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A B S T R A C T   

The present work uses for the first time scatterometer wind fields to force a wave model and compares the 
accuracy of the resulting wave conditions with the ones obtained when using two different sources of hindcast 
wind fields forcing the same wave spectral model in the Atlantic Ocean. For this purpose, a 5-year hindcast 
(2010–2014) is performed with the wave spectral model SWAN for the Madeira and Azores archipelagos. The 
model uses as input the bathymetry from GEBCO, the wave boundary conditions from the WAVEWATCH III wave 
model provided by Ifremer and winds from the ERA-Interim and ERA5 databases, and remotely sensed winds 
from scatterometers. A quantitative analysis of the results is performed, and the numerical results are validated 
against altimeter data and buoy measurements. Globally, ERA-Interim, ERA5 and scatterometer wind data 
provided similar accuracy of the generated wave fields, as expressed in the error statistics, which are very close to 
each other, but in the case of extreme events, the scatterometer data reveals more intense winds and conse-
quently lead to sea states with higher significant wave height. This is more visible in the Azores area than in 
Madeira. The results demonstrate that, in general, the significant wave height is well reproduced by SWAN.   

1. Introduction 

Characterizing the wave climate with accuracy is of great importance 
for different purposes, like maritime transportation, ocean and civil 
engineering. This knowledge helps to study the responses of the mari-
time structures to the wave forcing, assisting the appropriate design of 
the vessels and devices according to where they will be operated. 

The early measurements of sea state conditions relied on in situ 
measurements, mostly by waverider buoys, which have been gradually 
supplemented by remotely sensed information such as altimetry or SAR 
(Synthetic Aperture Radar). The wave’s buoys networks around the 
world are scattered and limited in terms of spatial coverage, since they 
only give measurements in situ, and are mostly relatively close to the 
coasts. Satellite data can fill this gap by providing data across the ocean, 
in an evenly distributed fashion. 

Satellite data started being used with wave data determined from 
altimeters and have progressed to more sophisticated tools, such as SAR 
(Synthetic Aperture Radar) data and moved later from measurements of 
wave conditions to wind measurements with scatterometers and radi-
ometers (Bentamy et al., 2002). 

Nowadays, the numerical wave spectral models are widely accepted 

to determine the sea states, in response to wind forcing, and can be used 
to hindcast, nowcast and forecast (Cavaleri et al., 2007; Mulligan et al., 
2011; Roland and Ardhuin, 2014; Stopa et al., 2016; Campos et al., 
2022). The third-generation spectral wave models are currently used to 
account for wave generation in deep waters, such as WAM (WAve 
model) (WAMDI Group, 1988) and WWIII (WAVEWATCHIII) (Tolman, 
1991), and wave propagation in coastal areas, such as SWAN (Simu-
lating WAves Nearshore) (Booij et al., 1999). The WWIII and WAM 
models solve the equation of wave spectrum using explicit propagation 
schemes in geographical and spectral spaces, which in shallow water 
requires very small grid sizes and this is inconvenient for coastal regions 
applications. SWAN use implicit schemes, which are more robust and 
economic in shallow water. However, the newest versions of WWIII are 
also suitable for shallow waters with an improvement of the numerical 
approach with an implicit scheme. 

It is possible to nest one model representing the waves in deep water 
with another one simulating the waves in the nearshore, taking into 
account the evolution of the wave spectrum from the generation until 
their transformation in shallow waters. There are several applications of 
this procedure for example in Guedes Soares et al. (2011). 

The wind fields are an important input for the wave models since the 
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waves are generated by the transfer of wind energy to the ocean surface, 
and their accuracy will reflect significantly in the resulting sea states 
(Teixeira et al., 1995; Holthuijsen et al., 1996; Cavaleri and Bertotti, 
2006; Ponce de León and Guedes Soares, 2008). Nowadays there are a 

considerable number of wind data provided by a variety of international 
organizations, such as ECMWF (European Centre for Medium-range 
Weather Forecast, https://www.ecmwf.int/), and NCEP (National Cen-
ters for Environmental Predictions, https://psl.noaa.gov/data 
/gridded/data.ncep.reanalysis.html), Copernicus (https://cds.climate. 
copernicus.eu/) that produce datasets with different temporal and 
spatial resolutions, as discussed by Campos and Guedes Soares (2017). 

Several studies were performed comparing these different reanalyses 
datasets available. Stopa and Cheung (2014) described an 

Table 1 
Characteristics of the ERA5 and ERA-Interim reanalyses.  

Characteristics ERA-Interim ERA5 

Implementation date 12 Dec 2006 8 Mar 2016 
Horizontal resolution ~79 km ~31 km 
Horizontal transform grid 0.75ᵒx0.75 ᵒ 0.3ᵒx 0.3 ᵒ 
Vertical resolution 60 levels up to 0.1 hPa 137 levels up to 0.01 hPa 
Temporal resolution 6-hourly Hourly 
IFS cycle 31r2 41r2 
Period covered 1979–August/2019 1950–now  

Table 2 
Websites with information about radars and radiometers used in this study.  

Satellite Period Website 

ASCAT 2006 – 
Present 

projects.knmi.nl/scatterometer/ascat_osi_12_prod 

SSMI/S 
F16 

2003 - 
Present 

http://data.remss.com/ssmi/f16/bmaps_v07/ 

SSMI/S 
F17 

2007 - 
Present 

http://data.remss.com/ssmi/f17/bmaps_v07/ 

WindSat 2003 - 
Present 

http://data.remss.com/windsat/bmaps_v07.0.1/ 

Sentinel 
SAR 

2014 - 
Present 

https://sentinel.esa.int/web/sentinel/missions 
/sentinel-1/data-products  

Fig. 1. Buoys used for the determination of satellite wind analysis accuracy. 
Their locations are shown as star symbols. 

Table 3 
Numeric parameters for the WWIII Ifremer Global grid.  

Parameter Coarse Grid 

Temporal resolution 3h 
Spatial resolution 0.5◦ (30min) 
Frequencies 32 
Frequency domain 0.037–0.72Hz 
Directional band 24 
Latitudes 80◦N − 78◦S 
Longitudes 180◦W – 179.5◦E 
Wind Forcing ERA 5 
Wind input time step 3h  

Fig. 2. Bathymetry of Madeira grid area.  

Fig. 3. Bathymetry of Azores grid area and positions of buoys.  

Table 4 
Hindcast system grid information.   

Latitude/Longitude Resolution 

Azores 36◦N to 41◦N/32.5◦W to 24◦W 0.05◦ × 0.05◦

Madeira 31.5◦N 34◦N/18.5◦W to 15.5◦W 0.02◦ × 0.02◦

Table 5 
Locations of Azores Buoys.  

Buoy Latitude Longitude Depth (m) 

Praia Vitoria (B1) 38◦ 45.05′N 27◦ 00.62′W 100m 
Graciosa (B2) 39◦ 05.21′N 27◦ 57.73′W 97m 
Lages (B3) 39◦ 22.11′N 31◦ 09.80′W 80m 
Faial/Pico (B4) 38◦ 35.26′N 28◦ 32.26′W 110m 
Ponta Delgada (B5) 37◦ 43.53′N 25◦ 43.28′W 90m  
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intercomparison of wind and wave heights from ERA-Interim (Dee et al., 
2011) and CFSR (Saha et al., 2010). The errors for these datasets are 
comparable, with an improvement of these products related to their 
predecessors R1 (NCEP global Reanalysis I) and ERA-40, with consistent 
levels of accuracy for significant wave height and wind speed in the 
Northern and Southern Hemispheres. 

Campos and Guedes Soares (2016a) have produced a comparison 
between hindcast winds and between hindcast waves in the North 
Atlantic Ocean, considering two different reanalysis datasets: HIPOCAS 
(Guedes Soares, 2008) and ERA reanalysis. The study shows that 
HIPOCAS tends to overestimate the wind measurements from satellites 
while both ERA reanalysis (ERA-40 and ERA-Interim) tend to underes-
timate them. A comparison between ERA-Interim, NOAA/CFSR and 
HIPOCAS was made by Campos and Guedes Soares (2016b), showing 
that for the general non-extreme conditions (calm and moderate 
weather), the three wave hindcasts are very similar, but under extreme 
conditions, significant differences of significant wave heights were 
found among hindcasts at latitudes above 40◦ north. 

Lavidas et al. (2017) studied the sensitivity of the numerical wave 
model SWAN on wind reanalysis datasets. The study focused on 
ERA-Interim (ECMWF) and the CFSR (NCEP) reanalysis datasets and 
shows that for the western coastline of Scotland, the ERA-Interim out-
performs CFSR hindcasting the wave resource, with smaller biases, low 

RMS (Root Mean error) which is a measure of the differences between 
measurements and simulated values, and less scattering. 

In Rusu et al. (2018), a wave prediction system was set up to predict 
storm conditions on the Western Iberian coast. Two spectral wave 
models (WAM and SWAN), and two different wind reanalysis datasets 
(ERA-Interim and CFSR) were used. The results show that under extreme 
wave conditions both simulations demonstrate a reasonable accuracy in 
the predictions, nevertheless, some underestimations of the peak events 
were observed. 

Among the diversity of methods available to study wind resources, 
from onsite measurements, reanalysis datasets, satellite data or nu-
merical prediction models, remote sensing information is frequently 
used due to the high spatial and temporal resolutions provided in the 
estimations of the surface wind vectors (Jiang et al., 2013; Bentamy and 
Croize-Fillon, 2014). 

Surface winds from scatterometer missions have been used to pro-
duce climate series (Ricciardulli and Manaster, 2021; Verhoef et al., 
2016). Several studies have been made on the quality of the scatter-
ometer products (Verspeek et al., 2010; Bentamy et al., 2008; Sudha and 
Prasada Rao, 2013), proving that remotely sensed winds are statistically 
in agreement with in situ measurements. 

Given the nature of the scatterometer wind data and its quality, this 
work aims at comparing the wave hindcasts that use scatterometer data 
as the wind input with the ones that are forced with established hindcast 
wind fields, such as ERA-Interim and ERA5 reanalysis. These winds force 
the SWAN wave model applied to the Portuguese Atlantic islands of the 
Azores and Madeira, which have been chosen because they represent 
wave conditions well in the North Atlantic. In addition, the context of 
islands usually has a more complicated wave propagation due to the 
sheltering effect of other islands, which can induce big changes in the 
wave field, Ponce de León and Guedes Soares (2005, 2010), and Gon-
çalves et al. (2020). 

The target areas have been studied earlier by Rusu et al. (2008), Rusu 
and Guedes Soares (2012), Silva et al. (2018), Silva and Guedes Soares 
(2021a, 2021b), Gonçalves and Guedes Soares (2021a, 2021b). 

2. Description of datasets 

2.1. ERA-Interim 

ERA-Interim (Dee et al., 2011) is a global atmospheric reanalysis of 

Table 6 
Statistical results for Hs for Azores Islands.  

Wind Forcing Buoy BIAS RMSE SI r # points 

ERA-Interim B1 − 0.08 0.47 0.30 0.86 3486 
B2 − 0.21 0.62 0.34 0.80 11418 
B3 − 0.07 0.43 0.25 0.89 7563 
B4 0.28 0.51 0.31 0.89 13944 
B5 0.01 0.39 0.29 0.87 9377 

ERA-5 B1 − 0.08 0.47 0.30 0.86 3486 
B2 − 0.19 0.60 0.34 0.78 11418 
B3 − 0.07 0.40 0.24 0.90 7563 
B4 0.28 0.51 0.31 0.89 13944 
B5 0.04 0.39 0.29 0.88 9377 

Satellite B1 − 0.06 0.45 0.29 0.87 3486 
B2 − 0.20 0.60 0.33 0.81 11418 
B3 − 0.03 0.40 0.24 0.90 7563 
B4 0.29 0.51 0.31 0.89 13944 
B5 0.03 0.39 0.30 0.87 9377  

Fig. 4. Scatter index for all hindcasts against satellite data for the Azores between the period 2010–2014.  
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data from 1979 up to August 2019, using ECMWF’s Integrated Forecast 
System (IFS) cycle 31r2, released in 2006, with ~79 km of horizontal 
resolution on 60 model levels from the surface up to 0.1 hPa (an altitude 
of about 65 km). 

When compared with its previous reanalysis (such as ERA40) ERA- 
Interim presents a better performance, better data assimilation 
methods, finer resolution and an improved physics of the models as 
described in (Dee et al., 2011). ERA-Interim also includes data assimi-
lation from satellites for the wave results starting in 1991, as the Euro-
pean Remote Sensing Satellites 1 and 2 (ER1 and ER2), Environmental 
Satellite (ENVISAT), JASON-1, and JASON-2. The ERA-Interim products 
resolution is approximately 0.70◦ × 0.70◦ and 3h, case of wind, and 

0.64◦ × 0.64◦ and 6h, case of waves. 

2.2. ERA-5 

As part of implementing the EU-funded Copernicus Climate Change 
Service (C3S), ERA5 (Hersbach and Dee, 2016) is global weather and 
climate reanalysis, produced by the ECMWF from January 1950 to the 
present, replacing the ERA-Interim reanalysis. ERA5 is based on 4D-Var 
data assimilation using Cycle 41r2 of the Integrated Forecasting System 
(IFS), which was operational at ECMWF in 2016. Benefiting from a 
decade of advances in model physics, core dynamics and data assimi-
lation relative to ERA-Interim, ERA5 presents a significantly enhanced 

Fig. 5. Scatter index for all hindcasts against satellite data for Madeira between the period 2010–2014.  

Fig. 6. Time series of the significant wave height for the Azores. B3 buoy (on top) and B5 buoy (on the bottom) as simulated by SWAN using ERA-Interim (blue line), 
ERA-5 (red line) and Satellite wind (green line) against measured data from buoys (black line). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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horizontal resolution (31 km grid spacing compared to 79 km for 
ERA-Interim), and several other innovative features. More detailed de-
scriptions of the ECMWF reanalysis can be found in (Hersbach et al., 
2019). 

An overview of the main characteristics of ERA5 and a comparison 
with ERA-Interim is presented in Table 1. 

Fig. 7. Time series of the significant wave height for Madeira. São Vicente buoy (on top) and Caniçal buoy (on the bottom) locations as simulated by SWAN using 
ERA-Interim (blue line), ERA-5 (red line) and Satellite wind (green line). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 8. U10 scalar fields in the North Atlantic area for the 5th of January 2014 at 12h, from ERA-Interim (a), ERA5 (b) and Scatterometer (c).  
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2.3. Remotely sensed data 

The remotely sensed data used in this study, referred to here as 
satellite wind speed and direction, is mostly derived from scatterometer 
wind retrievals in combination with radiometer observations. The data 
and the associated methods are described in various papers (Bentamy 
et al., 2019; Desbiolles et al., 2017). 

During the study period 2010–2014, the main sources of remotely 
sensed wind data are from scatterometers onboard Metop-A (2007 – 
present) and Metop-B (2012 – present), named ASCAT-A and ASCAT-B. 
Ancillary remotely sensed data are derived from radiometers Special 
Sensor Microwave Imager Sounder (SSMI/S) onboard the Defense 
Meteorological Satellite Program (DMSP) F16 (2003 – present) and F17 
(2006 – present), and from WindSat onboard Coriolis satellite (2003 – 
present). Scatterometer and radiometer data used in this study are of 
Level 2 (known as L2b product). The wind retrievals are available on the 
radar and radiometer ground swath of wind vector cells (WVC). Scat-
terometer and WindSat provide both wind speed and direction at 10m 
height, while SSMI/S provides only 10m wind speed. The WVC grid size 
varies among different wind products. ASCAT-A/B WVC is 12.5 km ×
12.5 km, while SSMI/S WVC is 25 km × 25 km. 

Scatterometer beams measure the normalized radar cross-section 
(NRCS), also known as backscatter coefficient (σ0), from the wind- 
roughened sea surface, which is mainly a function of wind condition 
(speed and direction). The σ0 data represents a dimensionless property 
of the surface, describing the ratio of the effective echoing area per unit 
area illuminated. Scatterometer wind retrievals are obtained from 
σ0 measurements through an inversion procedure based on the use of 
Geophysical Model Functions (GMF). Scatterometer wind retrievals 
provide swaths of 2 × 600 km. The links shown in Table 2 provide 
technical details related to scatterometer wind processing. References 
Desbiolles et al. (2017) and Bentamy et al. (2016) provide results related 
to the accuracy of scatterometer wind retrievals. 

The ancillary remotely sensed wind data used in this study are 
retrieved from the special sensor microwave imager (SSM/I) and 

sounder (SSMI/S) brightness temperature measurements (TB). Only 
surface wind speed at 10m height can be derived from SSMI and SSMI/S 
TB based on the use of an empirical model fitting the relationship be-
tween surface wind speed and TB through the radiative transfer equa-
tion (RTE). They are provided by a remote sensing system (RSS) (Wentz, 
2013). SSM/I and SSMI/S wind data are available over a swath of 1400 
km width at a wind cell of 0.25◦ in latitude and longitude over global 
oceans. 

The scatterometer retrieval in combination with radiometer wind 
observations, and with the ECMWF re-analysis model ERA-Interim 
(Simmons et al., 2006), is used for determining regular in space and 
time surface wind analyses (Desbiolles et al., 2017). The latter is avail-
able at synoptic times (00h:00, 06h:00, 12h:00, and 18h:00 UTC), over 
the global oceans with a spatial resolution of 0.25◦ × 0.25◦. 

Regarding the study topic, it is of interest to determine statistics 
aiming at the characterization of the satellite wind speed and direction 
analysis accuracy at regional (North Atlantic) and local (Azores and 
Madeira) scales. The most reliable method aiming at the determination 
of satellite wind accuracy is to perform comprehensive comparisons to 
buoy wind speeds and directions. For this study, the satellite wind ac-
curacy is determined through comparisons with available buoys moored 
in the northeast of the Atlantic Ocean (Fig. 1). 

Buoy measurements are available as hourly data. Each buoy valid 
wind measurements available within 3 h of synoptic times (00h:00, 
06h:00, 12h:00, 18h:00 UTC), are 6-hourly averaged. For each synoptic 
time, available and valid 6-hourly buoy and satellite winds are spatially 
collocated with a difference of 12.5 km in WVC spatial separation. The 
statistical parameters aiming at the characterization of the comparison 
between buoy and satellite are estimated from the collocated data 
occurring along the study period (2010–2015). 

“The accuracy of wind retrievals is evaluated by comparing in situ 
buoy measurements with quasi-simultaneous scatterometer data. The 
satellite-buoy data pairs collocated in space and time. The spatial limit 
for collocation is set based on WVC size of particular satellite wind 
product, which is 25 km for ERS-2 ASPS2.0, ASCAT, and QuikSCAT and 

Fig. 9. Hs scalar fields in the Azores area for 5th of January 2014 at 12h, simulated with ERA-Interim (a), ERA5 (b) and Scatterometer (c) wind fields.  
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increases to 50 km for ERS-1 and ERS-2 WNF. To assess this hypothesis 
from available moorings and estimate related errors, all buoy pairs 
located within 50 km are selected. 

In summary, no systematic bias is found between the buoy and sat-
ellite wind speeds and directions. The associated root mean square dif-
ference (RMSD) does not exceed 1.20 m/s and 20◦, for wind speed and 
direction, respectively. The wind speed scalar correlation and wind di-
rection vector correlation are 0.94 and 1.80, respectively. 

3. Hindcast system description 

3.1. Theoretical formulations 

WAVEWATCH III (WWIII) is a full-spectral third-generation wind- 
wave model, developed by the Marine Modeling and Analysis Branch 
(MMAB), of the Environmental Center (EMC), of the National Centers 
for Environmental Prediction (NCEP) (Tolman, 2009). SWAN is also a 
third-generation spectral wave model developed at Delft University of 
Technology (Booij et al., 1999). The particularity of third-generation 
spectral phase-average wave models is the ability to solve the 
non-linear interactions of the waves using the Eulerian approach to solve 
the equation for the wave spectrum, which is given by: 

DN
Dt

=
S
σ (1)  

where N represents the wave action density spectrum, S the general 
sources and sinks and σ the relative frequency. 

The spectrum that is considered in most of the present wave models 
is the action density spectrum (N), rather than the energy density 
spectrum since in the presence of currents action density is conserved 
whereas energy density is not (Whitham, 1965). 

The equation (1) is a balance in spectral energy that describes the 
evolution of the wave spectrum in time, geographical and spectral 
spaces given by: 

Fig. 10. Hs scalar fields in the Madeira area for 7th of January 2014 at 00h, simulated with ERA-Interim (a), ERA5 (b) and Scatterometer (c) wind fields.  

Table 7 
Grid points Hs values for the extreme event case, on the 5th of January 2014 at 
12h for the Azores and the 7th of January 2014 at 00h for Madeira.   

Hs(m) 

Lat/Lon ERA-5 ERA-Interim Scatterometer 

Azores 40.5◦N/25◦W 9.63 9.60 9.61 
40.5◦N/32◦W 11.20 11.00 12.40 
39◦N/30◦W 9.18 8.74 9.81 
38.5◦N/25◦W 7.39 7.48 7.23 
37.5◦N/27.7◦W 6.80 6.80 6.81 
36.5◦N/32◦W 9.78 9.65 9.87 

Madeira 33.86◦N/16◦W 5.35 5.34 5.43 
33.10◦N/16.38◦W 5.64 5.61 5.71 
33◦N/17.5◦W 5.29 5.15 5.28 
32.44◦N/16.60◦W 2.92 2.81 3.07 
32◦N/18◦W 5.12 5.10 5.13 
31.80◦N/16.88◦W 4.96 4.96 4.97  

D. Silva et al.                                                                                                                                                                                                                                    



Ocean Engineering 266 (2022) 112803

8

∂N
∂t

+∇x .(ẋN)+
∂
∂k

(k̇N)+
∂
∂θ

(θ̇N)=
S
σ (2)  

where: 

ẋ= cg + U (3)  

k̇ = −
∂σ
∂d

∂d
∂s

− k
∂U
∂s

(4)  

θ̇= −
1
k

[
∂σ
∂d

∂d
∂m

− k
∂U
∂m

]

(5) 

cg is the group velocity of wave energy in x, y spatial space, U is the 
mean current velocity, d is the water depth, σ is the relative frequency, k 
is the wave number, s and m are the space coordinates of wave propa-
gation direction θ. 

The S from the right-hand side of the action balance equation rep-
resents the source terms, defined as 

S= Sln + Sin + Snl + Sds + Sbot + Sdb + Str + Ssc + Sxx (6) 

For deep water, the following terms can be considered for S: Snl is a 
nonlinear interaction wind wave, Sin is the wind wave interaction and 
Sds is a dissipation term. For model initialization, Sln should also be 
considered. In shallow waters, further processes must be considered, 
such as the wave bottom interaction (Sbot), in extremely shallow water, 
depth-induced breaking (Sdb) and triad wave-wave interactions (Str). 

SWAN is suited for intermediate and shallow water processes by 
including additional source terms for triad wave-wave interactions and 
depth-induced wave breaking as well as the JONSWAP parameterization 
for dissipation due to bottom friction (Hasselmann et al., 1973). In 
addition, SWAN accounts for some effects of diffraction by including an 
additional term derived from the mild slope equation (Holthuijsen et al., 
2003). The mild-slope equation describes the variations of wave height 
when waves propagate through varying depths with the combined ef-
fects of diffraction and refraction. In terms of efficiency, WWIII tends to 
be more applicable in deep waters, on global scales, while SWAN tends 
to be more effective in shallow waters, on regional scales. 

3.2. Model input and boundary conditions 

For each hindcast, spectral data from WWIII, provided by the Ifremer 
IOWAGA (Integrated Ocean WAves for Geophysical and other Applica-
tions) project (Ardhuin and Accensi, 2013), with a time resolution of 3h 
(Table 3), are used as boundary conditions for the SWAN model, to study 
the evolution of the waves in the area of the Azores and Madeira Islands. 

Each wind input field used has a time resolution of 6 h, provided over 
a spatial grid of 0.25ᵒx0.25ᵒ resolution. The bathymetry used in the 
SWAN model is from GEBCO (General Bathymetric Chart of the Ocean), 
Figs. 2 and 3, and its original resolution is interpolated as presented in 
Table 4. To optimize the computational time consumption, the grid of 
the Azores area, which is a larger area than Madeira, was interpolated to 
a lower resolution. 

4. Results and discussion 

4.1. Validation of the results 

The numerical results are compared and validated against altimeter 
data (both Madeira and Azores), provided by Ifremer, and buoy mea-
surements from five wave buoys for the Azores, from CLIMAAT project 
(Azevedo and Gonçalo, 2005), (Table 5, Fig. 3). 

The accuracy evaluation was performed using the statistics of the 
parameters Bias, root mean square error (RMSE), scatter index (SI) and 
Pearson’s Correlation Coefficient (r), which are expressed by the 
following relationships: 

Bias=

∑n

i=1
(Xi − Yi)

n
(7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Xi − Yi)

2

n

√
√
√
√
√

(8)  

SI =
RMSE

X̃
(9)  

r=

∑n

i=1
(Xi − X̃)(Yi − Ỹ)

(
∑n

i=1
(Xi − X̃)2 ∑n

i=1
(Yi − Ỹ)2

)1 /

2
(10)  

where Xi and Yi are the measured and simulated values, respectively. 
Table 6 summarizes the results of the statistical parameters for the 

significant wave height (Hs) in the three hindcast runs against buoys 
data in the Azores area. All hindcast systems tend to overestimate the B1, 
B2 and B3 and underestimate B4 and B5. This difference in the model’s 
performance could be due to the position of buoys, with the over-
estimation related to the ones more exposed to the wave regime and the 
underestimation with the ones more protected. Though, in general, the 
results show a good agreement between all the wind forcing with cor-
relation values above 0.80, it is visible that less accurate results are 
found for buoys B2 and B4. 

As written before, the performance of the three hindcast systems in 
both areas was checked using altimeter data from Ifremer. The valida-
tion was made using the Matlab toolbox ALTWAVE (Appendini et al., 
2016), which matches the data between the model and the satellite in 
temporal (a limit of 1h30m) and spatial dimension (a limit of 0.25◦). The 
statistics parameters were then calculated considering all the points 
included in the match. 

Figs. 4 and 5 present the Hs parameter scatter diagram of the hind-
cast model results, for the 5 years, against the altimeter data. As can be 
seen, the results demonstrate a good correlation, with values above 0.80 
for the Azores islands and 0.90 for Madeira Island. The overestimation 
for all the wind reanalysis in both locations is also visible. 

For the locations of two buoys in each area, direct comparisons of the 
Hs time series results between the three wave hindcasts systems were 
made for 2 months (January and February of 2014), strategically chosen 
to cover some storms registered in the north Atlantic. The results are 
illustrated in Fig. 6 (case of Azores) and Fig. 7 (case of Madeira). For the 
Azores, it is also included the measurements registered at the buoys. This 
approach not only has the purpose to see the behaviour of the different 
wave prediction systems and their correlation but also identifying some 
Hs peaks, which will be discussed later in the study. 

The results show a good correlation between hindcasts. Nevertheless, 
it is visible that all hindcast simulations tend to underestimate B5 
measurements and overestimate B3 measurements at the peaks of the 
Azores buoys. 

4.2. Analysis of the different wind forcing sources 

In this chapter, to understand the difference between the three 
forcing winds a field analysis is performed for an extreme event that 
occurred in the North Atlantic. 

Between January 5th and 7th, 2014, a low-pressure system 
approached the Portuguese coastal areas from the Atlantic Ocean. The 
cyclone Hercules (also named “Christina” by the University of Berlin) 
affected the Portuguese islands with strong winds and waves, particu-
larly in the Azores archipelago, located further northwest in the Atlantic 
than Madeira, with waves up to 12m. On the island of Madeira, waves 
ranged the 6–7m. Its passage left substantial destruction due to strong 
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winds, long-period waves and intense precipitation. 
Fig. 8 shows the U10 scalar fields when the cyclone Hercules (5th of 

January 2014 at 12h) passed over the North Atlantic area, as a result of 
ERA-Interim, ERA5 and Satellite winds. 

As can be observed, the main differences are visible in the satellite 
reanalysis, where the highest values for the extreme event were found 
(U10 > 30 m/s). The ERA-Interim and ERA5 results are relatively similar 
(U10~25 m/s). 

Ponce de León and Guedes Soares (2014, 2015a,b), describe the 
wave parameters under North Atlantic storms obtained from a hindcast 
using the WAM with CFSR (reanalysis of NOAA/NCEP) as forcing wind. 
On the 6th of January 2014 at 00h, in the Hércules storm, the U10 of 
CFSR presented values higher than 25 m/s (Ponce de León and Guedes 
Soares, 2015a), and on the 14th of February 2011 at 00h presented 
values of 35 m/s (44 m/s at different satellites) (Ponce de León and 
Guedes Soares, 2015b) and on the 9th February 2017 at 12h presented 
values up 35 m/s (Ponce de León and Guedes Soares, 2014). For 
different storms, the CFSR presents values in the same range of magni-
tude and is in line with the values of the forcing winds used in this work. 
The Hs values using the CFSR vary between 14m (February 2013) to 
values up to 20m (February 2007) in the North Atlantic. It is not possible 
to compare these Hs values directly with the ones obtained here, but for 
the Azores, the Hs values are not far from the range. 

Figs. 9 and 10 show the Hs scalar fields obtained with the different 
forcing in the particular areas of the Azores (5th of January 2014 at 12h) 
and Madeira (7th of January 2014 at 00h). As additional information, to 
perform a quantitative comparison, a local Hs assessment was done 
using a few grid points around the archipelagos, which results are pre-
sent in Table 7. 

The Hs spatial distribution Figures show that for the case of the 
extreme event, the scatterometer forcing wind gives, in general, the 
highest Hs values, followed by Era5 and Era-Interim. This difference 
between the forcing winds fields is amplified in places where higher 
values of Hs are already expected, more specifically in the northwest 
areas, where we normally can find stronger winds. This is more evident 
in the Azores due to this area be more exposed to the North Atlantic 
storms. 

From Table 7 it is possible to quantify what was written before about 
the Hs spatial distributions. The area of the Azores presents the highest 
values for Hs with the highest differences between the wind forcings. 
This difference, taking into account the highest and lowest values of the 
same point, varies between 0.01m (37.5◦N/27.7◦W), with Satellite 
having the highest value and ERA-5 together with the ERA-Interim the 
lowest one, and 1.40m (40.5◦N/32◦W), with Satellite having the highest 
value and ERA-Interim the lowest one. Notice that the highest difference 
occurred in the most northwestern point. It is also worth noting the next 
most northwestern point (39◦N/30◦W), with 1.07m of differences be-
tween Satellite (highest value) and ERA-Interim (lowest value). For 
Madeira, the differences between the wind forcing results vary between 
0.01m (31.80◦N/16.88◦W), related to Satellite with ERA-5 and ERA- 
Interim, and 0.19m (32.44◦N/16.60◦W), related to Satellite and ERA- 
Interim. 

5. Conclusions 

This work presents a description of the differences in the accuracy of 
wave conditions assessment when using different sources of wind forc-
ing: ERA-Interim and ERA5 reanalysis, both from ECMWF, and scat-
terometer data. A 5-year wave hindcast system, based on the SWAN 
spectral wave model, has been considered and the target areas are the 
Portuguese islands of Azores and Madeira. 

The results are validated for the Azores with buoys from the Azores 
and the results show that all models tend to overestimate B1, B2 and B3 
and underestimate B4 and B5. The overall results show a good agree-
ment between measurement and simulations with correlation values 
above 0.80. 

Validations are also performed using altimeter data, for both the 
Azores and Madeira. The results showed a good correlation with an 
overestimation for all the wind forcings. 

To understand the difference between the three forcing winds sys-
tems a field analysis is carried out for an extreme event that occurred in 
the North Atlantic. This work showed that the Hs outputs of the SWAN 
model forced by scatterometer winds present the highest values for the 
extreme event, followed by Era5 and Era-Interim. This difference be-
tween the forcing winds is more visible in the Azores, as this area is more 
exposed to the North Atlantic storms. 

Finally, the results show that under extreme conditions all hindcast 
systems tend to underestimate the Hs peaks. 
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