCO2(sw-atm) during glacial-interglacial transitions (i.e., MIS 6/5, MIS 5b/5a, MIS 4/3, and 

MIS 2/1; cyan bars of Fig. 5). In addition, δ
13

C minima in the thermocline-dwelling species N. 

dutertrei from study Core MD06-3052 during the transitions has also been reported in a 
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previous study (Qiu, 2013). This observation implies that, as a consequence of increased 

ventilation of the Southern Ocean, DIC-rich AAIW diffused into the thermocline of the WTP, 

affecting its upper water column and air-sea CO2 exchange (Kubota et al., 2014; 

Martínez-Botí et al., 2015). Therefore, we infer that changes in air-sea CO2 exchange in the 

WTP during cold-to-warm stage transitions (i.e., MIS 6/5, MIS 5b/5a, MIS 4/3, and MIS 2/1) 

were related to the increased ventilation of deep waters in the Southern Ocean. 

 

5.3 Significance of precessional forcing for paleoclimate 

Changes in upwelling rates associated with precession-driven monsoonal intensity have 

been documented in the Indo-Pacific region on orbital timescales (Jian et al., 2001; Lückge et 

al., 2009; Wang et al., 2018). In addition, precessional forcing of ENSO-like conditions and 

tropical climate has been proposed on the basis of model experiments and instrumental 

records (Clement et al., 1999; Lu et al., 2019; Zhang et al., 2021). Furthermore, variations in 

productivity associated with monsoonal intensity and ENSO-like conditions are thus linked to 

precessional forcing, as confirmed by previous studies in the Indo-Pacific region (Beaufort et 

al., 2001; Lückge et al., 2009; Su et al., 2015). Hence, the Earth’s orbital precession can 

effect climate change by modulating both physical (e.g., monsoon intensity, upwelling rates) 

and biological (e.g., productivity rates) processes. In the present study, our planktic 

foraminiferal B/Ca record from Core MD06-3052 demonstrates that ΔpCO2(sw-atm) was also 

controlled by precessional forcing, which means that, in addition to physical and biological 

processes, precession can also effect climate change through chemical processes (cf. Zhao et 

al., 2021). In conclusion, precession can exert a large impact on climate change including 
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air-sea CO2 exchange by regulating physical (e.g., monsoon intensity, upwelling rates), 

biological (e.g., productivity rates), and chemical (e.g., surface carbonate chemistry) 

processes.  

 

6. Conclusions 

On the basis of B/Ca measurements for the planktic foraminifer G. ruber from Core 

MD06-3052 in the WTP, we calculated sea-surface pH and pCO2-sw, and investigated the 

relationship between marine environmental factors and air-sea CO2 exchange in the study 

area since MIS 6. The major conclusions are summarized as follows:  

(1) Sea-surface pH and pCO2-sw in the Western Tropical Pacific (WTP) since MIS 6 

exhibit significant variations between glacial and interglacial stages, although ΔpCO2(sw-atm) 

records suggest that the WTP has been in air-sea CO2 equilibrium or has served as a modest 

CO2 sink since MIS 6 (~155 ka). 

(2) In the precession-band frequency range, EAWM and ENSO-like conditions have not 

been the main control on air-sea CO2 exchange in the study area since MIS 6. However, 

air-sea CO2 exchange has been modulated by precession-driven EASM intensity. 

Precession-dominated stronger (weaker) EASM was associated with thermoclinal shallowing 

(deepening), increases (reductions) in primary productivity, and higher (lower) ΔpCO2(sw-atm).  

(3) DIC-rich AAIW has diffused into the thermocline of the WTP during intervals of 

increased ventilation of the Southern Ocean, affecting sea-surface pH and pCO2-sw in the 

study area during cold-to-warm stage (glacial to interglacial) transitions, including MIS 6/5, 

MIS 5b/5a, MIS 4/3, and MIS 2/1. 
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Figure captions 

 

Fig. 1. (a) Locations of cores MD06-3052 (this study), MD06-3054 (Xiong et al., 2022), and 

MD06-3075 (Fraser et al., 2014) and regional circulation in the WTP. NEC—North 

Equatorial Current, NECC—North Equatorial Counter Current, KC—Kuroshio Current, 

MC—Mindanao Current, ME—Mindanao Eddy, HE—Halmahera Eddy, and 

AAIW—Antarctic Intermediate Water. (b) Locations of reference cores TN057-13PC (same 

location as ODP 1094) and TN057-14PC in the Southern Ocean (Anderson et al., 2009; 

Jaccard et al., 2013). Maps were generated using Ocean Data View (Schlitzer, 2021). 

 

Fig. 2. Reconstructed carbonate chemistry in Core MD06-3052 from the WTP. (a) δ
18

O (Qiu 

et al., 2014a) and (b) B/Ca ratios in G. ruber (this study). (c) pH estimated from G. ruber 

B/Ca (this study). (d) pCO2-atm (Bereiter et al., 2015) and pCO2-sw (this study). (e) 
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ΔpCO2(sw-atm) in Core MD06-3052 (this study). The blue dashed line in (e) corresponds to 

ΔpCO2(sw-atm) = 0 ppmv. Colored shading for individual records indicates error ranges. The 

numbers at top in figures 2 to 5 denote marine isotope stages. 

 

Fig. 3. Comparisons of ∆pCO2(sw-atm) with EAM, ENSO-like conditions, temperature 

difference (ΔT), and primary productivity in the WTP. (a) 500-year average NINO 3 index in 

Zebiak-Cane model forced with Milankovitch solar forcing (Clement et al., 1999). (b) GT32 

(>32 μm particle size) in the Luochuan loess section (Hao et al., 2012). (c) Composite 

stalagmite δ
18

O record (Cheng et al., 2016). (d) Temperature difference (ΔT) between 

sea-surface temperature (SST) and thermoclinal water temperature (TWT) (Qiu, 2013). (e) 

Productivity estimated from the relative abundance of Florisphaera profunda in Core 

MD06-3075 (Fraser et al., 2014). (f) ∆pCO2(sw-atm) in Core MD06-3052 (this study). The 

green line in (f) represents ΔpCO2(sw-atm) = 0 ppmv, and the green dashed lines in (f) bracket 

the average error (±65.5 ppmv) associated with ∆pCO2(sw-atm) estimates. The superimposed 

black lines denote the Gaussian band-pass filters (center frequency = 0.043 kyr
-1

; bandwidth 

= 0.003). 

 

Fig. 4. Cross-spectral analysis between ΔpCO2(sw-atm) and proxies of EAM and ENSO-like 

conditions using the ARAND software package (Howell et al., 2006). (a) 500-year average 

NINO 3 index in Zebiak-Cane model forced with Milankovitch solar forcing (Clement et al., 

1999) and ΔpCO2(sw-atm). (b) GT32 (>32 μm particle content) in the Luochuan loess section 

(Hao et al., 2012) and ΔpCO2(sw-atm). (c) Composite stalagmite δ
18

O record (Cheng et al., 2016) 
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and ΔpCO2(sw-atm). The bandwidth is 0.0222. All data have been linearly interpolated at 1 kyr 

and detrended prior to analysis. Dashed gray lines denote the 80% and 95% confidence levels. 

Cyan-shaded vertical bars indicate periods with significant coherence at the 95% confidence 

level. Vertical black bars are error bars. 

 

Fig. 5. Coupling between ventilation of deep water in the Southern Ocean and air-sea CO2 

exchange in the study area. (a) δ
18

O in G. ruber from Core MD06-3052 (Qiu et al., 2014a). (b) 

ΔpCO2(sw-atm) in Core MD06-3052 (this study) (c) δ
13

C in G. ruber from Core MD06-3052 

(Qiu et al., 2014b). (d) Opal flux from Cores TN057-13PC, TN057-14PC, and ODP 1094 in 

the Southern Ocean (Anderson et al., 2009; Jaccard et al., 2013). Cyan bars indicate periods 

of increased ventilation in the Southern Ocean. 
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Fig. 3 
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Highlights 

 

 Reconstruction of sea-surface pH and pCO2 in Western Tropical Pacific since MIS-6 

 EAWM and ENSO-like conditions do not affect ΔpCO2(sw-atm) of WTP in precession band 

 Precession-driven EASM affects air-sea CO2 exchange by regulating productivity & 

DOT 

 Surface carbonate system in WTP linked to upwelling of Southern Ocean deep waters 

 Upwelling strongest during cold-to-warm stage transitions (MIS 6/5, 5b/5a, 4/3, 2/1) 
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