FN Archimer Export Format PT J TI Sub-micrometric spatial distribution of amorphous and crystalline carbonates in biogenic crystals using coherent Raman microscopy BT AF Dicko, Hamadou Grünewald, Tilman A. Ferrand, Patrick Vidal-Dupiol, Jeremie Teaniniuraitemoana, Vaihiti SHAM KOUA, Manaarii LE MOULLAC, Gilles Le Luyer, Jeremy SAULNIER, Denis Chamard, Virginie Duboisset, Julien AS 1:1;2:1;3:1;4:2;5:3;6:3;7:3;8:3;9:3;10:1;11:1; FF 1:;2:;3:;4:PDG-RBE-IHPE;5:PDG-RBE-RMPF;6:PDG-RBE-RMPF;7:PDG-RBE-RMPF;8:PDG-RBE-RMPF;9:PDG-RBE-RMPF;10:;11:; C1 Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Montpellier, France Ifremer, UMR 241 Environnement Insulaire Océanien (EIO), Labex Corail, Centre du Pacifique, BP 49, Vairao 98719, French Polynesia C2 UNIV AIX-MARSEILLE, FRANCE IFREMER, FRANCE IFREMER, FRANCE SI MONTPELLIER TAHITI SE PDG-RBE-IHPE PDG-RBE-RMPF UM IHPE EIO IN WOS Ifremer UMR copubli-france copubli-univ-france IF 3 TC 3 UR https://archimer.ifremer.fr/doc/00800/91212/96940.pdf LA English DT Article DE ;Coherent Raman;Optical microscopy;Calcium carbonate;Shell oyster;Crystalline transition;Biomineralization AB In living organisms, calcium carbonate biomineralization combines complex bio-controlled physical and chemical processes to produce crystalline hierarchical hard tissues (usually calcite or aragonite) typically from an amorphous precursor phase. Understanding the nature of the successive transient amorphous phases potentially involved in the amorphous-to-crystalline transition requires characterization tools, which are able to provide a spatial and spectroscopic analysis of the biomineral structure. In this work, we present a highly sensitive coherent Raman microscopy approach, which allows one to image molecular bond concentrations in post mortem shells and living animals, by exploiting the vibrational signature of the different carbonates compounds. To this end, we target the calcium carbonate vibration mode and produce spatially and spectroscopically resolved images of the shell border of a mollusk shell, the Pinctada margaritifera pearl oyster. A novel approach is further presented to efficiently compare the amount of amorphous carbonate with respect to its crystalline counterpart. Finally, the whole microscopy method is used to image in vivo the shell border and demonstrate the feasibility and the reproducibility of the technique. These findings open chemical imaging perspectives for the study of biogenic and bio-inspired crystals. PY 2022 PD DEC SO Journal Of Structural Biology SN 1047-8477 PU Elsevier BV VL 214 IS 4 UT 000890812500005 DI 10.1016/j.jsb.2022.107909 ID 91212 ER EF