FN Archimer Export Format PT J TI Exploring the link between large earthquakes and magma transport at the onset of the Mayotte volcano-seismic crisis BT AF Morales-Yáñez, Catalina Duputel, Zacharie Rivera, Luis AS 1:1,2;2:3,4;3:1; FF 1:;2:;3:; C1 Institut Terre et Environnement de Strasbourg, UMR7063, Université de Strasbourg/EOST, CNRS, Strasbourg, France Department of Civil Engineering, Universidad Católica de la Santísima Concepción, Concepción, Chile Observatoire Volcanologique du Piton de la Fournaise, Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France C2 UNIV STRASBOURG, FRANCE UNIV CATOLICA SANTISIMA CONCEPCION, CHILE UNIV PARIS, FRANCE UNIV PARIS, FRANCE IF 1.4 TC 1 UR https://archimer.ifremer.fr/doc/00800/91224/96973.pdf https://archimer.ifremer.fr/doc/00800/91224/96974.pdf LA English DT Article CR MAYOBS1 BO Marion Dufresne DE ;Mayotte;Volcano seismology;Moment tensor inversion;3D-Green functions;Volcanotectonic earthquakes AB The archipelago of Comoros was generally considered a moderately seismic region. However, since May 2018, unusual seismicity has been observed off the east coast of Mayotte Island. Following this increase of seismic activity, oceanographic campaigns led to the discovery of a new submarine volcano, indicating that the observed seismicity had a volcanic origin. In this study, we estimate Centroid Moment Tensor (CMT) solutions of earthquakes of this sequence using 3D Green’s functions and analyze their non-double-couple (non-DC) components. Consistently with previous reports, our results indicate that seismicity migrated upward in May–June 2018 with an increasing number of non-DC events. We show that non-DC components observed in our solutions and previously published catalogs cannot correspond to dike opening or closing as the observed rupture durations suggest unrealistically large magma flow rates. Given that waveforms can be relatively well explained with pure-shear sources, we postulate that non-DC components are most likely artifacts due to unmodeled shallow structural heterogeneities. Most earthquakes have a strike-slip mechanism consistent with the rupture of pre-existing faults loaded by the regional stress regime and triggered by the increment of stress produced by the upward magma transfer. PY 2022 SO Comptes Rendus Geoscience SN 1631-0713 PU Cellule MathDoc/CEDRAM VL 354 IS S2 UT 000929986500008 BP 137 EP 152 DI 10.5802/crgeos.150 ID 91224 ER EF