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Abstract :   
 
Assessing organic matter fluxes and species interactions in food webs is of main interest to understand 
the ecological functioning in bays and estuaries characterised by a wide diversity of primary producers 
and consumers. Demersal fish and cephalopod assemblages were studied across a network of 24 shallow 
subtidal stations in the bay of Saint-Brieuc for their diversity, stable isotope compositions and stomach 
contents. The community was composed of 21 taxa, eight species accounting for 94.4% of the total 
abundance. Three different assemblages were identified along bathymetric gradient and spatial patterns 
in fish dredging. Marine POM and SOM were the most likely bases of food webs regarding δ13C range 
displayed by fish and cephalopod without differences among assemblages. Amphipoda was the main 
prey item in stomachs leading to significant diet overlaps among fish species, with some variations in 
additional items. Sepia officinalis was characterised by a singular diet and very low dietary overlap with 
other species. Contrasted stable isotope values and niche overlaps among species were evidenced in 
the δ13C/δ15N space. Callionymus lyra and Buglossidium luteum, characterised by the widest isotopic 
niches, encompassed those of other species, except the singular 13C-depleted Spondyliosoma 
cantharus. Coupling taxonomic assemblages, stomach contents and stable isotope analyses help 
disentangling the resources uses and evidencing trophic pathways. Contrasts in fish and cephalopod 
demersal assemblages occurring at different depths not necessarily imply differences in the trophic 
resources uses in such complex shallow coastal ecosystems under anthropogenic influences. 
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Highlights 

► Trophic ecology of fish assemblages (stomach content and stable isotopes) were studied in the bay of 
Saint Brieuc (France). ► The fish and cephalopod community was composed of 21 taxa; eight species 
accounted for 94.4% of the total abundance. ► An impoverished assemblage may reveal the impact of 
scallop dredging on a part of the Bay. ► Amphipoda was the main prey with many additional items 
depending on predator species. ► At the assemblage scale, fish and demersal fauna mostly relied on 
POM/SOM-based food chains. 
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I. Introduction: 66 

Coastal areas are among the most productive marine systems in the world, 67 

sustaining many ecological processes and ecosystems services (Costanza et al., 68 
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1997). Worldwide, these ecosystems are suffering severe taxonomic and functional 69 

changes in response to cumulative effects of anthropogenic disturbances including 70 

overfishing, pollution, climate change, habitat degradation and introduction of non-71 

indigenous species (Gray, 1997; Claudet & Fraschetti, 2010). Human influences 72 

induce both acute and chronic effects over various temporal and spatial scales, and 73 

can ultimately lead to broad-scale losses of productive habitats, and alteration of 74 

community structure and function (Ellis et al., 2000).  75 

Bays and estuaries provide habitats to a wide range of species of potential ecological 76 

importance and commercial interest. The production in such ecosystems is 77 

supported by a wide diversity of primary producers, including phytoplankton, 78 

seaweeds, seagrass, mangroves, salt marsh plants, and benthic diatoms (Bouillon et 79 

al., 2011). The contribution of these diverse sources to estuarine and coastal food 80 

webs differs substantially across systems around the world, particularly for nekton 81 

(e.g. fishes, cephalopod), which utilize multiple sources of organic matter over space 82 

and time because of their mobility and feeding behavior (Kundu et al., 2021). 83 

Individuals from many fish or cephalopod species concentrate during the juvenile 84 

stage in spatially restricted nursery areas within coastal habitats and estuaries (Beck 85 

et al., 2001; Brown et al., 2018; Seitz et al., 2014) where they feed on abundant 86 

macrobenthos, especially during biomass peaks from late spring to early fall in 87 

temperate areas (Beukema, 1974; Nicolas et al., 2007; Saulnier et al., 2020). This 88 

concentration of benthic feeding juveniles results in density-dependent regulation (Le 89 

Pape and Bonhommeau, 2015), especially related to inter-specific relationships (Post 90 

et al., 1999). Food competition may occur when individuals from one or several 91 

species share a common feeding strategy and rely on limited preys (Birch, 1957). 92 

Even if food partitioning limits competition, most bentho-demersal fish species are 93 

considered as opportunistic predators and prey on a shared pool of preys (Hunsicker 94 
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et al., 2011), especially at juvenile stage, leading to potential competition processes 95 

at intra and interspecific levels (Tableau et al., 2019).  96 

Stomach content analysis (SCA) and stable isotope analysis (SIA) are two tools to 97 

infer basal carbon sources, trophic interactions and/or food web structure. SCA 98 

provide taxonomic information of prey items and their abundance, weight and 99 

occurrence. However, SCA represents a snapshot of recently (hours to day) ingested 100 

prey and can be biased by different digestibility among targeted items (Hyslop, 101 

1980). As predators integrate both carbon and nitrogen isotopic compositions of their 102 

preys into their own tissues, SIA provides a longer temporally integrated information 103 

on dietary habits (days to months according to tissues) reflecting actually assimilated 104 

prey (Fry, 2008). However, SIA fails to provide accurate information about the 105 

diversity and identity of prey items. Considering this complementarity, the association 106 

of SCA and SIA allows to take the best of both approaches by the calculation of 107 

complementary metrics (Cresson et al., 2014; Davis et al., 2012; Leclerc et al., 2013; 108 

Petta et al., 2020; Togashi et al., 2019).  109 

In stable isotope analysis, the concept of isotopic niche is frequently analysed 110 

through different metrics used to examine food web structure, i.e., resource use and 111 

trophic positions among organisms, populations or trophic groups (Layman et al., 112 

2007a). Trophic niche variability [sensus Newsome et al. (2007)] reflects the 113 

availability of food resources, habitat uses, behaviours and distributions within 114 

ecosystems (Bolnick et al., 2002; Quevedo et al., 2009). Intraspecific niche can 115 

depict opportunistic or specialist feeding behaviour within species functional diversity, 116 

while interspecific niche can reveal competition or resources partitioning strategies 117 

among populations. Interestingly, the concepts of niche variability and overlap can be 118 

tested among predator species through metrics respectively derived both from 119 

stomach contents [nicheSCA  (Petta et al., 2020; Schoener, (1971)] and isotope 120 
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compositions [nicheSIA
  (Petta et al., 2020; Cucherousset and Villéger, 2015; Layman 121 

et al., 2007a, 2012; Rigolet et al., 2015)].  122 

Bentho-demersal fish and cephalopod assemblages may vary spatially in response 123 

to natural or anthropogenic factors. Variability in species richness or diversity among 124 

assemblages can also affect niches and food web structure (Wellard Kelly et al., 125 

2021) and increase competition and specialization leading to a niche reduction for 126 

some species (Connell, 1983). The relationship between assemblage compositions 127 

and trophic complexity, including niches variability and overlap, is therefore an 128 

important aspect for these communities.  129 

On the French coast of the English Channel, coastal fish and cephalopod 130 

communities and nurseries have been studied in the main coastal bays and estuaries 131 

[e.g. Rance estuary (Le Mao, 1985), bay of Seine (Day et al., 2021 ; Saulnier et al. 132 

2020), bay of Mont-Saint-Michel (Kostecki et al., 2012), bay of Morlaix (Dauvin, 1988) 133 

or Bay of Somme (Auber et al., 2017)] providing powerful information for the 134 

understanding and the conservation of coastal habitats. In the bay of Saint-Brieuc 135 

(Western English Channel), fish communities that use the intertidal area at high tide 136 

have been studied in relation to salt marsh (Laugier, 2015; Sturbois et al., 2016) and 137 

green tides (Le Luherne et al., 2016). Despite a recent update of the benthic 138 

macrofauna knowledge in the subtidal area belonging to the “Baie de Saint-Brieuc – 139 

Est” Natura 2000 site and neighbouring the National Nature Reserve of the bay of 140 

Saint-Brieuc (Sturbois et al., 2021a), data on bentho-demersal fish and cephalopods 141 

are rare and old (Gully, 1981; Le Dean and Moreau, 1981). The marine protected 142 

areas did not prevent this shallow subtidal area under a megatidal regime from 143 

different anthropogenic activities (Shellfish farming, eutrophication, invasive species) 144 

and the bay has been supporting intense bottom fishing (mostly scallop dredging) for 145 

decades. This fishing pressure has affected benthic habitats (Sturbois et al., 2021a) 146 
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and may have potential impacts on fish and cephalopod communities of the marine 147 

protected area.  148 

In this study, we analysed fish and cephalopod communities at species and 149 

assemblages scales in the shallow soft bottom sediments of the bay of Saint-Brieuc 150 

and on the associated food web from primary producers to benthic consumers. After 151 

the analysis of the distribution of fish and cephalopods species in order to distinguish 152 

the taxonomic assemblages, our objective was to disentangle sources uses and 153 

trophic relationships among species, particularly: (1) Are taxonomic fish and 154 

cephalopod assemblages supported by different trophic sources? ; (2) How do trophic 155 

strategies of demersal fish and cephalopod species can be evidenced by crossing 156 

stomach contents and stable isotope analyses? We finally discussed results in relation 157 

with methodological benefits and caveats when crossing stomach contents and stable 158 

isotope analyses, previous information on the benthic preys production, and their 159 

implications for the understanding and the conservation of the marine protected areas. 160 

 161 

II. Material and methods 162 

2.1 Study area, the bay of Saint-Brieuc (Western English Channel, France) 163 

The study area (Figure 1) encloses 11,700 ha of shallow soft-bottom sediments (0-15 164 

m) under the influence of a semi-diurnal megatidal regime. Tidal range varies from 4 165 

m at neap tides to nearly 13 m during spring tides.  166 

In 2019, the benthic macrofauna was dominated by molluscs, annelids and 167 

crustaceans (Sturbois et al., 2021a). Knowledge concerning subtidal fishes in the study 168 

area are rare and old. In the last studies dating back to 1981, demersal fish 169 

communities were dominated by Pleuronectes platessa, Psetta maxima, Solea 170 

lascaris, S. vulgaris, and Scophthalmus rhombus, while Spondyliosoma cantharus was 171 

limited to the western part of the bay, and Limanda limanda and Platichthys flesus 172 

were scarce (Le Dean and Moreau, 1981; Gully, 1981). In the intertidal area, Le 173 
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Luherne et al. (2016) evidenced the use of sandy beaches at high tide by some 174 

species; e.g. Buglossidium luteum, Pleuronectes platessa,  Pomatoschistus microps, 175 

Chelon spp., and Dicentrarchus labrax; these three last taxa also using the salt marsh 176 

channels (Laugier, 2015; Sturbois et al., 2016). 177 

Despite bordering the National Nature Reserve of the bay of Saint-Brieuc and 178 

partially belonging to the Natura 2000 “Baie de Saint-Brieuc-Est” site (European 179 

Union network, FR5300066), the study area is exposed to a number of 180 

anthropogenic pressures including mussel culture and scallop dredging (Sturbois et 181 

al., 2021b, 2021a). Mussels are farmed on wooden poles (312 ha; Figure 1) in the 182 

north-eastern part of the intertidal area and on ropes in the western part of the study 183 

area. The sea bed is exposed to long-term scallop dredging (Sturbois et al., 2021a). 184 

Some areas are colonized by the non-indigenous slipper limpet Crepidula fornicata 185 

especially in the western part of the bay (Blanchard et al., 2001; Hamon and 186 

Blanchard, 1994). The bay also suffers from eutrophication resulting in macroalgae 187 

proliferation and cyclic green tides episodes (Charlier et al., 2007; Gravier, 2012). 188 

These green tides influence the dynamics of some benthic populations of 189 

invertebrates in the intertidal area (Sturbois et al., 2021b) and impact fish nursery 190 

grounds in the upper parts of the intertidal area (Le Luherne et al., 2017, 2016).  191 

 192 

2.2 Sample collection and laboratory processes 193 

2.2.1 Fish and cephalopods 194 

Fish and cephalopods were sampled in September 2019 using beam trawls (2.5/3 195 

knots) at 24 stations (Figure 1). Deeper stations (n= 14) were sampled with a 3.0 m 196 

beam trawl (1 cm mesh size, length of hauls = 1365m ± 397, mean length ± sd) 197 

towed by the RV Thalia. Shallower stations (n= 10) were sampled with a 1.5 m beam 198 

trawl (1 cm mesh size, length of hauls = 774m ± 8) towed by the Emeraude Explorer 199 

semi-rigid pneumatic boat. Fish were identified and measured (fork length, nearest 200 

mm) on board before release. Some individuals were collected, euthanized with an 201 
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overdosed solution of benzocaine (400 mg.L-1), and immediately frozen (-20°C) for 202 

later stable isotope (SIA) and stomach content (SCA) analyses. Note that skates 203 

(biopsy for SIA) and sea horses were systematically released.  204 

In the laboratory, each fish was measured (fork length, precision: 0.01 cm) and 205 

weighted (total mass, precision: 0.0001 g) before dissection. Fish stomachs were 206 

extracted and weighted (full and without stomach content). When present, prey items 207 

were sorted under a binocular microscope into their lowest possible taxonomic group, 208 

counted and weighted (wet weight). The number of samples depends on the 209 

abundance of fish and cephalopods in the study area. To deal with a number of SCA 210 

samples < 30 individuals for some species we complemented and discussed local 211 

results with respect to a species-level review of SCA at larger scale in Europe (see 212 

section 4.3).   213 

Samples for SIA consisted of individual white dorsal muscle tissues free of any bone, 214 

skin or scales fragments. All samples were rinsed, dried at 60°C for 48 h, and ground 215 

into a fine powder using a marble mortar.  216 

2.2.2 Benthic macrofauna 217 

Benthic macrofauna was sampled with a Rallier du Baty-dredge. Contents were 218 

gently sieved through a 5-mm square mesh sieve. Macrofauna was then sorted on 219 

board and stored at -20°C until further treatment. In the laboratory, animals were 220 

identified to the lowest possible taxonomic level and rinsed. Samples for SIA 221 

consisted of individual muscle tissues of large species (i.e. bivalves, prawns) or 222 

whole individual (for amphipods). The slipper limpet Crepidula fornicata containing 223 

calcium carbonates was split into two subsamples, acidified and non-acidified, 224 

respectively (Androuin et al., 2019). All samples were rinsed, dried at 60°C for 48 h, 225 

and ground into a fine powder using a marble mortar.  226 

 227 
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 228 

 2.2.3. Trophic sources, primary producers and organic matter 229 

Sedimentary organic matter (SOM) was collected at 12 stations from samples of 230 

sediment collected with the Rallier du Baty dredge (Figure 1). For each station, one 231 

subsample was acidified (10% HCl) and re-dried overnight at 60°C, whereas the 232 

other subsample remained untreated. Marine and freshwater samples collected for 233 

suspended particulate organic matter (POM) were pre-filtered through a 90-µm-mesh 234 

to remove large detritus and then filtered on precombusted (500°C, 5h) Whatman 235 

GF/F filters (47 mm diameter). POM collected from river basins (POM_TER, 5 236 

stations), and offshore (POM_SEA, 2 stations) were differentiated. 237 

Leaves and twigs of the most representative vascular plants colonizing salt marshes 238 

(Sturbois and Bioret, 2019, Sturbois et al. 2022) and Ulva spp. were also collected. 239 

Samples were rinsed in the laboratory to be cleaned from epibionts, dried at 60°C for 240 

48h, and ground into a fine powder using a marble mortar. 241 

 242 

 243 
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Figure 1: Location of the study area and sampling strategy: length of hauls (colored line), 257 
location of particulate organic matter (POM, test tube) and sedimentary organic matter (SOM, 258 
black stars) samples, depths (grey lines). 259 

2.3 Stable isotope analysis 260 

At least three replicates were analyzed per species when possible; however, for few 261 

taxa less replicates were available (Supplementary material, Appendix A). Powdered 262 

samples were packed into 5 x 8 mm ultra-clean tin capsules and analysed using an 263 

elemental analyser (EA Flash 2000 from ThermoFisher Scientific) coupled with an 264 

isotope ratio mass spectrometer (Delta V Plus from ThermoFisher Scientific) at the 265 

stable isotope facility of the Pole Spectrométrie Océan at the University of Bretagne 266 

Occidentale (Brest, France).  267 

Stable isotope ratios were reported in the standard δ notation as units of parts per mil 268 

(‰) relative to the international reference standard:  269 

δX=[(RSample/RStandard)-1] * 103 270 

where X is 13C and 15N  and R is the corresponding ratio of 13C/12C and 15N/14N. 271 

Reference standard used were Vienna-Pee Dee Belemnite for 13C and atmospheric 272 

N2 for 15N (precision: 0.1‰). 273 

Values of δ13C from acidified subsamples were combined with those of δ15N from 274 

untreated subsamples to compute both slipper limpets and SOM stable isotope 275 

values, undisturbed by calcium carbonate residues (δ13C) and by acidification (δ15N) 276 

(Androuin et al., 2019). 277 

2.4 Data Analysis 278 

Data sets were investigated to analyse spatial patterns in fish and cephalopod 279 

assemblages, and in both the composition and the structure of the food web 280 

including (i) primary food resources, (ii) benthic invertebrates and (iii) fish and 281 

cephalopods. Prior to statistical analysis, abundance of fishes and cephalopods 282 

measured with the 3.0 m and 1.5 m beam trawls were standardized for 0.1 ha. SIA 283 

and SCA were used to infer on the niches variability and overlap between the most 284 

abundant fish species. All analyses were performed within the R environment. 285 
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 286 

2.4.1 Fish and cephalopod assemblages 287 

A Hierarchical Cluster Analysis (HCA) was performed to distinguish fish and 288 

cephalopod assemblages (i.e. station groups) by using the Bray-Curtis dissimilarity 289 

between each pair of samples and by applying the Ward’s clustering method.  290 

Then, in order to assess the different components of α-diversity at the both scales of 291 

the bay (i.e. including all stations) and the taxonomic assemblages derived from the 292 

HCA: the mean number per 0.1 ha and occurrence for each species, the mean total 293 

number of individuals per 0.1 ha (N), taxa richness (S), Shannon-Weaver index (H’) 294 

and Pielou’s species evenness (J) were calculated for each station on raw 295 

abundance data (R package BiodiversityR). 296 

 297 

2.4.2 Stable isotope analysis 298 

Differences in δ13C and δ15N of fish and cephalopod were tested with a two-way 299 

ANOVA by permutation against the factors “Species” and ”Assemblages”. NicheSIA 300 

were analysed though community-wide metrics (Layman et al., 2007a ; R package 301 

SIBER) calculated at species scale for the most abundant fish and cephalopod 302 

species: 303 

- δ13C and δ15N range (CR and NR): Distance between the highest and the 304 

lowest δ13C and δ15N values, respectively, for a given fish or cephalopod 305 

species). CR is one representation of basal sources diversity supporting the 306 

species whereas NR is one representation of the trophic level diversity at the 307 

species level; 308 

- Total Area (TA): Convex hull area encompassed by a given fish or 309 

cephalopod species in the δ13C-δ15N 2D δ space. This represents a measure 310 

of the total amount of niche space occupied, i.e., a proxy of overall trophic 311 

strategies (specialists vs. opportunists); 312 
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- Mean distance to centroid (CD): Average Euclidean distance of each 313 

individual to the δ13C-δ15N species centroid, where the centroid is the mean 314 

δ13C and δ15N value for all individuals of a given fish or cephalopod species. 315 

This metric provides a measure of the average degree of variability in trophic 316 

strategy;  317 

- Mean nearest neighbor distance (NND): Mean of the Euclidean distances to 318 

each individual nearest neighbor within each fish species niche, i.e., a 319 

measure of the overall density of individual packing. 320 

Four other indices (Cucherousset and Villéger, 2015 ; script si_div) were also 321 

calculated to analyse the niche overlap between fish and cephalopod species, and 322 

the extent of their trophic niche: 323 

- Isotopic similarity (ISim): the ratio between the isotopic niche of the 324 

intersection and of the union of the two fish or cephalopod species 325 

considered. It ranges from 0 when there is no isotopic overlap to 1 when the 326 

species with the lowest isotopic richness fills a subset of the isotopic space 327 

filled by the species with the highest one. ISim was calculated in the two 328 

dimensions of the 2D δ-space and for each isotope (i.e. one dimension);  329 

- Isotopic nestedness (Ines):  Ratio between the area of the intersection and 330 

the area filled by the species with the narrowest isotopic niche. It ranges from 331 

0 when there is no isotopic overlap to 1 when the group with the lowest 332 

isotopic richness fills a subset of the isotopic space filled by the group with the 333 

highest one; 334 

- Isotopic divergence (IDiv): Distribution of species individuals within the 335 

convexhull. IDiv is minimal (i.e. tends to 0) when most of the points are close 336 

to the centroid of the convex hull, and individuals with the most extreme 337 

stable isotope values are rare in a community. IDiv tends to 1 when all the 338 

points are located on the edges of the convex hull and individuals with 339 

extreme stable isotope value(s) dominate;  340 
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- Isotopic Eveness (IEve): Regularity in the distribution of individual of a given 341 

fish or cephalopod species along the shortest tree that links all the individuals. 342 

IEve tends to 0 when most of individuals are packed within a small region of 343 

the stable isotope space while a few others are far from this cluster. IEve 344 

tends to 1 when individuals are evenly distributed in the stable isotope space. 345 

 346 

2.4.3 Stomach contents analysis 347 

The importance of prey taxa in the diet of each species was assessed by the main 348 

food index (MFI) using the following equation (Rodriguez, 1996): 349 

𝑀𝐹𝐼 = √𝑊% 
𝑂% + 𝑁%

2
∗ 100 350 

Where W%: weight percentage of one item to total weight of all items; O%: frequency 351 

of an item to total number of examined stomachs; N%: percentage of number of an 352 

item to total number of all preys. Prey items are considered as preferential (MFI>75), 353 

principal (50<MFI<75), secondary (25<MFI<50) or accidental (MFI<25). 354 

NicheSCA breadth (Shannon–Wiener Index) was calculated from abundance 355 

(nicheSCA-N) and weight (nicheSCA-W) in stomach content raw data. A HCA was 356 

performed on stomach contents raw abundance data to distinguish groups of fish or 357 

cephalopod characterised by similar feeding strategies (i.e. same pool of preys), 358 

using the methods described for fish and cephalopod assemblages in section 2.4.1. 359 

Complementary, the Schoener index of trophic overlap (Sto) was calculated on 360 

abundance and weight of stomach raw data (StoN and StoW) for all pairs of fish and 361 

cephalopod species (Schoener, 1971). Using the flowing equation, Schoener index 362 

values distinct dietary overlap (0.3<Sto<0.6) from significant dietary overlap 363 

(Sto>0.6): 364 

𝑆𝑡𝑜 = 1 − 0.5 ∑(|𝑃𝑥𝑖 − 𝑃𝑦𝑖|)

𝑛

𝑖=1

 365 
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Where Pxi and Pyi: proportion of food category i in the diet of species x and y; and n: 366 

total number of prey. 367 

III. Results 368 

3.1 General description of the fish and cephalopod community 369 

A total of 558 individuals belonging to 21 species were sampled. The abundance was 370 

variable among species, eight species accounting for 94.4% of the total abundance 371 

(Table I, Figure 2-A). The northwestern part of the study area was characterised by 372 

lower abundances of fish and cephalopods (Figure 2- A&B). The common dragonet 373 

Callionymus lyra (232 individuals, 41.6%) and the black goby Gobius niger (115 ind., 374 

20.6%) were the most abundant species while the six following ranked species were 375 

less abundant and less frequent in the study area (frequency ranging from 29 to 376 

71%, Table I). The 13 other species were rarer (frequency below 12%) and less 377 

abundant. Most individuals were observed at juvenile stages [young of the year (GO) 378 

and G1, Appendix B] 379 

3.2 Fish and cephalopod assemblages 380 

The HCA separated three assemblages characterised by differences in abundance, 381 

richness and diversity (Table I, Figure 2-B and 2-C). Assemblage I (8 stations) mainly 382 

occurred in the shallowest stations and was dominated by Buglossidium luteum, 383 

Pomatoschistus minutus and Alloteuthis sp. It was characterised by a low abundance 384 

and the lowest richness and Shannon index values. Assemblages II (n=11) and III 385 

(n=5) were both dominated by C. lyra, G. niger and B. luteum. Assemblage II was 386 

characterised by higher abundances (13.16 ± 2.39 ind.), richness (6.09 ± 0.74 387 

species) and Shannon (1.24 ± 0.12) index compared to assemblage III. Eight species 388 

among the most abundant were common to assemblages II and III, which differed 389 

according to the presence of 9 and 4 rarer species respectively present in one of 390 

these two assemblages (Table I).  Piélou indices were similar among assemblages. 391 

 392 
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Table I: Diversity metrics, abundance (mean ± sd/se) and occurrence (occ) of species 393 
sampled at the scale of the study area and the three assemblages identified by Hierarchical 394 
Cluster Analysis   395 
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Figure 2: A. Distribution and abundance (number of individuals / 0.1 ha) of fish and 447 
cephalopod species. B. Dendrogram showing the distribution of station in the three 448 
assemblages defined by the Hierarchical Cluster Analysis. C. Spatial distribution of fish and 449 
cephalopod assemblages (white lines indicate the bathymetry). 450 

 451 

3.3 Food web 452 

 453 

3.3.1 Primary food sources 454 

Contrasts were observed in primary food sources isotopic values (Figure 3, Appendix 455 

A). Values of δ13C were lower for terrestrial POM (-27.34 ± 5.06 ‰) and the pool of 456 

salt marsh C3 plants (-25.68 ± 1.54 ‰), while Ulva spp. (-14.41 ± 0.27 ‰) and the 457 

C4 plant Spartina anglica (-12.36 ± 0.17 ‰),considerably 13C-enriched than other 458 

sources, exhibited the highest values. The SOM and the marine POM were 459 

characterised by intermediate values. Ulva spp. and Spartina anglica were slightly 460 

15N-enriched compared to other potential food sources.  461 

 462 

3.3.2 Consumers and predators: benthic invertebrates, fish and cephalopods 463 

Consumers displayed a wide range of stable isotope compositions (Figure 3, 464 

Appendix A). Fish and cephalopods exhibited higher δ15N than most benthic 465 

invertebrates. For the benthic macrofauna, δ13C mean values ranged from -23.21 ± 466 

0.53 ‰ for the deposit-feeder amphipod Ampelisca sp. to -16.36 ± 0.21 ‰ for the 467 

omnivorous common prawn Palaemon serratus. δ15N mean values ranged from -8.43 468 

± 0.41 ‰ for the suspension-feeder C. fornicata to -13.85 ± 0.39 ‰ to for the 469 

omnivorous green crab Carcinus maenas. Most of benthic macrofauna species 470 

exhibited similar range of δ13C values to fish and cephalopods, excepted some 471 

species characterised by lower δ13C composition (e.g. Acanthocardia echinata, 472 

Ampelisca sp.). Excepted the black seabream Spondyliosoma cantharus, the Atlantic 473 

horse mackerel Trachurus trachurus and the tub gurnard Chelidonichthys lucerna, 474 

fish and cephalopods displayed a similar stable isotope composition. 475 

Jo
urn

al 
Pre-

pro
of



 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

Figure 3: δ13C and δ15N of consumers and potential dietary sources of organic matter in 486 
shallow subtidal soft bottom habitats. Colors represents groups: sources (blue), benthic 487 
macrofauna (red) and fishes and cephalopods (green). Mean δ13C and δ15N are plotted with 488 
error bars, excepted for species, which count only one individual (Supplementary material, 489 
Appendix A). Species. Sources: 1: Ulva spp.; 2: Pool of C3 plants; 3: Spartina anglica (C4 490 
Plant); 4: Terrestrial POM from main rivers (POM_TER); 5: Marine POM (POM_SEA); 6: 491 
SOM from the subtidal area. Benthic macrofauna consumers: 7: Acanthocardia echinata; 8: 492 
Ampelisca sp.; 9: Buccinum undatum; 10: Carcinus maenas; 11: Varicorbula gibba; 12: 493 
Crepidula fornicata; 13: Euspira nitida; 14: Pseudofusus rostratus; 15: Gibbula magus; 16: 494 
Laevicardium crassum; 17: Maja brachydactyla; 18: Palaemon serratus; 19: Pecten maximus; 495 
20: Polititapes rhomboides; 21: Tritia reticulata. Fishes and cephalopods: 22: Aphia minuta; 496 
23: Arnoglossus laterna; 24: Buglossidium luteum; 25: Callionymus lyra; 26: 497 
Trachurus trachurus; 27: Spondyliosoma cantharus; 28: Gobius niger; 29: Eutrigla gurnardus; 498 
30:  Chelidonichthys lucerna; 31: Trigloporus lastoviza; 32: Alloteuthis sp.; 33: 499 
Merlangius merlangus; 34: Pomatoschistus minutus; 35: Raja undulata; 36: 500 
Mullus surmuletus; 37: Sepia officinalis; 38: Sepiola sp.; 39: Torpedo marmorata. 501 

 502 

3.4 Predators diet and isotopic niches 503 

Diet composition and δ13C and δ15N values were explored for seven of the most 504 

abundant species (Table I) for which the numbers of stomach samples and stable 505 

isotope composition were sufficient: A. laterna, B. luteum, C. lyra, S. cantharus, G. 506 

niger, M. surmuletus and S. officinalis.  507 
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3.4.1 NicheSIA 508 

Variance analyses have been performed on stable isotope values to look for 509 

differences at assemblages and species scales. The two-way permutational variance 510 

analyses did not evidenced any differences in δ13C (F=1.72, p-value=0.18) nor δ15N 511 

(F=0.46, p-value=0.63) among assemblages, whereas the factor species (Appendix 512 

G) implied differences in δ13C (F=29.95, p-value <0.001) and δ15N (F=14.46, p-value 513 

<0.001) values. Pairwise Wilcoxon-tests (Appendix H) performed on δ13C values 514 

revealed significant differences between S. cantharus and the six other species while 515 

no difference occurred between other species, which exhibited similar carbon isotope 516 

compositions. δ15N values indicated differences between most pairs of species 517 

(Appendix H). The interaction species*assemblages was not significant for both 518 

isotopes. 519 

C. lyra (TA=6.10 ‰²; CD=0.80), B. luteum (4.22‰², 0.92) and S. cantharus (2.14‰², 520 

0.78) (Figure 4-C, Table II), while S. officinalis (1.17‰², 0.63), M. surmuletus 521 

(0.71‰², 0.60) and A. laterna (0.81‰², 0.5) displayed a lower variability. IEve values 522 

ranged from 0.62 to 0.86 pointed globally that individual of each species were evenly 523 

distributed in their respective nicheSIA, with a lesser extent for M. surmuletus. 524 

According to IDiv (min: 0.66 for C. lyra, max 0.79 for M. surmuletus), individual of 525 

each species tended to fill the whole space of their respective nicheSIA.  526 

Isim and Ines values associated with TA representation showed contrasted nicheSIA 527 

overlaps between species (Figure 4-B, Appendix F). While most pairs of species 528 

(except pairs including S. cantharus) were characterised by high Isim δ13C values, 529 

the nicheSIA overlap in the 2D δ-space was limited due to the differences in δ15N 530 

values and lower Isim δ15N values. Apart from S. cantharus, C. lyra and B. luteum, 531 

characterised by wide nichesSIA, encompass at least partially the nicheSIA of other 532 

bentho-demersal predators.  533 

 534 
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Table II: Stable isotope niche variability of fishes and cephalopod species. n: number of 535 
individuals.  δ13C rg  and δ15N rg: range of δ13C and δ15N values (‰). Cent δ13C and Cent 536 
δ15N: δ13C and δ15N centroids values (‰). CD: Mean distance to centroid. NND: Mean of the 537 
Euclidean distances of each species to the δ13C and δ15N centroids. TA: Total area (‰²). IDiv: 538 
Isotopic divergence. IEve: Isotopic Evenness. 539 
 540 
 541 

 542 

 543 

 544 

3.4.2 NicheSCA 545 

The vacuity was variable among species (mean ± sd ; 10.17% ± 16.08) ranging from 546 

0% for M. surmuletus to 42.86% for S. officinalis. Individuals with empty stomach 547 

(n=30 for all species) or unidentifiable prey items (n=12) were discarded for SCA 548 

which included 162 stomachs for the seven species.  549 

C. lyra was characterised by the highest richness of prey items consumed (n=9) 550 

while M. surmuletus and S. officinalis only fed on three prey items. MFI values 551 

revealed the importance of amphipoda for six species (Figure 5, Appendix C): main 552 

prey for B. luteum (MFI= 74.6), M. surmuletus (62.2) and S. cantharus (51.9), and 553 

secondary prey for A. laterna (47.4), C. lyra (44.2) and G. niger (40.8). The diet of the 554 

cephalopod S. officinalis was dominated by caridea (45.7) and fishes (50.9), and was 555 

singular with respect to the six fish species. The high consumption of annelida (36.1) 556 

by S. cantharus was singular. Other items were selected by the bentho-demersal 557 

predators, such as bivalvia for C. lyra and G. niger and caridea for A. laterna and M. 558 

surmuletus. 559 

No major difference was found in the nicheSCA-A breadth among species (Appendix 560 

D), except for B. luteum (0.50) which was characterised by lower values. The 561 

nicheSCA-W breadth values pointed out a slightly different pattern. While B. luteum and 562 

S. officinalis were still characterised by low values (0.78 and 0.69, respectively), C. 563 

lyra (1.44) showed the highest value. 564 
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The HCA performed on the abundance of preys in stomach content identified four 565 

main clusters (Appendix E), which did not follow species classification. The Schoener 566 

index values were variable (Figure 4-A, Appendix F) ranging from no overlap (>0.3) 567 

to significant (>0.6) dietary overlap among all pairs of species. In term of prey 568 

abundance, S. officinalis was characterised by lowest Schoener index’s values. The 569 

three benthic species A. laterna, B. luteum and C. lyra showed significant mutual 570 

overlaps. Schoener index’s values derived from the weight of preys were globally 571 

lower and more contrasted. However, the niche overlap assessed from abundance or 572 

weigh of prey items were globally congruent (Figure 4B). 573 

 574 
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 598 
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 600 
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 602 
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 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

Figure 4: Overlap in fish and cephalopod’s feeding strategies assessed from stomach content 615 
(nicheSCA) and stable isotope (nicheSIA) analyses. Number of individuals per species is 616 
indicated for both approaches (n).  A. Plot of Shoener index’s values calculated from the 617 
abundance of preys between all pairs of fish and cephalopod species. The size and the color 618 
gradient of circle corresponds the dietary overlap from absence (smaller yellow circles) to 619 
significant overlap (larger red circles). B. Plot of Shoener index’s values calculated from the 620 
weight of preys. C. δ13C and δ15N stable isotope composition of fishes and cephalopods. δ13C 621 
and δ15N are plotted for each individual. Shapes represent species. NicheSIA (i.e.Total area) is 622 
represented by convex hull polygons for each species: Arnoglossus laterna (red), 623 
Buglossidium luteum (brown), Callionymus lyra (green), Spondyliosoma cantharus (bottle 624 
green), Gobius niger (blue), Mullus surmuletus (purple), Sepia officinalis (pink).  625 
Illustrations of species come from the © Scandinavian Fishing Year Book. 626 
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 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

Figure 5: Radar plots of the main food index calculated for each fish and cephalopod species 636 
and for each prey item. Colors correspond to species: Arnoglossus laterna (red), 637 
Buglossidium luteum (brown), Callionymus lyra (green), Spondyliosoma cantharus (bottle 638 
green), Gobius niger (blue), Mullus surmuletus (purple), Sepia officinalis (pink). The different 639 
prey items are indicated in the periphery of the radar plot: Amph.: Amphipoda; Cum.: 640 
Cumacea; Cop.: Copepoda; Nem.: Nemerta; Brac.: Brachyura; Gast.: Gasteropoda; Biv.: 641 
Bivalvia; Ann.: Annelida; Cari.: Caridea; Fish; Iso.:Isopoda; Mys.: Mysida. Illustrations of 642 
species come from the © Scandinavian Fishing Year Book. 643 
  644 

IV. Discussion 645 

4.1  Composition of fish and cephalopod assemblages  646 

The fish and cephalopod community was dominated by eight species (94.4% of the 647 

total abundance). C. lyra was the most abundant species in most stations, as 648 

observed in many soft-bottoms in the English Channel (Dauvin, 1988). The diversity 649 

of the community was rather low. Some of the species sampled in the study area 650 

were partly or totally shared with other bays in the English Channel: e.g. B. luteum, 651 

A. laterna, Pomatoschistus sp., M. surmuletus, S. cantharus; while others were 652 

absent from our sampling: e.g. , Dicentrarchus labrax, Limanda limanda, Chelon 653 

spp., Pleuronectes platessa, Platichthys flesus, Psetta maxima, Scophtalmus 654 

rhombus, Pegusa lascaris, Solea solea (Auber et al., 2017; Kostecki et al., 2012; Le 655 

Mao, 1985; Day et al., 2021; Saulnier et al., 2020). Gully (1981) observed P. 656 
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platessa, Psetta maxima, S. solea and S. rhombus in the study area, while P. 657 

lascaris was only observed further away, in the north of the bay. Most of the absent 658 

species are observed in neighbouring intertidal areas or elsewhere in the bay of 659 

Saint-Brieuc (Le Luherne et al., 2016; personal observations). Their unexpected 660 

absence in the present sampling suggests that they may be less evenly distributed 661 

than expected, especially regarding the restricted home ranges of many marine fish 662 

species at juvenile stages (Le Pape and Cognez, 2016) and/or the partial use of 663 

other habitats, as observed at low tide in intertidal channels (personal observations).  664 

Although higher sampling effort would probably have improved richness estimates in 665 

this study, we still consider that our sampling effort (6 hours of haul sampling in total) 666 

provides a reasonably robust picture of species occurring in the area. 667 

Abundances were contrasted among the three assemblages. Assemblage II 668 

concentrating 3 and 6 times more fish in average than assemblages I and III 669 

respectively. Richness and specific diversity also differed among assemblages, 670 

notably due to the presence of rare species, which contributed to the distinction of 671 

clusters. The dominant species of assemblages II and III were similar (C. lyra, B. 672 

luteum and G. niger) and differed from those of assemblage I (B. luteum, P. minutus 673 

and Alloteuthis sp.). While assemblage I was linked to the shallowest stations located 674 

in the south of the study area, stations of assemblages II and III were more evenly 675 

distributed. While stations of assemblage I were characterised by very fine sands, 676 

assemblages II and III were associated to more heterogeneous sediments, 677 

composed of a mixture of fine sands, mud and coarser fractions (Sturbois et al., 678 

2021a). Such contrast in the sediment, coupled with depth gradient, may explain the 679 

difference of fish and cephalopods contributions among assemblages (Le Mao, 680 

1985). Additionally, the central part of the study area  was characterised by the 681 

highest benthic macrofauna abundances (Sturbois et al., 2021a), and also 682 

concentrated fish and cephalopod abundances (Figure 2).  683 
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Assemblage III seemed to constitute an impoverished facies of assemblage II 684 

characterised with (1) lower abundance, occurrence and eveness, and (2) absence 685 

of skates. This could be related to the degradation of benthic habitats showed by 686 

Sturbois et al. (2021a) in the study area, with significant taxonomic and functional 687 

changes. They identified scallop dredging as the main driver of these changes, as 688 

evidenced in other highly exploited systems (Fanelli et al., 2009; Rosenberg et al., 689 

2000). Scallop dredging generates fish by-catch (Craven et al., 2013) and 690 

significantly impacts sediments properties and preys (Bradshaw et al., 2001; Morys 691 

et al., 2021). This may also directly influence fish assemblages as shown by Barletta 692 

et al. (2016)  and reviewed by Wenger et al. (2017) in sediment dredging contexts. 693 

4.2  Sources supporting the food web  694 

Marine POM and SOM were the most likely bases of the subtidal food webs 695 

regarding δ13C range displayed by both the benthic and fish-cephalopod community 696 

as: 1) The very singular high δ13C and δ15N values of Ulva spp. with respect to other 697 

primary producers evidenced that the food web did not mainly rely on Ulva spp. 698 

which is in accordance with Sturbois et al. (2022) who showed that the use of Ulva 699 

spp. by the benthic macrofauna was very limited within the neighbouring intertidal 700 

area ; and 2) The network of coastal rivers flowing in the bay is characterised by very 701 

small discharge compared to larger bays. Lower trophic levels consumers were 702 

scattered along a 13C enrichment gradient, which could reveal either different 703 

contributions of minor food sources, or a selective assimilation within the composite 704 

pools of POM and/or SOM. Stable isotope compositions of fish and cephalopod 705 

species were consistent with the consumption of the sampled local macrofauna. This 706 

highlights the major transfer pathway in the system, from SOM and POM to fish and 707 

cephalopod species. Interestingly, none of these predators deviated from these local 708 

sources (Figure 3). Furthermore, no difference in fish and cephalopod isotopic 709 
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compositions was evidenced among assemblages, suggesting that the taxonomic 710 

distinction was not supported by contrasted energy flows.   711 

The local use of the salt marsh by fishes for preys supported by the vegetation or by 712 

microphytobenthos is limited to very mobile species (e.g. D. labrax and Chelon spp.) 713 

which forage in the salt marshes during high tide (Laugier, 2015; Sturbois et al., 714 

2016) but were not represented in subtidal sampling. Most of the species sampled in 715 

the study area were not caught in the upper intertidal area (Le Luherne et al., 2016; 716 

personal observations) or in the salt marsh (Sturbois et al., 2016) suggesting that 717 

large tidal migration from subtidal to the upper limit of the large intertidal area under 718 

megatidal conditions is not a strategy retained by those species for feeding (Amara et 719 

al., 2004; Le Pape and Cognez, 2016). In this sense, the ability of tidal channels 720 

crossing sandy and muddy sediments, which constitute particular intertidal habitats, 721 

to shelter fishes in various tidal conditions need to be explored. 722 

4.3 Specific diet and nicheSCA variability for the seven fish and 723 

cephalopod species compared to results observed in the bay of Saint-724 

Brieuc. 725 

Arnoglossus laterna – The diet of A. laterna was mainly composed of crustaceans in 726 

the study area, primarily amphipoda and caridea and in a lesser extent mysida.  727 

The scaldfish is an active predator that feed on active moving preys rather than 728 

sedentary species (Darnaude et al., 2001; De Groot, 1971). Globally, our results are 729 

congruent with the literature which points a dominance of crustaceans in the 730 

scaldfish diet across European coats [Schückel et al., 2012) (North sea), Avşar, 1994 731 

(Turkey), Gibson and Ezzi, 1980 (Scotland), Fanelli et al., 2009 (Sicily), Cabral et al., 732 

2002 (Portugal)]. However, while these studies pointed a relative and variable 733 

importance of fishes in the diet of A. laterna, fishes item were considered accidental 734 

in the study area which was in accordance with the results of Paulo-Martins et al. 735 

(2011) who found no teleost fish in the stomach content of scaldfish sampled in the 736 
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Cascais Bay (Portugal). Similarly, annelida was identified as a secondary prey in 737 

some of the aforementioned studies, and assessed as an accidental prey item in the 738 

bay of Saint-Brieuc. 739 

Buglossidium luteum – The yellow sole mainly feed on amphipoda, with the highest 740 

MFI value for this item among the seven fish and cephalopod species, and in a lesser 741 

extent on caridea and annelida, which were both considered as accidental items. 742 

Schückel et al., (2012) also found a dominance of crustaceans (copepoda, 743 

amphipoda) in the diet of B. luteum in the North Sea but copepoda were absent of 744 

stomach in the bay of Saint-Brieuc. In several sites located on the French coast of 745 

the Eastern English Channel and the Bay of Biscay, Amara et al. (2004) observed 746 

that B. luteum mainly fed on crustaceans, polychaetes, and molluscs, these two last 747 

prey items being very weakly consumed in the bay of Saint-Brieuc. Cumacea, 748 

ostracoda and copepoda were the main components of crustacean’s items which 749 

contrasts with the importance of amphipoda in the bay of Saint-Brieuc and the North 750 

Sea (Schückel et al., 2012). Amara et al. (2004) also showed some geographical 751 

differences with a wider range of prey items in the bay of Biscay than in the eastern 752 

English Channel confirming that this species diet may be site dependant. 753 

Callionymus lyra – The common dragonet fed on the widest range of prey items in 754 

our study, amphipoda, bivalvia and brachyura being the main components of its diet 755 

and other constituting accidental items. Results are contrasted between studies for 756 

this species which tends to adopt a generalist feeding strategy. Our results are partly 757 

in accordance with Griffin et al. (2012) who showed that C. lyra mainly fed on 758 

decapods, amphipods and in a lesser extent on polychaetes in four regions from the 759 

Eastern English Channel and the Southern North Sea around the UK. López-Jamar 760 

et al. (1984) observed a similar pattern in the Northwest Spanish coast, while King et 761 

al. (1994) highlighted a dominance of polychaetes in Galway bay (Ireland), and Van 762 

Der Veer et al. (1990) and Klimpel et al. (2003) pointed the main contribution of 763 
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echinoderms. These different studies suggest that C. lyra exhibits an opportunistic 764 

feeding strategy feeding on the most available preys (Griffin et al., 2012). 765 

Gobius niger – Amphipoda, bivalvia and caridea were the main components 766 

identified in the diet of the black goby, while annelids and gasteropods constituted 767 

accidental preys. This is congruent with the results of Filiz and Toğulga (2009) in the 768 

Aegean sea who showed that G. niger mainly fed on molluscs and crustaceans 769 

(90.47% of the diet), and in a lesser extent on polychaetes. These three food items 770 

belonging to the two first ranks of food items in most off studies focusing on G. niger 771 

diet in various area in the north and the south of Europe (De Casabianda and Kiener, 772 

1969; Filiz and Toğulga, 2009; Labropoulou and Markakis, 1998; McGrath, 1974; 773 

Vaas et al., 1975) while some studies pointed the variable importance of teleost 774 

fishes (Fjøsne, 1996; Vaas et al., 1975). 775 

Mullus surmuletus – The red mullet mainly fed on amhipoda, caridae and mysida. In 776 

the Adriatic sea, Pavičić et al. (2018) pointed a dominance of decapods,  777 

crustaceans, bivalvia and polychaetes, with a limited contributions of amphipoda 778 

while results of Derbal et al. (2010) were more consistent with our study, finding that 779 

amphipoda and mysida were the main components in the Algerian coast.  780 

Labropoulou et al. (1997) showed that diet was dominated by crustaceans but varied 781 

seasonally: decapods were more important in summer, while amphipoda dominated 782 

in winter and spring which is congruent with our results. These three last studies also 783 

pointed a limited contribution of annelida and bivalvia. The red mullet was 784 

characterised by the lowest diversity of prey items which is consistent with the 785 

specialist feeding strategy underlined by Labropoulou et al. (1997) but the number of 786 

individual sampled (n=6) may explain this weak diversity of prey items compared to 787 

the other species. 788 

Spondyliosoma cantharus – The black sea bream mainly fed on amphipoda and 789 

annelida in the bay of Saint-Brieuc. Five other items were identified as accidental 790 
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items placing the species at the second range in diversity of preys. Gonçalves and 791 

Erzini (1998) and Jakov et al. (2006) find congruent results and pointed that 792 

hydrozoans, items absent from stomachs in our study, were also an important prey in 793 

the south west coast of Portugal and in the central Eastern Central Adriatic. Quéro 794 

and Vayne (1998) found similar results but also showed an important contribution of 795 

Enteromorpha sp. in the diet.  796 

Sepia officinallis – The diet of the cuttlefish mainly consisted in fishes and caridea, 797 

while few brachyura have been observed in stomachs. Alves et al. (2006) identified 798 

fishes and crustaceans as preferential items on the south coast of Portugal, as 799 

Castro and Guerra (1989) in western Spain, Le Mao (1985) in the Western English 800 

Channel, Blanc et al. (1998) in the Morbihan Gulf, and Pinczon du Sel et al. (2000) in 801 

the northern bay of Biscay. The vacuity index was important for S. officinallis (42%). 802 

The sampling during the daylight may explain this low proportion of full stomachs but 803 

Alves et al. (2006) found similar results in night sampling. In any case, our results 804 

should be interpreted cautiously due to the low number of cuttlefish stomachs 805 

available for SCA. 806 

 807 

4.4 Food supply of the fish and cephalopods community, methodological 808 

benefits and caveats  809 

Do stomach contents mirror diet and fit with the abundance of prey in the 810 

environment? 811 

In accordance with the literature (section 4.3) fish and cephalopod species exhibited 812 

a wide range of feeding strategies from opportunistic to generalist but with a close 813 

relationship between the abundance of prey in the stomach and in the environment. 814 

For instance, flatfish consume the most abundant prey resources as a result of 815 

generalist and opportunistic feeding strategies (Carter et al., 1991; Reichert, 2003; 816 

Schückel et al., 2012). Consequently, the most frequent and abundant prey in the 817 

Jo
urn

al 
Pre-

pro
of



stomach contents should be among the most abundant species in the environment 818 

(Amezcua et al., 2003; Schückel et al., 2012; Le Pape et al., 2007; Nicolas et al., 819 

2007; Saulnier et al., 2020; Tableau et al., 2019).  820 

In the benthic fauna of the study area, molluscs were the most abundant group 821 

(42.26%) ahead of annelids (38.93%) and crustaceans (15.68%) in 2019 (Sturbois et 822 

al., 2021a). SCA revealed that those three main taxa were also well represented in 823 

stomach contents, with a variable contribution depending on species. Amphipoda 824 

was the main dietary item for the six fish species (as in the bay of Morlaix, 825 

Dauvin,1988), completed by other prey items depending on species. Despite the 826 

decrease observed in the abundance of crustaceans between 1987 and 2019 827 

(Sturbois et al., 2021a), Amphipoda still reach important densities and remain a 828 

major food item. The genus Ampelisca sp., well represented in stomachs, is 829 

dominant. Its polyvoltine reproduction leads to more than one generation per year 830 

and contributes to the high productivity of benthic habitats. In the bay of Morlaix, 831 

three Ampelisca species provided 91 % of the total annual mean abundance, close to 832 

38 % of the biomass and 50 % of the net production of the total macrofauna (Dauvin, 833 

1984; Dauvin, 1989; Jeong et al., 2009). Such high densities and production rate 834 

favour the availability of prey for fishes and contribute to explain that this prey item is 835 

highly consumed.  836 

Inversely, annelids were abundant in the community (Sturbois et al., 2021a) and 837 

weakly consumed by fish species, with an exception for S. cantharus for which it 838 

constitutes a secondary prey items. Even if they could reach locally important 839 

densities, the infaunal habitat of most annelids species may limit their availability for 840 

predators (Tableau et al., 2019). On the other hand, their high digestibility (due to the 841 

absence of hard parts) coupled to the nocturnal activity (vs daylight sampling) of 842 

most zoophagous polychaetes, have probably contributed to an underestimation of 843 

their consumption (Serrano et al., 2003). Molluscs, and particularly bivalvia have 844 
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been identified as secondary prey items for C. lyra and G. niger. Despite molluscs 845 

dominate the macrofauna in abundance, some bivalve and gasteropod species 846 

remain hard to digest, reaching sizes that limits their consumption by small fishes 847 

(both small species and juvenile stage), and their availability is probably limited by 848 

their infaunal position in the substrate (Tableau et al., 2019). Only juvenile molluscs 849 

were found in stomachs, their digestibility being favoured by smaller size and softer 850 

shells.  851 

In the bay of Saint-Brieuc, the dominance of amphipoda in the diet of the six fish 852 

species studied suggests potential interspecific food competition which can occur 853 

when several species rely on a limiting pool of prey (Nunn et al., 2012). It also asks 854 

the question of the carrying capacity of the ecosystems to support numerous species 855 

that share a more or less common pool of prey items (Hollowed, 2000; Saulnier et al. 856 

2020). In the Bay of Seine, predator invertebrates consumed as much food as fishes 857 

and food supply may have temporarily limited the fish production (Saulnier et al., 858 

2020). In the bay of Saint-Brieuc, regarding low abundances of fish and cephalopods, 859 

such food competition mechanisms should not constitute a main limiting factor for 860 

their populations. 861 

 862 

Do stomach contents and stable isotope analyses tell same niches complexity 863 

and overlap stories? 864 

No correlations were found between SCA and SIA metrics. This was somewhat 865 

expected, as SCA allows discriminating individuals feeding on different prey items, 866 

while SIA differentiate individuals feeding on different proportions of prey items, with 867 

little ability to discriminate among prey species.  868 

The underlying processes influencing nicheSIA  are more diverse than those 869 

influencing nicheSCA, as SIA metrics are influenced by far more than just diet 870 

composition (Petta et al., 2020). Caution is therefore recommended when interpreting 871 
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nicheSIA vs nicheSCA metrics in a strictly dietary niche context, especially considering 872 

the paucity of empirical information supporting the comparability of metrics derived 873 

from either methods. SIA allows for identifying the sources that support a food web 874 

and the major trophic pathways. However, in without SCA-based data, the complexity 875 

of the relation between preys and predators limits the characterisation of predator’s 876 

diets and thus, the food chains to which they belong. When predators are 877 

characterised by similar SI compositions, SI analyses fail to infer on whether this 878 

signature is a consequence of a specialised diet or reflect a mean composition 879 

resulting from a generalist diet. Similarly, two predator species could be supported by 880 

a same pool of sources but not being in competition for a same pool of preys: e.g. for 881 

M. surmuletus and S. officinalis in our study. Note that a low number of stomach 882 

samples may have influenced the results for these two species as low samples 883 

number produces lower diet diversity and consequently more heterogeneous prey 884 

choice between co-occurring species. 885 

Even if the link between SCA and SIA is variable, from ‘no correlation’ (Petta et al., 886 

2020) to ‘contrasted perception’ (Cresson et al., 2014), ‘complementary 887 

understanding’ (Davis et al., 2012) or ‘consistence’ (Togashi et al., 2019), coupling 888 

SIA and SCA allows to take the best of both approaches and overpass some of their 889 

respective limits (Layman et al., 2005; Mantel et al., 2004). The relation between 890 

taxonomy and feeding modes is not straightforward, and nicheSCA diversity cannot be 891 

systematically associated with dispersions patterns within the nicheSIA. SIA are more 892 

relevant and informative when used in conjunction with SCA (Davis et al., 2012; 893 

Layman et al., 2005; Mantel et al., 2004). For instance, SCA are relevant to build 894 

mixing models based on actually consumed pool of preys (Phillips et al., 2014), and 895 

is a prerequisite when comparing food production with the consumption of predators 896 

(Saulnier et al., 2020; Tableau et al., 2019). 897 

 898 
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4.5 Food supply of the fish and cephalopods community in the Bay of Saint 899 

Brieuc  900 

Our study evidenced species-specific feeding strategies. For instance, S. cantharus 901 

was 13C–depleted compared to other species. As with other sparids, the black sea 902 

bream is a mobile opportunistic and omnivorous feeder, able to include a wide range 903 

of organisms from rocky shore, mud and sand substrate in its diet (Gonçalves and 904 

Erzini, 1998; Jakov et al., 2006). Even if in the bay of Saint-Brieuc S. cantharus was 905 

an important predator of annelids, this 13C–depletion may reveal a higher 906 

consumption of amphipods or other pelagic sources.  907 

Contrasts in nicheSIA overlaps evidenced that species characterised by the largest TA 908 

(B. luteum and C. lyra) consistently exhibited the highest interspecific niche overlap 909 

while a finest trophic overlap was pointed between two pairs of species: M. 910 

surmuletus vs S. officinalis and A. laterna vs G. niger. These patterns of trophic 911 

range and resource partitioning have also been pointed in fish food webs of a small 912 

macrotidal estuary (Canche, English Channel; Bouaziz et al. 2021). Some trophic 913 

overlaps observed in the bay of Saint-Brieuc may result from individual level 914 

specialization as shown with the HCA performed on stomach contents, i.e., no 915 

species-dependant clusters but an intraspecific distribution of individual in different 916 

clusters. This is the case for B. luteum and C. lyra, the two species characterized by 917 

the largest trophic area.  918 

Schoener indices of trophic overlap showed a consistency of diet with important 919 

overlaps among pairs of species, while values of Sto based on weight, that is a better 920 

quantification of the food potentially assimilated by predators, pointed more 921 

contrasted results. The theory of limiting similarity (Abrams, 1983; Macarthur and 922 

Levins, 1967) suggests the existence of a maximum level of niche overlap between 923 

two given species that allow their coexistence. Corollary, the concept of competitive 924 

exclusion states that two species competing for exactly the same resources cannot 925 
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stably coexist (Gause, 2003; Hardin, 1960; Wellard Kelly et al., 2021). However, the 926 

low abundance of fish and the large food availability may buffer such processes in 927 

the study area. 928 

Except S. cantharus characterised by a particular niche, δ13C values strongly 929 

overlapped, pointing that the six other species were supported by a common pool of 930 

basal sources mainly composed of SOM and POM and similar pool of preys (SCA). 931 

However, the diet consistency depicted by the importance of amphipoda seems 932 

relative when compared with SIA overlaps. Accordingly, the moderate overlap in δ15N 933 

values limit the trophic overlap assessed in the two dimensions of the δ-space, a 934 

direct consequence of diet variation. Species characterised by the highest δ15N 935 

values fed on prey dominated by carnivores and scavenger species of annelids 936 

enriched in 15N, more available than tubiculous deposit-feeder species. This 937 

predation of annelids may be more important than depicted in our study, carnivorous 938 

and scavenger species being more active at night, which favours their consumption 939 

by bentho-demersal predators (Serrano et al., 2003) and explain the higher trophic 940 

levels. On the contrary, S. officinalis and M. surmuletus were characterised by lower 941 

δ15N values.  942 

4.6 Understanding and conservation of such complex ecosystems 943 

As most individuals were observed at juvenile stages [young of the year (GO) and 944 

G1] and using the site for feeding, the nursery function (Beck et al., 2001) can be 945 

partially retained for a pool of main species which are common at local and regional 946 

scales. However, the fish and cephalopod community was not dominated by species 947 

of commercial interest and their low abundance, especially in the impoverished facies 948 

and the northwestern part of the study area, suggests that the nursery function was 949 

probably not optimal. The absence of some species present in other bays or in the 950 

study area suggests that they were present in low abundance and occurrence during 951 

our study, with potential seasonal patterns. They may also use limited shallow 952 
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habitats, within a restricted home range (Le Pape and Cognez, 2016), which have 953 

not been integrated in our subtidal sampling design. In such complex ecosystems 954 

with different habitats under megatidal conditions, an integrated sampling strategy 955 

with complementary methods may help for a better integration of habitats, from 956 

estuary and salt marshes to sandy beaches and shallow areas (Le Mao, 1985), with 957 

a seasonal dimension (Le Luherne et al., 2016; Le Mao, 1985; Sturbois et al., 2016).  958 

Despite the degradation of benthic assemblages previously showed by Sturbois et al. 959 

(2021a) in the study area, most individuals were captured with full stomachs. This 960 

suggests high food availability for fish and cephalopods; however more investigations 961 

are needed to explore potential food limitation processes in the bay of Saint-Brieuc 962 

(Saulnier et al., 2020). Scallop dredging is well known to affects benthic fauna, flora 963 

and habitats by causing changes in overall biomass, species composition and size 964 

structure of demersal communities in the ecosystem (Bradshaw et al., 2001; 965 

Rosenberg et al., 2000), including fish (Craven et al., 2013). In stressed ecosystems, 966 

species with larger niches may show better performances in relation with the 967 

accessibility to a wider range of food resources (Layman et al., 2007b; Leigh, 1990; 968 

Parreira de Castro et al., 2016; Wellard Kelly et al., 2021). Species characterised by 969 

a flexible feeding strategy, such as C. lyra, may be favoured in variable environment 970 

in relation with natural and/or anthropogenic factors known to influence soft bottom 971 

communities and prey availability. While dredging and trawling may induce lower 972 

biodiversity on the seabed, this abundant bottom dwelling fish is able to face a 973 

changing environment (Griffin et al., 2012), which might explain why it dominates the 974 

community. In the future, coupling temporal trends in taxonomic assemblages and 975 

individual and population-level functional diversity appears as an interesting 976 

monitoring strategy for complex ecosystems characterised by interactions with 977 

anthropogenic activities. 978 

 979 
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occ occ occ occ

Abundance (n ind./0.1ha) 7.95  ± 7.65 4.38  ± 1.60 13.16  ± 2.39 2.18  ± 0.64

Richness 4.63  ± 2.75 2.50  ± 0.42 6.09  ± 0.74 4.80  ± 2.18

Shannon 1.03  ± 0.56 0.68  ± 0.16 1.24  ± 0.12 1.14  ± 0.36

Piélou 0.70  ± 0.29 0.66  ± 0.15 0.73  ± 0.03 0.69  ± 0.17

Callyonimus lyra 3.34  ± 4.15 19 0.43  ± 0.23 3 6.53  ± 1.29 11 0.97  ± 0.17 5

Buglossidium luteum 1.09  ± 1.74 17 1.50  ± 0.72 5 1.18  ± 0.57 9 0.24  ± 0.11 3

Gobius niger 1.06  ± 2.09 10 0.10  ± 0.10 1 2.10  ± 0.84 6 0.32  ± 0.15 3

Spondyliosoma cantharus 0.51  ± 0.73 11 0.37  ± 0.19 3 0.81  ± 0.27 6 0.09  ± 0.06 2

Pomatoschistus minutus 0.49  ± 1.28 7 0.85  ± 0.74 2 0.42  ± 0.21 4 0.05  ± 0.05 1

Arnoglossus laterna 0.46  ± 0.98 10  - 0 0.92  ± 0.40 7 0.18  ± 0.09 3

Alloteuthis sp. 0.37  ± 1.05 7 0.88  ± 0.62 4 0.16  ± 0.09 3  -

Sepia officinalis 0.14  ± 0.26 7  - 0 0.26  ± 0.10 5 0.09  ± 0.06 2

Hippocampus hippocampus 0.10  ± 0.35 3  - 0 0.22  ± 0.15 3  -

Aphia minuta 0.08  ± 0.36 2 0.22  ± 0.22 1 0.02  ± 0.02 1  -

Mullus surmuletus 0.07  ± 0.15 5 0.03  ± 0.03 1 0.11  ± 0.06 3 0.05  ± 0.05 1

Torpedo marmorata 0.06  ± 0.18 3  - 0 0.12  ± 0.08 3  -

Raja undulata 0.05  ± 0.20 2  - 0 0.11  ± 0.09 2  -

Chelidonichthys lucerna 0.05  ± 0.23 1  - 0 0.10  ± 0.10 1  -

Symphodus bailloni 0.02  ± 0.10 1  - 0 0.04  ± 0.04 1  -

Eutrigla gurnardus 0.01  ± 0.05 1  - 0  - 0.05  ± 0.05 1

Merlangius merlangus 0.01  ± 0.05 1  - 0  - 0.05  ± 0.05 1

Sepiola sp. 0.01  ± 0.05 1  - 0  - 0.05  ± 0.05 1

Zeus faber 0.01  ± 0.05 1  - 0  - 0.05  ± 0.05 1

Trachurus trachurus 0.01  ± 0.04 1  - 0 0.02  ± 0.02 1  -

Trigloporus lastoviza 0.01  ± 0.04 1  - 0 0.02  ± 0.02 1  -

 Assemblage III (n=5)
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n δ
13

C rg δ
15

N rg Cent δ
13

C Cent δ
15

N TA CD NND+SD IDiv IEve

Arnoglossus laterna 18 2.21 0.74  -17.47 13.33 0.81 0.5 0.19 ± 0.14 0.68 0.75

Buglossidium luteum 29 2.87 1.99  -17.63 13.58 4.22 0.92 0.24 ± 0.15 0.77 0.79

Callionymus lyra 46 3.31 2.82  -17.79 12.88 6.10 0.80 0.21 ± 0.16 0.66 0.74

Gobius niger 22 2.6 1.14  -17.50 13.75 1.74 0.61 0.21 ± 0.15 0.69 0.76

Mullus surmuletus 6 1.22 1.13  -18.33 12.64 0.71 0.60 0.34 ± 0.27 0.79 0.62

Sepia officinalis 11 2.05 0.83  -18.15 12.56 1.17 0.63 0.34 ± 0.13 0.72 0.86

Spondyliosoma cantharus 22 3.49 1.24  -19.94 13.45 2.14 0.78 0.23 ± 0.13 0.67 0.78
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Highlights:  

- Trophic ecology of fish assemblages (stomach content and stable isotopes) were studied in 

the bay of Saint Brieuc (France) 

- The fish and cephalopod community was composed of 21 taxa; eight species accounted for 

94.4% of the total abundance.  

- An impoverished assemblage may reveal the impact of scallop dredging on a part of the 

Bay. 

- Amphipoda was the main prey with many additional items depending on predator species. 

- At the assemblage scale, fish and demersal fauna mostly relied on POM/SOM-based food 

chains. 
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