



## Supplement of

## **FESDIA** (v1.0): exploring temporal variations of sediment biogeochemistry under the influence of flood events using numerical modelling

Stanley I. Nmor et al.

Correspondence to: Stanley I. Nmor (stanley.nmor@lsce.ipsl.fr)

The copyright of individual parts of the supplement might differ from the article licence.

## SUPPLEMENTARY TEXT

| Model                      | Model     |        |                     |                                                 |                          |
|----------------------------|-----------|--------|---------------------|-------------------------------------------------|--------------------------|
| Parameters                 | Notation  | Values | units               | description                                     | References               |
| <i>flux</i> <sub>org</sub> | CFlux     | 150    | $mmol m^{-2}d^{-2}$ | total organic C                                 | Pastor et al 2011        |
|                            |           |        |                     | deposition                                      |                          |
| pfast                      | pFast     | 0.5    | -                   | part FDET in carbon flux                        | Pastor et al 2011        |
| flux <sub>Fe003</sub>      | FeOH3flux | 0.01   | $mmol m^{-2}d^{-1}$ | deposition rate of FeOH3                        | Assumed                  |
| rFast                      | rFast     | 0.1    | $d^{-1}$            | decay rate FDET                                 | Ait Ballagh et al., 2021 |
| rSlow                      | rSlow     | 0.0031 | $d^{-1}$            | decay rate SDET                                 | Ait Ballagh et al., 2021 |
| NCrFdet                    | NCrFdet   | 0.14   | molN/molC           | NC ratio FDET                                   | Pastor et al., 2011      |
| NCrSdet                    | NCrSdet   | 0.1    | molN/molC           | NC ratio SDET                                   | Pastor et al., 2011      |
| BCupLiq                    | BCupLiq   | 2      | -                   | upper boundary liq.<br>1:flux, 2:conc, 3:0-grad |                          |
| BCdownLiq                  | BCdownLiq | 3      | -                   | lower boundary liq.<br>1:flux, 2:conc, 3:0-grad |                          |
| $O_{2_{bw}}$               | O2bw      | 197    | $mmol \ m^{-3}$     | upper boundary O2                               | Ait Ballagh et al., 2021 |
| NO <sub>3bw</sub>          | NO3bw     | 0.0    | $mmol \ m^{-3}$     | upper boundary NO3                              | Ait Ballagh et al., 2021 |
| NH <sub>3bw</sub>          | NH3bw     | 0.0    | $mmol \ m^{-3}$     | upper boundary NH3                              | Ait Ballagh et al., 2021 |
| $CH_{4_{bw}}$              | CH4bw     | 0.0    | $mmol \ m^{-3}$     | upper boundary CH4                              | Rasmann et al., 2016     |
| DIC                        | DICbw     | 2360   | $mmol \ m^{-3}$     | upper boundary DIC                              | Pastor et al., 2018      |
| $Fe^{2+}_{bw}$             | Febw      | 0.0    | $mmol m^{-3}$       | upper boundary Fe2                              | Pastor et al., 2018      |
| $H_2 S_{bw}$               | H2Sbw     | 0.0    | $mmol m^{-3}$       | upper boundary H2S                              | Pastor et al., 2018      |
| $SO_{4_{bw}}$              | SO4bw     | 30246  | $mmol m^{-3}$       | upper boundary SO4                              | Pastor et al., 2018      |
| W                          | W         | 0.027  | $cm d^{-1}$         | advection rate                                  | Pastor et al., 2011      |
| $D_0$                      | biot      | 0.01   | $cm^2 d^{-1}$       | bioturbation coefficient                        | Ait Ballagh et al., 2021 |
| $Z_L$                      | biotdepth | 5      | ст                  | depth of mixed layer                            | Ait Ballagh et al., 2021 |
| biot <sub>att</sub>        | biotatt   | 1.0    | $cm^{-1}$           | attenuation coeff below                         | Ait Ballagh et al., 2021 |
|                            |           |        |                     | biot dep th                                     |                          |
| Irr <sub>0</sub>           | irr       | 0.2    | $d^{-1}$            | bio-irrigation rate                             | Ait Ballagh et al., 2021 |
| Z <sub>irr</sub>           | irrdep th | 7      | ст                  | depth of irrigated layer                        | Ait Ballagh et al., 2021 |
| <i>Irr<sub>att</sub></i>   | irratt    | 1.0    | ст                  | attenuation coeff below                         | Ait Ballagh et al., 2021 |
|                            |           |        |                     | irrdep th                                       |                          |

Table S1: Full Parameters used in the model

| Model                         | Model       |                    |                                              |                                           |                                 |
|-------------------------------|-------------|--------------------|----------------------------------------------|-------------------------------------------|---------------------------------|
| Parameters                    | Notation    | Values             | units                                        | description                               | References                      |
| temp                          | temperature | 16                 | °C                                           | temperature                               | Ait Ballagh et al., 2021        |
| sal                           | salinity    | 38                 | psu                                          | salinity                                  | Ait Ballagh et al., 2021        |
| TOC <sub>ref</sub>            | TOC0        | 1.1                | %                                            | refractory Carbon conc                    | Pastor et al., 2018             |
| ks <sub>Nitri</sub>           | ksO2nitri   | 10                 | mmol $O_2 m^{-3}$                            | half-sat O2 in nitrification              | Soetaert et al., 1996           |
| ks <sub>o2</sub>              | ksO2oxic    | 1.0                | mmol $O_2 m^{-3}$                            | half-sat O2 in oxic mineralisation        | Soetaert et al., 1996           |
| ks <sub>NO3</sub>             | ksNO3denit  | 10                 | mmol NO <sub>3</sub> m <sup>·</sup>          | half-sat NO3 in denitrification           | Soetaert et al., 1996           |
| $k_{ino_2den}$                | kinO2denit  | 1.0                | $mmol O_2 m^{-3}$                            | half-sat O2 inhib<br>denitrification      | Soetaert et al., 1996           |
| k <sub>inNO3</sub> ano        | kinNO3anox  | 10                 | mmol NO <sub>3</sub> m <sup>·</sup>          | half-sat NO3 inhib<br>anoxic degr         | Soetaert et al., 1996           |
| k <sub>inO2</sub> ano         | kinO2anox   | 1.0                | mmol $O_2 m^{-3}$                            | half-sat O2 inhib anoxic min              | Soetaert et al., 1996           |
| ks <sub>FeOH3</sub>           | ksFeOH3     | 12500              | mmol FeOH <sub>3</sub>                       | half-sat FeOH3 conc in                    | Wang and Van                    |
|                               |             |                    |                                              | iron reduction                            | Cappellen, 1996                 |
| ks <sub>inFeOH3</sub> ano     | kinFeOH3    | 12500              | mmol FeOH <sub>3</sub>                       | half-sat FeOH3 inhibition S reduction     | Wang and Van<br>Cappellen, 1996 |
| $ks_{SO_4}$                   | ksSO4BSR    | 800                | $mmol \ S \ m^{-3}$                          | half-sat SO4 conc in sulphate reduction   | Wang and Van<br>Cappellen, 1996 |
| k <sub>inSO4</sub> ano        | kinSO4Met   | 1000               | $mmol \ S \ m^{-3}$                          | half-sat SO4 inhibition<br>methanogenesis | Wang and Van<br>Cappellen, 1996 |
| R <sub>FeOH<sub>3</sub></sub> | rFeox       | 0.3                | $(mmol \ m^{-3})^{-1}$                       | Max rate Fe oxidation                     | Berg et al. 2003                |
| $R_{H_2S}$                    | rH2Sox      | $5 \times 10^{-5}$ | $(mmol \ m^{-3})^{-1}$                       | Max rate H2S oxidation                    | Assumed                         |
| R <sub>FeSprod</sub>          | rFeS        | $1 \times 10^{-3}$ | (mmol m <sup>-3</sup> ) <sup>-</sup>         | maximum rate FeS production               | Assumed                         |
| R <sub>CH4</sub>              | rCH4ox      | 27                 | (mmol m <sup>-3</sup> ) <sup>-</sup>         | Max rate CH4 oxidation with O2            | Berg et al. 2003                |
| R <sub>AOM</sub>              | rAOM        | $3 \times 10^{-5}$ | ( <i>mmol m</i> <sup>-3</sup> ) <sup>-</sup> | Max rate anaerobic oxidation Methane      | Assumed                         |
| Øo                            | p or0       | 0.8                | -                                            | surface porosity                          | Ait Ballagh et al., 2021        |
| $\phi_{\infty}$               | pordeep     | 0.6                | -                                            | deep porosity                             | Ait Ballagh et al., 2021        |

| Model            | Model         |        |       |                       |                          |
|------------------|---------------|--------|-------|-----------------------|--------------------------|
| Parameters       | Notation      | Values | units | description           | References               |
| δ                | porcoeff      | 2      | ст    | porosity decay        | Ait Ballagh et al., 2021 |
|                  |               |        |       | coefficient           |                          |
| F                | formationtype | 1.0    | -     | formation factor,     | Pastor et al., 2011      |
|                  |               |        |       | 1=sand,2=fine         |                          |
|                  |               |        |       | sand,3=general        |                          |
| k <sub>ads</sub> | Kads          | 1.3    | -     | Adsoption coefficient | Soetaert et al., 1996a   |
|                  |               |        |       |                       |                          |

Table S2: Estimate of relaxation timescale (days) with uncertainty in estimate derived from non-parametric bootstrapping

|              | O <sub>2</sub> | <b>SO</b> 4 <sup>2-</sup> | DIC          |
|--------------|----------------|---------------------------|--------------|
| EM1 Scenario |                |                           |              |
|              | 5 ± 3          | $117 \pm 6$               | $142 \pm 23$ |
| EM2 Scenario |                |                           |              |
|              | $2\pm 2$       | $91\pm 6$                 | $103 \pm 9$  |

## A2 Model Grid

As explained in the main text, the event routine was modified the model grid at the specific time during its runtime. A certain depth of deposition  $Z_{pert}$  result to  $N_{pert}$  layer added to the model grid N. Afterward, regridding of this layer together with the cell content is performed via interpolation of the grid  $N + N_{pert}$  into the model grid. Figure A1 showed the difference in the spacing of the grid  $\Delta z$  and number of layer before and deposition.



Figure S1: Grid layer in the event routine.