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Abstract : 

Distributional shifts in species ranges provide critical evidence of ecological responses to climate change. 
Assessments of climate-driven changes typically focus on broad-scale range shifts (e.g. poleward or 
upward), with ecological consequences at regional and local scales commonly overlooked. While these 
changes are informative for species presenting continuous geographic ranges, many species have 
discontinuous distributions—both natural (e.g. mountain or coastal species) or human-induced (e.g. 
species inhabiting fragmented landscapes)—where within-range changes can be significant. Here, we 
use an ecosystem engineer species (Sabellaria alveolata) with a naturally fragmented distribution as a 
case study to assess climate-driven changes in within-range occupancy across its entire global 
distribution. To this end, we applied landscape ecology metrics to outputs from species distribution 

https://doi.org/10.1111/gcb.16496
https://archimer.ifremer.fr/doc/00805/91725/
http://archimer.ifremer.fr/
mailto:amelia.curd@ifremer.fr
mailto:Mathieu.chevalier@ifremer.fr


2  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

modelling (SDM) in a novel unified framework. SDM predicted a 27.5% overall increase in the area of 
potentially suitable habitat under RCP 4.5 by 2050, which taken in isolation would have led to the 
classification of the species as a climate change winner. SDM further revealed that the latitudinal range 
is predicted to shrink because of decreased habitat suitability in the equatorward part of the range, not 
compensated by a poleward expansion. The use of landscape ecology metrics provided additional 
insights by identifying regions that are predicted to become increasingly fragmented in the future, 
potentially increasing extirpation risk by jeopardising metapopulation dynamics. This increased range 
fragmentation could have dramatic consequences for ecosystem structure and functioning. Importantly, 
the proposed framework—which brings together SDM and landscape metrics—can be widely used to 
study currently overlooked climate-driven changes in species internal range structure, without requiring 
detailed empirical knowledge of the modelled species. This approach represents an important 
advancement beyond predictive envelope approaches and could reveal itself as paramount for managers 
whose spatial scale of action usually ranges from local to regional. 
 

Keywords : climate change, engineer species, landscape metrics, patch dynamics, range 
fragmentation, species distribution modelling, within-range structure 
 
 

 

 



| INTRODUCTION 

Geographic distributions of species are determined by complex interactions and feedbacks 

between climate, ecological and evolutionary processes (Parmesan and Yohe, 2003; Burrows 

et al., 2020; Paquette and Hargreaves, 2021). Several pioneering studies have shown the 

profound implications of climate-driven modification on assemblage composition, community 

structure and ecosystem functioning (Pecl et al., 2017; Walther, 2010). Under future climate 

conditions, the geographic ranges of many species are predicted to shift in size, latitude, depth 

and/or elevation (Poloczanska et al., 2016; Pinsky et al., 2020). Such changes have typically 

been documented for either the leading poleward or trailing equatorward range edges (i.e. the 

external range structure), thus overlooking changes taking place within ranges (i.e. the internal 



range structure; Csergő et al., 2020). 

 

FIGURE 1. Modelling framework bringing together SDM outputs and landscape metrics. 

SDMs were fitted on spatially thinned presence records and randomly-generated pseudo-

absences (see Figure 2a). Six environmental predictors: minimum air temperature, maximum 

sea surface temperature, fetch, salinity, wave height and tidal amplitude (see Figure 2b) were 

used to explain the species spatial distribution. Four algorithms were selected to build the 

models: GLM (generalized linear models), GAM (generalized additive models), RF (random 



forests) and BRT (boosted regression trees). We used an ensemble model approach to predict 

and map the current and the future habitat suitability across the species latitudinal range. Habitat 

suitability is defined as the likelihood of occurrence of a species in association with 

environmental variables. Ensemble predictions were then binarised into presence/absence (P/A) 

maps. These P/A maps were then used to (1) evaluate changes in range size and distribution 

shifts (see Figure 3b) and (2) compute various landscape metrics using both current and future 

P/A predictions. The landscape metrics were then used to study the spatial arrangement of 

predicted patches of P/A within the species range over time (Figures 4-5). Note that we applied 

landscape metrics to outputs from the ensemble model, however this approach can be applied 

separately to each model output in order to obtain information regarding the influence of 

pseudo-absence datasets, model runs and algorithms on internal range change metrics. 

 

Perhaps this omission betrays the implicit assumption that species distributions are spatially 

continuous (e.g. most IUCN polygons are continuous; Rocchini et al., 2011). Under this 

supposition, focusing on measuring changes in the external range structure such as changes in 

range size (Pither, 2003; Thomas, 2012), or quantifying the velocity at which the range centroid 

and/or margins (trailing and leading edges) may shift in the future may suffice (Sunday et al., 

2012; Lenoir et al., 2020; Fredston-Hermann et al., 2020). However, by relying only on external 

metrics, these broad-scale studies overlook the changes that can take place within ranges and 

which ultimately determine the abundance, occurrence and connectivity of local populations 

(VanDerWal et al., 2013). For instance, regional persistence of rare species, or those living in 

fragmented landscapes such as mountainous, coastal or degraded areas, usually present 

discontinuous distributions that rely on complex networks of interconnected populations whose 

responses to climate-driven changes cannot be accurately assessed using metrics characterising 

broad-scale patterns in biogeographical distribution changes (Opdam & Wascher, 2004; Mestre 

et al., 2017). In such cases, quantifying changes in the internal structure of geographical ranges 

is critical for understanding species vulnerability to climate change. For instance, range 

fragmentation can increase local extinction risk by jeopardising metapopulation dynamics 



(Mestre et al., 2017). To illustrate this point, we focused on the naturally discontinuous 

distribution of an intertidal ecosystem engineer, the reef-building honeycomb worm Sabellaria 

alveolata (Linnaeus, 1767). 

Intertidal ecosystems - and engineered intertidal  habitats in particular - support high 

biodiversity and deliver important ecosystem services to society such as protection from erosion 

and flooding, water quality, food resources (shellfish, seaweeds), sites for aquaculture and fish 

nursery grounds (Barbier et al., 2011). These ecosystems are however facing strong pressures, 

being under the influence of multiple stressors acting at multiple scales (regional and local) 

whose effect on biodiversity can be reinforced by climate change (Bugnot et al., 2021). 

Moreover, intertidal species are exposed to both terrestrial and marine environmental 

conditions, which remain challenging to account for (Helmuth et al., 2006). Taking advantage 

of extensive occurrence records (Curd et al., 2020), coupled with fit-for-purpose resolution 

(0.083 decimal degrees,) current and future climatologies of marine and terrestrial conditions, 

we developed a species distribution model (SDM) to predict the current and future distribution 

of S. alveolata across its full global latitudinal range (32-61° N). We then assessed how the 

external and internal range structure of S. alveolata will be altered in response to climate 

change. The latter was assessed by making novel use of landscape metrics applied to SDM 

outputs.  

Landscape ecology is a discipline all unto itself (Turner et al. 2005). A great variety of 

landscape composition (e.g., the number and amount of different habitat types) and 

configuration (the spatial arrangement of those classes) metrics have been developed for 

categorical data (Lausch et al., 2015). These metrics make it possible to improve our 

understanding of, for example, the effect of landscape complexity on biodiversity (Schindler et 

al., 2013) or habitat connectivity on metapopulation dynamics (Howell et al., 2018). The 

cornerstone of our approach is to have transformed species' predicted presence and absence into 



binary patches, where each patch is composed of one or several adjacent pixels of the same type 

(e.g. presences). This biotic-centred approach contrasts with the classical application of 

landscape metrics where patches are often derived from land-cover maps (Uuemaa et al., 2013). 

Once patches of predicted presences and absences are identified, various landscape metrics can 

be used to characterise patch properties and their spatial structure, ultimately providing a better 

characterization of the internal range structure and how it will evolve in response to external 

pressures (e.g. climate change). 

 

2 | MATERIALS AND METHODS 

Our workflow, which combines landscape ecology metrics with species distribution model 

outputs is illustrated in Figure 1. 

 

2.1 | Study area and species  

The honeycomb worm Sabellaria alveolata is an intertidal ecosystem engineer, capable of 

building tubes from sand and shell fragments on low- to mid-shore, in semi-exposed and 

exposed locations. As a colonial species, the multitude of fused tubes form biogenic structures 

ranging from veneers and hummocks to large reefs (Wilson, 1971; Curd et al., 2019). Reef-

forming S. alveolata has the potential to provide important coastal protection (Naylor & Viles, 

2000) and biogenic habitat for a diverse range of other species (Dubois et al., 2002; Jones et al., 

2018). Sabellaria alveolata has a discontinuous distribution ranging from southern Morocco to 

southwest Scotland (Lourenço et al., 2020), with many distribution breaks (Firth et al., 2021a) 

(Figure 2a).  

 



 

FIGURE 2. Species occurrence records and index of environmental change along the 

species distributional range. a, The 363 thinned occurrence records collated between 2000-

2019 from multiple data sources highlight the broad but fragmented biogeographical range of 

S. alveolata. b, Index of change in local environmental conditions (Table S1) between current 

and future (RCP 4.5 in 2050) climatic layers. High values indicate the largest difference 

between current and future environmental conditions (for details regarding the index 

computation, see the Methods).  

 



Our study was conducted across 29 degrees of latitude (from 32°N to 61°N) spanning a large 

gradient of climatic conditions (Figure S1). To the best of our knowledge S. alveolata is, and 

has always been, absent from the North Sea (Nunes et al., 2021). Although it has occasionally 

been cited as present in the North Sea (Richter, 1927), expert consensus is that these occurrences 

were S. spinulosa reefs (Reise, pers. comm.) (Figure S2). This distribution limit is thought to 

be due to the presence of a long-term hydrographic barrier to larval dispersal at the Cherbourg 

Peninsula in the English Channel (Salomon & Breton, 1993), and to competitive exclusion by 

S. spinulosa in the Greater North Sea. As both larval dispersal and biotic interactions cannot be 

accounted for by SDM, our study area does not extend to the North Sea. Since we only consider 

intertidal S. alveolata bioconstructions, our study area does not extend to the Mediterranean, 

where all S. alveolata records are subtidal owing to low amplitude tides. 

 

2.1 | Occurrence records 

An increasing number of SDM studies are based on presence data downloaded from the Global 

Biodiversity Information Facility (GBIF) (Alhajeri & Fourcade, 2019). Although these data 

have proved useful to model the distribution of some well-known species, records for S. 

alveolata are strongly affected by spatial sampling bias (Firth et al., 2021b) (Figure 2a). Here, 

we collated occurrence records from numerous sources, including field observations, research 

articles, citizen science observations, management reports and online databases (Curd et al., 

2020). Presence records were considered between the years 2000-2019, a time span compatible 

with the temporal coverage of climatic layers classically used in SDM studies (e.g. Bio-

ORACLE, Worldclim) (Assis et al., 2018; Hijmans et al., 2005; Tyberghein et al., 2012). 

Subtidal observations, and observations without geographic accuracy down to shore level, were 

excluded. Overall, 98 literature sources were included in the analysis, resulting in 14,960 

occurrence records. Only 12.2% of these records were previously accessible via online 



databases (Curd et al., 2020). Occurrence records were spatially thinned so that only one record 

was retained per climatic-grid cell (Steen et al., 2021). This left us with 363 observations. 

 

2.3 | Environmental variables 

We retained only ‘scenopoetic’ variables (i.e. variables on which the species has no impact) as 

predictors (Hutchinson, 1978). We did not include available seabed substrate maps (although 

potentially relevant) because the best existing layer compilation (currently provided by 

EMODnet; https://emodnet.ec.europa.eu/en) was not deemed fit-for-purpose, due to low spatial 

accuracy in many areas and limited spatial coverage. All environmental predictors covered the 

full latitudinal distribution of S. alveolata and came at a spatial resolution of 0.083° decimal 

degrees. This corresponds to a distance of 9.3 km along the latitude axis and, along the longitude 

axis, while the distance along the longitude axis goes from 7.8km at the equatorward edge, to 

4.5km at the poleward edge. Specifically, a set of 10 bioclimatic variables were chosen as 

climate-related candidate predictors (Table S1) including air temperature (min, max and mean) 

from WorldClim version 1.4 (Hijmans et al., 2005), sea-surface temperature (min, max and 

mean) and mean salinity from Bio-ORACLE (Assis et al., 2018; Tyberghein et al., 2012), wave 

height (Bricheno & Wolf, 2018), wave fetch (i.e. the distance over which wind-driven waves 

can build given the orientation of the coastline, Burrows, 2020) and tidal current and surface 

amplitudes from the TPXO8 ATLAS solution (www.tpxo.net) (Egbert & Erofeeva, 2002; 

Egbert et al., 2010). Present and future wave height was estimated by applying the WaveWatch 

IIITM spectral wave model at a regional scale (Atlantic Europe) (Tolman, 2009). Because wave 

fetch was estimated at a 100 m resolution, we re-projected and upscaled this raster (using 

average values) to match with the resolution of the other rasters (i.e. 0.083° degrees).  

We checked for collinearity between variables using Pearson’s correlation coefficients. For 

pairs with Pearson’s | r | > 0.7, we retained the variable known to be the most ecologically 



relevant (Araújo et al., 2019). This process led us to select six predictors: maximum sea-surface 

temperature, average salinity, minimum air temperature, wave fetch, wave height and tidal 

amplitude (Figures S3-S7). 

Future predictions for four of the six selected predictors were obtained for horizon 2050 under 

the Representative Concentration Pathway scenario RCP 4.5 (Meinshausen et al., 2011): 

salinity and sea surface temperature from Bio-ORACLE, air temperature from WorldClim and 

wave height from Bricheno & Wolf (2018). Tidal amplitude and wave fetch were assumed to 

stay constant in the future. To evaluate where, over the range, climate change might have the 

strongest effect on S. alveolata reefs, we calculated an index of environmental change. For this 

purpose, we first computed a climatic space using a principal component analysis (PCA) 

performed on the four standardised environmental variables that are predicted to change in the 

future (Figure S8). Then, we projected future environmental values within the two-dimensional 

space defined by the two first PCA axes (explaining 82% of the variance). Hence, a given pixel 

has two positions in this space. The index was calculated as the Euclidean distance between 

present and future conditions for each pixel (Figure 2b) with greater distances indicating larger 

changes.  

 

2.4 | Model building 

Model building was performed in R (R Core Team, 2019) using the package ‘biomod2’ 

(Thuiller et al., 2009). Four fundamentally different algorithms were selected to build the 

SDMs: generalised linear models (McCullagh & Nelder, 1998), generalised additive models 

(Hastie & Tibshirani, 1986), random forests (Breiman, 2001), and boosted regression trees 

(Elith et al., 2008). The four algorithms have already proven useful in modelling benthic species 

distributions (Bučas et al., 2013) and were selected for their ability to model non-linear 

relationships while assuming different shapes for the response curves. These algorithms have 



their own set of strengths and weaknesses which can lead to contrasted predictions (de la Hoz 

et al., 2019). For instance, random forests generally display high predictive performance on the 

training dataset (Elith, 2006; Reiss et al., 2011) but are prone to overfitting which can yield 

inaccurate predictions when extrapolating to non-analog conditions (Wenger & Olden, 2012; 

Beaumont et al., 2016). Alternatively, GLMs often have a lower predictive accuracy on the 

training dataset but usually display higher transferability (Wenger & Olden, 2012; Heikkinen 

et al., 2012; Yates et al., 2018). Algorithms were fitted using the default settings of biomod2. 

The four approaches require presence-absence data to be fitted. Since the absence records in 

our database had an uneven spatiotemporal spread (see Figure S1), we generated a random set 

of pseudo-absences over the study area. We generated the same number of pseudo-absences as 

available presences (i.e. 363) to give an equal weight to presences and absences in model 

predictions (Barbet-Massin et al., 2012). Models were then fitted on this presence/pseudo-

absence dataset. To account for stochasticity regarding the selection of pseudo-absences, this 

procedure was repeated 10 times (i.e. ten pseudo-absence datasets were generated). Note that 

since we used pseudo-absences, the models predict a habitat suitability index ranging from 0 to 

1 rather than a probability of presence (Guisan et al., 2017) (Figure S9). 

 

 

 

2.5 | Model performance and ensemble predictions 

Models were evaluated using a cross-validation approach based on repeated split-sampling 

(70% for calibration, 30% for evaluation) with 10 runs (Figure 1). For each run (and each 

pseudo-absence dataset), model performance was assessed using the true skill statistic (TSS) 

(Allouche et al., 2006) and the area under the ROC curve (AUC; Hanley and McNeil 1982). 



Both TSS (Sensitivity + Specificity - 1) and AUC are prevalence (i.e. the ratio of ‘presence’ to 

‘absence’ in the dataset) independent. They provide information on the model’s capacity to 

distinguish between presence and absence classes, with higher values pointing to better models 

(Lawson et al., 2014). Overall, a total of 400 models (4 algorithms times 10 cross-validations 

times 10 pseudo-absence samplings) were fitted. The importance of the different predictors 

across datasets and algorithms was evaluated using the “variables_importance” function of 

biomod2. 

We used an ensemble modelling approach to perform current and future predictions over the 

distribution range (Hao et al., 2020). Only models whose predictions on the test data had a TSS 

≥ 0.5 were retained for this procedure (99 GAM + 89 GLM + 100 RF + 99 BRT). Current and 

future predictions from the 387 contributing models were combined using a weighted average 

based on TSS scores (i.e. higher influence of models or datasets with higher TSS). Present and 

future predictive ensemble maps were reclassified into binary presence-absence surfaces using 

the threshold that maximises TSS evaluation scores (i.e. maxTSS; Guisan et al., 2017).  

 

2.6 | Measuring broad-scale external range changes between periods 

Binary predictions are classically used to estimate how species ranges will be affected in the 

future (Yalcin & Leroux, 2017). While the main object of inference focuses on range size 

(Gaston, 1996), additional metrics can be found in the literature (e.g. the proportion of pixels 

lost or gained) (Thuiller, 2004). When considering a broad latitudinal gradient, a more accurate 

estimation of changes in range size can be obtained by giving an equal area to all pixels (Sillero 

& Barbosa, 2021). Here, we re-projected the predicted rasters (both for presence-absence and 

habitat suitability) with the ETRS89 Lambert Azimuthal Equal Area Coordinate Reference 

System (ETRS-LAEA), with the latitude and the longitude of origin adjusted to 44.3°N, -3.2°E, 

giving each pixel an area of 25 km² (5 km x 5 km). From the presence-absence rasters, we used 



the BIOMOD_RangeSize function to estimate the proportion and relative number of pixels lost, 

gained and stable. We also quantified range shifts, another measure frequently used to estimate 

the effect of climate change on species distribution (e.g. Lenoir et al., 2020). To measure this, 

we first characterised ranges in both periods considering the centre (median latitudinal value 

where the species was predicted to be present), the upper (97.5% percentile) and the lower 

(2.5% percentile) limits of the range. We then quantified range shifts for all three attributes as 

the difference between future and current values. 

 

2.7 | Measuring fine-scale internal range changes between periods 

In addition to broad-scale range metrics that describe external range changes, we used landscape 

metrics to better characterise the fine-scale internal structure of the species range (in both 

current and future climatic conditions) and provide additional insights regarding how this 

structure will be affected in the future. Landscape ecologists often conceptualise the landscape 

as a mosaic of discrete, ecologically homogeneous, patches embedded within a background 

matrix of inhabitable areas (Turner et al. 2005, Lausch et al. 2015). Patches are the basic 

statistical unit under this approach, and are defined as one isolated, or several adjacent, pixels 

of the same class (e.g. crops) that differ from their surroundings (e.g. forests). Each patch has 

its own individual characteristics (e.g. shape, size, distance to nearest neighbour; Hesselbarth 

et al. 2019), while the landscape pattern emerges from the spatial composition and configuration 

of patches from different classes (Turner et al. 2005, Lausch et al. 2015). Pixels belonging to 

each patch can be monitored over time so that pixels transitioning from one class to another in 

response to external pressures (e.g. climate change) can be translated into patch dynamics. 

Thus, presence pixels switching to absence pixels within a presence patch lead to patch 

fragmentation. A suite of landscape metrics describing changes in patch properties (e.g. area, 

Euclidean distance to the nearest neighbour), and their spatial configuration (e.g. patch 



aggregation) can also be used to describe changes at various spatial scales. For instance, an 

increased distance to the nearest neighbour coupled with a decrease in patch aggregation for 

presence patches is indicative of population fragmentation. 

Here, we propose to use landscape metrics on predicted binary (presence and absence) maps 

obtained from SDMs to simplify, often complex, spatial predictions into a mosaic of discrete 

patches of predicted presences and absences under both current and future environmental 

conditions. Landscape metrics can then be used to study presence and absence patch properties 

and how their spatial arrangement is predicted to change in the future, ultimately providing a 

better characterization of range changes.  

Landscape metric analyses were performed using the R package ‘landscapemetrics’ 

(Hesselbarth et al., 2019). This package contains many functions to describe various patch 

properties (e.g. area, distance to nearest neighbour of the same class). These properties can be 

aggregated at different spatial scales (e.g. mean patch area at the range scale) and studied over 

time. Note that the package also provides functions to compute diversity metrics at the 

landscape scale (i.e. range scale in our case), however since our usage is constrained to binary 

outputs, most of these functions were not relevant for the purposes of this study. Here, we 

focused on the patch area for each class, the Euclidean distance to the nearest neighbouring 

patch of the same class, and the predicted habitat suitability of pixels within patches (a metric 

that uses an additional level of information derived from SDMs). The latter metric relies on the 

fact that each pixel contains additional quantitative information (i.e. the habitat suitability 

values that were used for thresholding which is a necessary step to identify patches) that can be 

used to better characterise patch properties and their spatial arrangement. Here, we  used this 

information to run a patch-based linear regression to investigate whether average changes in 

patch suitability (i.e. the average difference between future and current suitability for all pixels 

within the patch) followed a latitudinal gradient, a classical biogeographical pattern where 



species are moving poleward to track suitable climatic conditions (Mieszkowska & Sugden, 

2016). 

 

3 | RESULTS 

3.1 | Model performance and variable importance     

Ensemble model predictions of present distribution performed well (AUC = 0.91±0.03; TSS = 

0.67±0.05 - Table S2 and Figure S10) in characterising the large-scale, yet fragmented, 

latitudinal range of S. alveolata (specificity score 0.78±0.06; Figure 3a). Predicted areas of 

absence (e.g. southern French Atlantic coast) also matched well with current observed absence 

data (Figures 2a and 3a, Figure S1). Fetch was the most important variable (explaining 35% of 

variance), suggesting that coastal exposure to wind-wave action, a local to regional scale 

feature, is a primary determinant of habitat suitability (Table S3 and Figure S7). Dynamic 

temperature variables and ocean variables had less influence on model predictions but were still 

critical to characterise broad-scale geographic range. In fact, sea surface and air temperature 

were the second and fourth most important variables, respectively, while salinity was the third 

most important variable (Table S3). See Figure S11 for variable response curves. 

 



  

FIGURE 3 Predicted difference in habitat suitability and presence-absence patterns 

between current and future (RCP 4.5 2050) climatic conditions. a, Difference in habitat 

suitability between present and future, with blue colours indicating a future increase in habitat 

suitability, and red colours indicating a future loss in habitat suitability (yellow colours 

represent an absence of change). b, Change in presence/absence predictions between the present 

and future. Orange pixels (P -> A) = shift from current presence to future absence; green pixels 

(P -> P) = stable presence pixels; yellow pixels (A -> A) = stable absence pixels; violet pixels 

(A -> P) = shift from current absence to future presence. Predictions were binarised using a max 

TSS threshold of 0.53. Leading edge = 95% quantile of the latitudinal range, Trailing edge = 

5% quantile of the latitudinal range, centroid = range centre/optimum median.  

 

3.2 | Broad-scale range changes 



The ensemble model predicts a 27.5% increase in range size (Figure 3b), with future gains 

predicted to mostly occur around the Irish Sea, on both sides of the English Channel and along 

the coast of Galicia (Spain) (Figure 3a). Overall, we found large spatial heterogeneity in the 

proportion of pixels predicted to become suitable (35.8%), unsuitable (8.3%) and stable (91.7% 

of absence pixels and 64.2% of presence pixels) in the future (Figure 3b). This heterogeneity 

leads to an overall contraction of the latitudinal range owing to a greater retraction of the trailing 

edge relative to the extension of the leading edge (117 km vs. 83 km respectively; Table S4, 

Figure 3b). Although other local changes are visible, they are not captured by broad-scale range 

metrics. 

 

 3.3 | Within-range changes 

The application of landscape metrics enabled us to identify 90 patches (both presences and 

absences) in the current time period, and 92 patches in the future. While mean habitat suitability 

per patch increased with latitude (P<0.001; R²=0.41), 59% of the variability in patch suitability 

remained unexplained, highlighting departures from expectations (i.e. a global poleward shift).  

 



 

FIGURE 4 Overview of presence-absence patches and changes between time periods for 

selected patch and landscape metrics. a, Map of 2000-2019 presence/absence patches. 

Numbered regions map to their equivalent 'bubbles' in (b). b, Change in average patch habitat 

suitability between current (2000-2019) and future (RCP 4.5 2040-2049) as a function of 

latitude. Current presence patches are displayed in green whereas current absence patches are 

in orange. Bubble size indicates patch area. The horizontal dashed line points to the latitude at 



which the predicted difference in habitat suitability switches from negative to positive. Latitude 

was treated as the independent variable but the axes were flipped for presentation purposes. 

Density plots highlighting changes in patch level Euclidean nearest neighbour (ENN) distance 

for both absence (c) and presence patches (e), whilst (d) and (f) show the change in patch area 

for absences and presences respectively. For each density plot, the proportional change between 

future and current median values, relative to the current period, are highlighted. 

 

Despite an overall stability in the total number of patches between current and future conditions, 

presence patches are predicted to decrease from 65 to 56 (-14%), while absence patches are 

predicted to increase from 25 to 36 (+31%) (Figures S12 and S13). This does not however mean 

that absences are more prevalent in the future, owing to a global increase in the size of presence 

patches (+12.5%) combined with a decrease in the size of absence patches (-23.6%) (Figures 

4d and 4f). The average distance (Euclidean nearest neighbour; Figures 4c and 4e) between 

patches is predicted to increase in the future for absences (+33%) but to remain stable for 

presences. The geographic distribution of presence and absence patches is also predicted to 

change. For instance, presence patches are predicted to coalesce poleward, with the formation 

of a large presence patch along the west coast of Britain and Ireland, while most equatorward 

patches are predicted to fragment (Figures 3b and 4e).  

Future predictions show that patches can behave in one of four ways. Either presence and 

absence patches can expand, or patches of presence can appear in areas of absence and vice-

versa. An example of each specific case is presented in Figure 5, with associated local-scale 

landscape metrics. Note that these metrics can be obtained within any section of the range. For 

instance, when considering the southwest coast of England, we predict that five presence 

patches will merge into one larger presence patch in the future owing to multiple absence pixels 

predicted to become suitable (Figure 5b). Focusing on this region, this change leads to a 400% 

increase in the Largest Patch Index (LPI), the largest presence patch dominating 20% of this 



regional landscape under current conditions, and 100% under future conditions. In the current 

range centre (north Bay of Biscay), we predict a localised extirpation in the centre of a large 

presence patch (Figure 5c), increasing edge pixels between presence and absence patches and 

thus decreasing the percent of core area (-6%). In northern Spain and the southern Bay of 

Biscay, we predict the disappearance of small presence patches within a large absence area 

(Figure 5d), increasing the total area of absences by nearly 18% within this region (total class 

area metric). Finally, along the northwest Iberian Peninsula, numerous small areas of suitable 

habitat are predicted to appear in a currently large absence patch (Figure 5e), leading to a 1% 

decrease in aggregation index (from 86% under current conditions to 85% in the future). 

 

4 | DISCUSSION 

In this study, we aimed to illustrate how and to what extent broad-scale metrics, that mostly 

describe external range changes, can overlook the more nuanced internal range changes that 

can take place under climate change. For this purpose, we focused on changes predicted under 

current and future (2000-2019 vs. 2040-2049) environmental conditions for a species with a 

naturally discontinuous distribution: Sabellaria alveolata. We then investigated how broad-

scale range metrics can be complemented by landscape metrics to better characterise the effect 

climate change can have on species geographic ranges. Overall, we found that broad-scale range 

metrics alone would have led to the conclusion that the study species is a climate change winner. 

Within-range changes provided additional insights by revealing that the range will become 

increasingly fragmented in its equatorward half in the future, with potential implications for 

local declines and extirpations. As S. alveolata underpins myriad ecosystem functions (Dubois 

et al., 2002; Jones et al., 2018) changes in its distribution (i.e. presence-absence, hence 

occupancy of suitable habitats) and abundance are likely to have adverse cascading effects on 

ecosystem services (Wethey et al., 2011). 



 

FIGURE 5 Examples of internal range change. The four types of patch transitions, with 

barplots of associated landscape metrics. a, Location of all four examples. b, Expansion of 

presence patches c, Absence patches appearing in a larger presence patch. d, Expansion of 

absence patches. e, Presence patches appearing in a large absence patch. The barplots represent 

relative changes in different landscape metrics relative to baseline metrics calculated under 

current environmental conditions: negative values indicate a decrease of the metric in the future 

and positive values indicate the opposite. In all four examples, the coloured pixels define the 



landscape on which the metrics are computed. The largest patch index is the percentage of the 

landscape covered by the largest patch. The aggregation index describes the extent to which 

patches of the same class are aggregated. The total class area is the sum of the area of all patches 

of the same class. Finally, the core area landscape is the average of the percentage of core area 

(i.e. patch area without edge pixels) in relation to total patch area.  

 

Despite the recognised ecological and economic value of ecosystem engineers in terms of 

biodiversity and ecosystem functioning (Ellison et al., 2005; Lemasson et al., 2017), to our 

knowledge, only a handful of studies have simultaneously considered terrestrial and marine 

environmental conditions to which coastal ecosystems are exposed (e.g. Lima et al., 2013; Boo 

et al., 2019); so far only one study has focused on an ecosystem engineer (Faroni-Perez, 2017). 

Our results confirm that both air and seawater temperatures are ultimate drivers of changes in 

sabellarid distribution (Faroni-Perez, 2017; Firth et al., 2015; Firth et al., 2021a), thus 

confirming its status as an indicator of climate change in Britain and Ireland (Mieszkowska et 

al., 2006). However, patterns of change are predicted to differ between biogeographic regions 

owing to the effect of other local factors (Firth et al., 2021a). For instance, our study suggests 

that the effect of temperature can be overridden by local and regional factors determined by 

coastline orientation, especially due to fetch.   

While the overall increase of habitat suitability predicted by SDM would categorise S. alveolata 

as a climate change ‘winner’ (Somero, 2010), a closer look at SDM predictions highlights a 

more nuanced situation owing to a complex interplay of various factors. First, S. alveolata is 

predicted to reach the very north of Britain and Ireland by 2050, but in the longer-term future 

(e.g. the 2090s), its poleward expansion will be limited by the lack of continuous or connected 

landmass, as is the case for a number of other coastal species in northwest Europe (Philippart 

et al., 2011). Some longer-term colonisation of the outer islands of the British Isles (Hebrides, 

Orkney, Shetland) might be possible, but may be dispersal-limited. This suggests that proximate 



factors such as habitat availability (supply of sand for tube building adjacent to hard substrata 

for adhesion) and dispersal ability may override the ultimate drive of climate change (Harley et 

al., 2006). Second, the predicted shrink of the latitudinal range (Figure 3b) indicates that the 

distribution will be mostly clustered in poleward regions but increasingly fragmented in 

equatorward regions (Figure 4), a process that could disrupt connectivity networks between 

isolated populations. This is particularly concerning in the equatorward part of S. alveolata’s 

range given that it is currently located within the Canary Eastern Boundary Upwelling System, 

where a rapid warming at its trailing edge is occurring (0.60°C decade-1 off Mauritania), leading 

to speculation that an upwelling shutdown or geographic shift has already begun (Seabra et al., 

2019). This pattern matches well with previous findings showing that leading (poleward) and 

trailing (equatorward) edges respond differently to climate change (Poloczanska et al., 2013). 

At the leading edge, larger occurrence patches could strengthen regional connectivity, which 

could favour inter-seeding between distant populations and enhance species regional resilience 

to local perturbations or extreme climatic events. In contrast, at the trailing edge, increased 

distance between presence patches could lead to a loss of genetic diversity in threatened former 

core areas of the range (Nicastro et al., 2013). Thus, while some presence patches located at the 

trailing edge are predicted to increase in habitat suitability (e.g. the patch located close to 

Morocco is predicted to increase from 0.53 to 0.57), their increasing isolation could actually 

lead to an increased extirpation risk. If this happens, the trailing edge would shift to southern 

Spain (Gulf of Cadiz), leading to a further range contraction of 500 km. Third, while trailing 

and leading edges are clearly identified by SDM predictions, our model further predicts a strong 

decrease in habitat suitability in the central part of the range along the French Atlantic coast 

(Figure 3b), a critical region for this species where it forms extensive reefs (surface cover (100s 

ha) and height (>1m)) (Curd et al., 2020). A decrease in habitat suitability in this region could 



lead to a break in connectivity between the equatorward and poleward parts of the range, should 

the gap between the two regions exceed the dispersal abilities of the species (Wort et al., 2019).  

The three preceding points suggest that S. alveolata may not, at a global scale, be a climate 

change winner. Up until now, such detailed changes required expert knowledge and a deep 

understanding of the ecology of the focal species, which are very difficult to attain particularly 

in multi-species studies. We propose to use additional landscape metrics, transposable from one 

species to another, to adequately and generically describe the complex changes taking place 

within species ranges. While not replacing the critical value of expert-based interpretations, this 

approach could help pinpoint more complex changes than the ones reported with broad-scale 

range metrics. Overall, our results indicate that landscape metrics, and particularly the 

Euclidean nearest neighbour distance between patches of the same class, are valuable to identify 

vulnerable and isolated patches, and can help inform regional management strategies (e.g. 

promoting ecological connectivity among populations). For instance, the identification of 

isolated patches could be used to locate further work on larval dispersal and recruitment, along 

with genetic diversity studies to help understand how separate patches of presences are 

interconnected and therefore whether they are part of a metapopulation functioning. Such 

studies are of particular interest given the role of isolated populations in evolutionary processes 

(see Supplementary Text).  

More generally, several landscape metrics could be used to describe the extent to which various 

patch properties (e.g. area, aggregation patterns) are predicted to change in the future. Similarly 

to global change metrics classically reported in SDMs studies, we encourage future studies to 

report such internal range metrics to better predict climate change effects on species ranges. 

Interestingly, these metrics can be calculated at different user-defined resolutions, giving the 

possibility to study changes taking place at different spatial scales (e.g. regional, global, Chase 

et al. 2018). The issue of scale is at the core of landscape ecology (Turner et al. 2005) and 



previous studies have reviewed its effects on landscape metrics (e.g. Newman et al. 2019). 

Applying landscape metrics to SDM outputs adds another layer of complexity, since the 

accuracy of SDM predictions also varies depending on the spatial resolution and the scale 

considered (e.g. Chauvier et al. 2022). Here, we defined a patch as a minimum of one isolated 

pixel because of the broad-scale nature of the study. For finer-scale studies, a given number of 

pixels per patch could be set as a threshold. The latter could be based on ecological knowledge 

(e.g. dispersal distance), or by setting arbitrary thresholds and subsequently conducting a 

sensitivity analysis. Beyond landscape metrics, the fact that patches and associated pixels are 

characterised by unique identifiers further makes it possible to study in more detail (e.g. 

regional or species-centred studies) how patches of presences and absences are predicted to 

fragment or coalesce in the future. For instance, despite the stable number of patches predicted 

in the future, multiple colonisation and extinction events are predicted throughout the range, 

leading to current patches (of presences or absences) either splitting into several patches or 

merging with existing patches (Figure 5, Figures S12 and S13, Table S5). The predicted 

merging of presence patches in southwest England suggests that greater dispersion among 

existing presence patches in this area could either foster a range expansion, or resilience 

increase. In the current range centre (north Bay of Biscay), we predict a localised extirpation in 

the centre of a large presence patch, leading to a future gap between two presence patches. 

Similarly, between trailing edge populations (northern Spain) and populations from the Bay of 

Biscay, we predict local extirpations of a potential key stepping-stone population within a large 

absence area, with potential implications for connectivity. Finally, the predicted appearance of 

several small patches of suitable habitat within a currently large absence patch along the 

northwest Iberian Peninsula reinforces the importance of conservation efforts covering small 

habitat areas, as integrating key fragments in coastal management could benefit long-term 

species persistence. Beyond population connectivity, the predicted changes in spatial 



configuration may alter ecosystem functioning and dynamics. Spatial configurations are 

intrinsically linked with regime stability or shifts (Kefi et al., 2014). Landscape metrics can 

provide information on internal range changes which can act as early warning signals of 

impending regime shifts (Nijp et al., 2019). Relatively simple statistical landscape metrics are 

therefore critical for conservation, and could perhaps even fuel other types of analysis aiming 

to understand spatial early warning signals as ecosystems approach a tipping point (Génin et 

al., 2018). 

The extirpation of ecosystem engineers and the related cascading ecosystem effects are 

considered principal drivers of regime shifts in both marine and terrestrial realms (Estes et al., 

2018; Wright, 2009). There are, however, also consequences when the range of an ecosystem 

engineer shifts due to climate change, enabling colonisation of individuals and persistence of 

populations into new areas. The potential gain of an extensive area of suitable habitat, in Britain 

and Ireland, could alter community structure and ecosystem processes, with ensuing positive 

and negative impacts (Bulleri et al., 2018; Wallingford et al., 2020). It is also possible that 

species inhabiting S. alveolata reefs will exhibit range extensions by using the new areas of reef 

occurrence as “stepping stones”, with climate change facilitating the dispersion of the 

associated biota into new territories (Dubois et al., 2002; Faroni-Perez 2017), aided by 

proliferating sea defences as a societal adaptational response to rising and stormier seas driven 

by climate change (Bugnot et al., 2021; Firth et al., 2015). As a biogenic habitat forming 

species, it could also promote the diversity and resilience of benthic fauna by providing 

improved environmental conditions in the face of climate change through facilitation or habitat 

cascades (Bulleri et al., 2018; Gribben et al., 2019). The duality of effects upon recipient 

communities underscores the importance of considering the ecological impacts of species 

exhibiting range-shifts, in terms of both the benefits and potential costs to associated 

biodiversity and ecosystem functioning and service provision (Wallingford et al., 2020). 



Despite fundamental differences between introduced non-native and naturally range-shifting 

species, they can impact communities via analogous mechanisms (Wallingford et al., 2020). 

Landscape metrics could therefore also be useful for invasion risk assessments at a spatial scale 

relevant to regional and local-scale management decisions, e.g. Marine Protected Areas.  

Several studies have used landscape metrics as covariates in SDMs to improve model 

predictions (Hasui et al., 2017; Ortner & Wallentin 2020). The novelty in our approach lies in 

the application of landscape metrics to binary predictions obtained from SDMs (or any spatial 

model e.g. joint-SDMs or mechanistic models) in order to identify patches of absences and 

presences. This framework makes it possible to study the internal range structure of species and 

better characterise the evolution of species ranges in response to e.g. climate change, provided 

that predictions are robust (i.e. our approach does not circumvent the flaws inherent to spatial 

models and does not improve their accuracy). For instance, selected landscape metrics can 

either reinforce or hinder the conclusions drawn from global change metrics. Here, we have 

shown a global increase in the range area (+27%) but further found that this global increase was 

mostly due to one presence patch largely increasing in the northern part of the range (coalescing 

with other presence patches) while most other presence patches were collapsing. While 

providing some avenues regarding how changes in landscape metrics could be interpreted when 

applied to SDMs outputs, the choice of landscape metrics and their interpretation will ultimately 

depend on the study system and question. Here we focused on the effect of climate change; 

however SDMs have been used for many other purposes (Bellard et al. 2012) where the use of 

landscape metrics would still be valuable. For instance, patch size and nearest neighbour 

metrics can be used jointly to identify patches that will become increasingly isolated in the 

future and for which conservation actions may be needed. 

 



5 | CONCLUSIONS 

As Earth’s climate rapidly changes, individuals of a species must move, acclimate, adapt, or 

die. Range shifts are therefore key to species persistence (Muir et al., 2020). Beyond range size 

and boundaries, internal range structure metrics are needed to adequately describe species’ 

ranges and more accurately quantify how they will be affected in the future (Csergő et al., 

2020), particularly for species with discontinuous distributions. Analysing which landscape-

level processes scale up to structure biogeographic ranges of species has however remained 

largely unexplored. Recent work however provides evidence that population and species level 

responses to habitat change at the landscape scale are modulated by factors and processes 

occurring at macroecological scales, such as historical disturbance rates, distance to geographic 

range edges, and climatic suitability (Banks-Leite et al., 2022). Our results suggest that these 

landscape-scale processes may be key to understanding and predicting internal range 

reconfiguration in changing environments. Specifically, we showed that broad-scale SDM 

combining terrestrial and marine predictors, coupled with a selection of global and regional 

landscape metrics, can be used to more accurately describe the changes a widely distributed 

intertidal species will face. Fragmentation of occupied area or suitable habitat has already been 

identified as a better predictor of extinction risk than range size (Crooks et al., 2017), and we 

propose that metrics characterising different aspects of species range structure, such as the 

distance between patches of suitable habitat, may be useful to meet conservation targets.  

Conservation efforts should be refocused to search for critical internal range structure 

thresholds, especially those acting as proximate factors. Environmental management often 

focuses on single sites and populations, which crucially do not consider the wider context. 

Landscape metrics applied to SDM outputs are a robust, non-data-intensive method that can aid 

environmental managers with broad-scale spatial planning under climate change. 
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