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Abstract :   
 
Otoliths are very useful biomarkers especially for fish growth. Climate change with the associated global 
changes in warming and acidification could affect the calcification and the shape of otoliths during the 
crucial larval period in teleost fish. To evaluate this predicted combined effect of temperature and CO2, 
Atlantic herring (Clupea harengus) embryos and larvae were reared from hatching to respectively 47 and 
60 days post-hatching (dph), under present day conditions and a scenario predicted for the year 2100 
(IPCC RCP8.5). Otolith morphogenesis was tracked by analyzing area and normalized Elliptical Fourier 
coefficients. We found that otolith area for fish of similar size increased under the predicted 2100 climate 
change scenario compared to the present day. Climate change does not, however, seem to directly affect 
the otolith shape. Finally, the onset of otolith morphogenesis is hardwired, but the relationship between 
otolith and fish size is environment-dependent. 
 
 

Highlights 

► Climate change do not affect the otolith shape of the herring larvae ► No directional bilateral 
asymmetry found between left and right otoliths ► Relationship between otolith and fish size is 
environment-dependent 
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1. Introduction  25 

Otoliths are calcified biomineralised structures overlying the sensory epithelia in the inner ear of fish. 26 

They are formed by calcium carbonate crystals embedded in a non-collagenous organic matrix 27 

composed of acidic proteins and polysaccharides (Degens et al., 1969; Popper et al., 2005). They are 28 

metabolically inert and do not resorb in periods of stress, but grow throughout an individual’s life, in 29 

correlation with its ontogenic growth (Casselman, 1987).  Because of the positive correlation 30 

between otolith and fish growths, otoliths have been widely used in fisheries science to understand 31 

the fish growth and the potential effects which controlled it (i.e. environment, fishing pressure; 32 

Enberg et al., 2011 ; Marty et al., 2014; Carbonara et al., 2022). In Atlantic herring (Clupea 33 

harengus), otolith microstructure has been used to study environmental effects (temperature, salinity 34 

or feeding activity) on the growth of the larvae (Folkvord et al., 1997 ; 2004 ; Johannessen et al., 35 

2000; Berg et al., 2017; Denis et al., 2017; Tonheim et al., 2020), and otolith shape used as a tool for 36 

stock identification (Turan, 2000; Burke et al., 2008; Libungan et al., 2015). Atlantic herring are of 37 

high commercial importance, with around 1,640,000 tons caught in 2016 (FAO FishStat data), but 38 

are vulnerable to the effects of climate change, particularly at the larval stage (Hufnagl and Peck, 39 

2011). 40 

Otolith growth, and ultimately global otolith shape are well-known to result from the combination of 41 

genetic heterogeneity, ontogeny (physiological processes) and the influence of environmental (biotic 42 

and abiotic) factors (Vignon and Morat, 2010; Mahé, 2019; Hüssy et al., 2020). Global climate 43 

change is projected to cause warming of the ocean surface by 3 to 5°C by 2100, and acidification of 44 

waters with a drop of 0.4 pH units in the worst-case scenario (IPCC 2019). The speed at which global 45 

change is occurring will not allow some species to adapt; in addition, early life history stages which 46 

do not yet have fully functional physiological homeostatic mechanisms could be particularly affected 47 
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(Melzner et al., 2009). Some ontogenic processes, such as otolith morphogenesis, could thus be 48 

particularly impacted by the alteration of environmental conditions.  49 

A previous study on herring larvae testing four temperature conditions  showed that the size and the 50 

width of the otolith daily increment were both temperature-dependent (Folkvord et al., 2004). Other 51 

studies on the effects of ocean acidification on fish otoliths have been mostly conducted on larval 52 

developmental stages. Several studies have shown that elevated levels of CO2 caused an increase in 53 

otolith size or modification of the otolith shape for multiple species (Munday et al., 2011; Bignami et 54 

al., 2013; Maneja et al., 2013; Reveillac et al., 2015; Coll-Llado et al., 2021). Consequently, 55 

acidification can lead to decoupling of otolith and body growth for some species (Reveillac et al., 56 

2015; Franke and Clemmesen 2011; Frommel et al., 2013; Perry et al., 2021).  57 

Here, we aimed to investigate in Atlantic herring how otolith shape and size variability is affected by 58 

the warming and acidification conditions projected by 2100 under the worst-case IPCC scenario 59 

during the first early life stages. This otolith shape was investigated within individual (i.e. directional 60 

bilateral asymmetry) and within the population (i.e. between individuals). 61 

 62 

2. Materials and methods 63 

2.1 Experimental design  64 

A experiment with temperature and CO2 concentration (through the measure of pCO2 as partial 65 

pressure of CO2) as combined  factors was conducted, one close to present day conditions of 66 

temperature and pH in the winter in the English Channel (Amb; 11°C and pH 8.0, pCO2 ~560 µatm), 67 

and the other a global change scenario of ocean warming and acidification (IPCC 2019, “Changing 68 

ocean, marine ecosystems and dependent communities”) (OWA; 14°C and pH 7.6, pCO2 ~1660 69 

µatm) (Supplementary Table 1). There were 3 replicates (tanks) for each experimental condition (i.e. 70 
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temperature-CO2). Most of the eggs hatched on the 9th day of incubation (starting point of the 71 

experiment: 1 dph) and larvae were kept until 69 days post hatch (dph). Three days after hatching (3 72 

dph), all larvae were counted and distributed equally in six 38 L conical black tanks (1500 larvae by 73 

tank), constituting the replicates of the experiment. A continuous flow through system of 20 L h−1 74 

was used (i.e. open circulation system). To allow the acclimation of the larvae, the temperature in the 75 

OWA tanks was progressively increased from 11 to 14°C over 48 h. Each OWA tank was supplied 76 

by a 200 L header tank, where the heated water was enriched with CO2 to achieve the target value of 77 

pH 7.6.  78 

Temperature and CO2 were checked twice per day (pH meter 330i, WTW, Germany; Table S1). 79 

Oxygen saturation (oximeter: WTW Oxi 340, Bioblock scientific) and salinity were measured once 80 

per week, along with total alkalinity (TA) of each tank following the protocol of Anderson and 81 

Robinson (1946) and Strickland and Parsons (1972). Oxygen concentration was always above 88%. 82 

pCO2 was calculated using the excel macro CO2sys (Lewis and Wallace 1998) with the constant 83 

from Mehrbach et al., (1973) refit by Dickson and Millero (1987). To prevent any food limitation, the 84 

daily food quantity was distributed four times during the day to maintain an ad libitum level (Strain 85 

2002), ensuring that there were always prey in the tank during the day. To be sure to allow proper 86 

feeding through time we used an increasing range of living prey sizes from phytoplankton to 24 h old 87 

nauplii, before weaning with feed granules (as described in Joly et al., 2021). Throughout the study, 88 

mortality was monitored daily, and was comparable between all ponds with no influence of 89 

environmental conditions (for more details, Joly et al., 2021).  90 

Experimental animal came from wild Atlantic herring from the Downs stock of the southern North 91 

Sea and English Channel (Joly et al., 2021). Herring larvae were reared until they reached the last 92 

larval development stage respectively from hatching to 47 days post-hatching in the OWA treatment 93 

(14°C, 1660 µatm) and 60 days post-hatching in the Amb treatment (11°C, 560 µatm) to obtain the 94 
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same Growing Degree Days (GDD) for two temperature conditions. To follow the otolith growth and 95 

shape variation through time, 351 Atlantic herring from 32 to ~662°C.day (GDD, Figure 1) were 96 

sampled five times over the course of the experiment. At 32°C.day, 15 individuals were sampled, and 97 

then 42 fish for each experimental condition were sampled at each of the next four samplings. To 98 

assess the potential effect of temperature on the growth and shape of otoliths, we used the GDD 99 

approach which quantifies the thermal opportunity for growth by aggregating temperatures relevant 100 

to growth (McMaster and Wilhelm, 1997), and is thus more precise than the calendar time approach 101 

when describing growth (Neuheimer and Taggart, 2007; Mahé et al., 2019). The first sampling 102 

occurred at three days post-hatching (GDD=32°C.day). The four other samplings were then carried 103 

out after different time periods depending on the rearing temperature (Figure 1). 104 

2.2 Otolith shape analysis  105 

After measuring the total length (TL± 0.1 cm) of fish, their sagittal otoliths (left and right) were 106 

extracted from the cranial cavity and cleaned. The outline of each otolith was digitized using an 107 

image analysis system. To compare the shapes of the left and right otoliths, mirror images of the right 108 

otoliths were used. Otolith shape was assessed by analyzing first the otolith area (Oarea, µm²) and 109 

Elliptic Fourier Descriptors (EFDs; e.g. Lestrel, 2008). Oarea seems to be a better univariate 110 

descriptor than longest length. For each otolith, the first 99 elliptical Fourier harmonics  were 111 

extracted and normalized with respect to the first harmonic so as to be invariant to otolith size, 112 

rotation and starting point of contour description (Kuhl and Giardina, 1982). To determine the 113 

number of harmonics required to reconstruct the otolith outline, the cumulated Fourier power (F) was 114 

used. Only the first 6 harmonics were necessary to ensure reconstruction of each otolith shape with a 115 

precision of F=99.99% (Lestrel, 2008) and were thus used for further analyses. 116 

The resulting matrix containing EFDs (as columns) for each otolith (as rows) was subjected to 117 

Principal Components Analysis (PCA) (Rohlf and Archie, 1984). and the 3 first principal 118 
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components (PCs) were selected as otolith shape descriptors or shape matrix according to the broken 119 

stick model (Legendre and Legendre, 1998), which, in this case, corresponded to a threshold of 3.4% 120 

of the total variance explained (Borcard et al., 2011). In total, these 3 PCs explained 82.4% of the 121 

total variance in the EFDs. This procedure allowed us to decrease the number of variables used to 122 

describe otolith shape variability through EFDs while ensuring that the main sources of shape 123 

variation were kept, and to avoid co-linearity between shape descriptors (Rohlf and Archie, 1984). 124 

2.3 Statistical analyses 125 

Each environmental condition was the combination of temperature and CO2 concentration values. 126 

Otolith area and larvae size differences were analysed using a post-hoc Tukey-HSD test among 127 

several values of GDD. The relationship between larval total length (TL) and otolith area (Oarea) in 128 

response to the environmental conditions (temperature and CO2 concentration) was tested using 129 

Analysis of Covariance after verifying the normality of residuals. Using the Fourier harmonics to 130 

describe the otolith shape, pRDA were used to test the explanatory variables of interest (i.e., side, 131 

combination of temperature and CO2 concentration, GDD value) using total length to correct for fish 132 

size. This pRDA was combined with permutation tests on the selected PC matrix and the explanatory 133 

matrix consisted. To analyse the potential anatomical differences described by the directional 134 

bilateral asymmetry between left and right otolith shape, partial redundancy analysis (pRDA) was 135 

modelled on the selected principal components (PCs) matrix using otolith side (left/right) as the 136 

potentially influential variable and the individual as the conditioned variable. To test the potential 137 

effect of climate change, the pRDA was applied with the environmental explanatory matrix  138 

(Temperature and CO2 concentration). To visualise shape differences, average shapes were rebuilt 139 

based on EFDs averaged for each group of individuals. Directional asymmetry and environmental 140 

effect amplitude were then computed as the percentage of non-overlapping surface between the 141 

reconstructed otolith average shapes relative to the total area they covered after superposition for 2 142 
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groups left side/right side or 2 environmental conditions as used for other otolith shape studies (Mahé 143 

et al., 2018 ; Mahé et al., 2019 ; Mahé, 2019).  144 

Statistical analyses were performed using the following packages in the statistical environment R: 145 

‘Vegan’ (Oksanen et al., 2013), ‘sp’ (Bivand et al., 2013) and ‘rgeos’ (Bivand et al., 2013). 146 

3. Results 147 

3.1 Otolith growth 148 

There is a positive relationship between otolith and fish larvae sizes. Otolith and larvae sizes 149 

increased stepwise from 32 to 670°C.day (Figure 2). Over the course of the experiment, the ratio 150 

between the dorso-ventral and antero-posterior axis increased, leading to the loss of the initial 151 

circular shape of the otolith. Otolith morphogenesis was positively correlated with GDD. No 152 

statistical approach was applied on this ratio between the dorso-ventral and antero-posterior axis or 153 

otolith morphogenesis because it was only the difference automatically measured from the 154 

reconstructed otolith average shapes which explained the shape evolution (because it was not 155 

available (it was not possible to realize the automatic measures of individual length along the same 156 

axis due to the shape close to the circle). Herring larvae were long and thin at hatching, then 157 

progressively developed dorsal and caudal fins. Body height increased around 436°C.day, and the 158 

pelvic fins were the last fins to differentiate at around 662°C.day. Otolith area and larvae size 159 

differences were analysed among several values of GDD. Larvae size as otolith area grow during the 160 

larvae life (i.e. with GDD value; Figure 3A). Larvae size increased significantly between 32°C.day 161 

and 87°C.day, while the first changes in otolith area appeared only at 436°C.day. However, after this 162 

GDD level, otolith area (i.e. otolith 2-dimensional measure) increased faster than larval size measure 163 

(i.e. fish 1-dimensional measure). Neither larvae size nor otolith area were significantly different 164 

between the two environmental conditions (temperature/CO2) at any value of GDD, with the 165 

exception of larvae size at 436°C.day (P<0.05). The relationship between Oarea and TL was always 166 
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significant (P<0.05), but the slope was significantly higher in the OWA than in the Amb treatment 167 

(slopes difference; P<0.05; Figure 3B). For the same fish length, the area of otolith was bigger for the 168 

2100 scenario (14°C/CO2 1660 µatm) than under present day conditions (11°C/CO2 560 µatm) 169 

(Figure 3B); this difference increased with fish size. Our experimental study showed that this 170 

significant correlation between otolith and fish growth was still observed in present day 171 

environmental conditions as well as for the 2100 scenario.  172 

3.2 Otolith shape 173 

No significant difference in shape was observed between left and right otoliths (Supplementary Table 174 

2). The average percentage of non-overlapping surface between the two sides never exceeded 1% 175 

(Figure 4). Similarly, the results showed no significant environmental effect on otolith shape in 176 

herring larvae, with the average percentage of non-overlapping surface ranging from 0.73% to 1.48% 177 

(Supplementary Table 2; Figure 4).    178 

4. Discussion 179 

The otolith shape is regulated by a complex combination of endogenous and exogenous factors, 180 

including both abiotic environmental parameters (such as temperature and CO2), and biotic 181 

parameters (such as food availability). The influence of these factors is dependent on the ontogenetic 182 

stage (i.e. the development stage of the individual). In addition, the otoliths can be different between 183 

right and left inner ears as a consequence of potential developmental lateralization (e.g. side effect). 184 

Environmental factors, especially temperature, have a greater influence than genetic differences for 185 

Atlantic cod (Cardinale et al., 2004; Hüssy, 2008; Irgens, 2018). For seabass (Dicentrarchus labrax), 186 

increased temperature speeds up otolith morphogenesis and modifies the developmental pattern of 187 

the otolith shape (Mahé et al., 2019). Ocean acidification can also alter otolith shape (Holmberg et 188 

al., 2019). For several species, individuals exposed to high CO2 had a larger otolith area and 189 

maximum length compared with controls; the increases were larger than could be explained by an 190 
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increase in CaCO3 precipitation in the otoliths driven by the modification of the pH regulation in the 191 

endolymph (Checkley et al., 2009; Munday et al., 2011; Réveillac et al., 2015; Coll-Llado et al., 192 

2018). Changes in extracellular concentrations of carbonate and bicarbonate caused by acid-base 193 

regulation in a high CO2 environment could increase the precipitation of CaCO3 in the otolith (Payan 194 

et al., 1998). In studies on other species including herring, high CO2 had no effect on the larval 195 

sagittal otolith (Franke and Clemmesen, 2011; Munday et al., 2011; Frommel et al., 2013; Perry et 196 

al., 2015). Our experimental study showed that there is the relationship between otolith area and fish 197 

length according to the environmental conditions and validated the results observed in situ (Folkvord 198 

et al., 1997; Johannessen et al., 2000; Berg et al., 2017; Denis et al., 2017; Tonheim et al., 2020). A 199 

previous study on herring larvae testing four temperature conditions (4°C, 12°C and two others 200 

shifted twice with 4/8/4°C and 12/8/12°C) showed that the size and the width of the otolith daily 201 

increment were both temperature-dependent (Folkvord et al., 2004). The otolith area per fish size in 202 

our study increased with higher temperature and CO2 (i.e. lower pH). It should be noted that the 203 

feeding protocol chosen for this study provides ad-libitum feed, in order to avoid under-feeding 204 

situations that could have interfered with the otolith study. Nevertheless, it cannot be excluded that 205 

larvae under the 2100 scenario ingest more food than control larvae, which could also accelerate the 206 

increase of the otolith area in the 2100 scenario group. While growth mechanisms of otoliths and 207 

their morphogenesis during the early life stages of fish are poorly understood, shifts in otolith shape 208 

are linked to physiological modifications due to environmental disturbance (Geffen, 1987; Vignon, 209 

2018). Early life stages are more vulnerable to environmental challenges because they have higher 210 

surface area to volume ratios and have not yet fully developed the homeostatic regulatory 211 

mechanisms which are found in adult fish (Hurst et al., 2013). For Downs herring, a shift affecting 212 

larval condition has previously been observed in situ for individuals at 13 mm, and was driven by 213 

environmental conditions (temperature and prey concentration) (Dennis et al., 2017). Our 214 

experimental study on Downs herring covered this length range but the otoliths did not show any 215 
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ontogenetic differences. Several previous studies showed that the increase in otolith area by fish size 216 

could mainly result from water acidification (Checkley et al., 2009; Munday et al., 2011; Réveillac et 217 

al., 2015; Coll-Llado et al., 2018). Moreover, the elevated seawater CO2 can cause directional 218 

asymmetry (Holmberg et al., 2019). For herring, the environmental factors we studied 219 

(temperature/CO2) did not affect the otolith shape between sides at the observed larval stage. 220 

Consequently, it is likely that the level of response to CO2 increase might be a species-specific 221 

phenomenon. This capacity to maintain otolith shape in response to environmental changes is 222 

probably due to efficient intracellular ionic-regulation mechanisms in this species (Ishimatsu et al., 223 

2008; Melzner et al., 2009). This result may suggest that herring larvae are well equipped to cope 224 

with the environmental changes projected for 2100, as long as their energy and nutritional needs are 225 

well covered, which would not necessarily be the case in the natural environment. The faster growth 226 

of the larvae under the 2100 scenario may indeed lead to a greater prey requirement, and it cannot be 227 

ruled out that the increase in the area of the otoliths may also have affected their hearing ability and 228 

behaviour. Nevertheless, it should be noted that this species certainly has a good intracellular ionic 229 

regulation because it is confronted with different environments (Ishimatsu et al., 2008; Melzner et al., 230 

2009). Indeed, herring larvae typically hatch in littoral regions where pH and temperature can 231 

fluctuate because of freshwater inflow, so they may often experience such fluctuations and therefore 232 

be quite resistant to them. For more extreme values, however, the homeostatic mechanisms might not 233 

be sufficient to compensate for environmental stress and this could induce changes in otolith 234 

morphological development (Coll-Llado et al., 2018). 235 

Ontogeny and environment are the factors that control most of the otolith development during the 236 

early stages of life. The otolith shape evolves from the basic round form to elongated shape due to 237 

faster growth along the anterior-posterior axis than along the dorsal-ventral axis (Galley et al., 2006; 238 

Mille et al., 2015; Bounket et al., 2019; Mahé et al., 2019). Our study showed that the otolith shape 239 
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of herring grew in this way during the larval period. At the adult stage, significant directional 240 

asymmetry has been observed in herring (Bird et al., 1986), while no lateralization has been observed 241 

at the larval stage. This bilateral effect increases over the life of the fish when considering a different 242 

trajectory of otolith morphogenesis between left and right sides. However, the asymmetry between 243 

left and right otoliths especially the fluctuating asymmetry may be underestimated in experiments 244 

due to the small number of tested individuals which are experiencing stressful conditions and present 245 

experimental conditions that do not require significant development of acoustic functions as in the natural 246 

environment (Grønkjær and Sand, 2003; Diaz-Gil et al., 2015). Consequently, no lateralization has 247 

been observed in the experimental condition for the herring larval stage does not mean that this result 248 

will be the same in the natural environment. Although otolith shape is influenced by both abiotic and 249 

biotic environmental parameters and depends on individuals' genotype, environmental effects can 250 

also be perceived more with ontogeny, consequently, this developmental lateralization could be a 251 

phenotypically plastic response to environmental drivers rather than the consequence of the 252 

individual genotype, as previously suggested in Boops boops (Mahé et al., 2018). Sagittal otolith size 253 

and shape for each species could therefore be adaptive traits to different habitats and ecological 254 

niches (Lychakov and Rebane, 2000; Lombarte et al., 2010). 255 

Conclusions 256 

The growth and shape of the otoliths studied here did not appear to be affected by the environmental 257 

conditions predicted for 2100. However, this experimental approach should be confirmed in situ. 258 

Only the relationship between otolith and fish sizes seems to be environment-dependent. This 259 

information is important to understand the otolith morphogenesis and consequently when the otolith 260 

shape was used as a tool in fisheries science. In the future, to complete this approach, a crossed-effect 261 

experiment (four different settings: control, temperature increase, acidification, temperature increase 262 

and acidification) could be applied to quantify the effect of each environmental factor. In the same 263 
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way, it could be important to understand the link between the environment modifications and the 264 

food consumption by fish to separate the direct and indirect effects of the climate change on the 265 

otolith and fish growth.     266 
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Figure 1: Main steps of the experimental design for herring with five samplings by the level of GDD 452 

(Growing Degree Days) and by the number of dph (Days Post Hatching; grey value for 11°C; black 453 

value for 14°C). Each condition of temperature and CO2 concentration had three replicates. To test 454 

the effect of global change, present day conditions (11°C and pH 8.0, pCO2 560 µatm) versus the 455 

ocean warming and acidification conditions predicted for 2100 (14°C and pH 7.6, pCO2 1660 µatm) 456 

were used. 457 

 458 
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Figure 2: Growth of otolith shape and larval fish by GDD value (°C.day). 461 
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Figure 3: (A) Box-plot of otolith area (Oarea, µm²) and total length of fish (TL, cm) values by GDD 472 

value (°C.day) and environmental conditions (red for 14°C and 1660 µatm, and blue for 11°C and 473 

560 µatm). A different letter within each sampling time denotes a significant difference between the 474 

two groups. (B) Relationship between otolith average area (Oarea) and larval body length (TL) in 475 

response to the environmental conditions (red for 14°C and 1700 µatm, and blue for 11°C and 560 476 

µatm) (smoothing method using level of confidence interval of 0.95). 477 

 478 
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Figure 4: Percentage of non-overlapping surface between left and right otolith shape and for two 479 

environmental conditions by GDD value (°C.day) (arrows identify the main areas of difference 480 

between both otoliths). 481 
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Supplementary Table S1. Water parameters (Mean ± sd) during the 

larval rearing of herring larvae from 32 to ~670°C.day 

Condition T (°C) pH S (psu) TA (µmol/kgSW) pCO2 (µatm) 

Amb  

(11°C, 650 µatm) 

n= 6 

11.3 ± 0.4 8.03 ± 0.04 32.7 ± 0.4 2275.2 ± 139.3 559.1 ± 55.9 

OWA 

(14°C, 1660 µatm) 

n = 6 

14.2 ± 0.5 7.61 ± 0.12 32.7 ± 0.4 2280.3 ± 150.4 1661.6 ± 291.3 

Supplementary Table S2: Summary of redundancy analyses of herring 

otolith shapes. 

Factor  df P-value 

Side 1 0.756 

T°C/pCO2 1 0.097 

GDD 8 0.118 
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