Pollution assessment around a big city in West Africa reveals high concentrations of microplastics and microbiologic contamination

Sonko Amidou ^{1, 2, 5, *}, Brehmer Patrice ², Consatantin De Magny Guillaume ^{3, 4}, Le Pennec Gaël ⁵, Sambe Ba Bissoume ⁶, Diankha Ousmane ⁷, Fall Mamadou ¹, Linossier Isabelle ⁵, Henry Maryvonne ⁸, N'diaye Issa ^{3, 6}, Faye Saliou ⁹, Kande Yoba ², Galgani Francois ⁸

¹ Laboratoire de Toxicologie et d'hydrologie, Université Cheikh Anta Diop de Dakar, UCAD, BP 5246, Dakar-Fann, Senegal

² IRD, Univ Brest, CNRS, Ifremer, UMR Lemar, CSRP, Dakar, Senegal

³ MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France

⁴ Montpellier's Ecology and Evolution of Disease Network (MEEDiN), Montpellier, France

⁵ Université de Bretagne Sud, LBCM, Lorient, France

⁶ Pôle de Microbiologie, Institut Pasteur de Dakar, Dakar, Senegal

⁷ Université Iba Der THIAM de Thiès, UFR-Sciences et Technologies, Département Hydrosciences et Environnement, Thiès, Senegal

⁸ Ifremer, LER/PAC, Bastia, France

⁹ ISRA, CRODT, Centre de Recherche Océanographique de Dakar Thiaroye, Dakar, Senegal

* Corresponding author : Amidou Sonko, email address : amidousonko664@yahoo.com

Abstract :

Marine pollution around West African big cities is of major concerns. Nevertheless, few attempts have been performed so far particularly on microplastic assessment. We had led first survey targeting microplastic in West African coastal waters (2016); and evaluated on the same sites microbiological contamination as well as marine sediment toxicity and mercury content. Thus, neuston marine water samples were collected over Dakar a highly populated West African city. The average abundance was around 258 954 microplastic particles per km 2 and 37 442 for macroplastics (MP). One station, downstream from the major wastewater plant, contained high abundance of microplastic particles of over 945 000 and 190 000 macroplastics. The offshore station had a lower abundance of microplastics and MP. It was observed that the stations found with highest level of microbiological pollution were related to highest microplastics abundance and the presence of major effluents, suggesting wastewaters inputs and microbiological pollution favoured by microplastics and macroplastics as vector. No correlation was observed between microplastics and/or macroplastics and sediment toxicity neither Hg level, which appear low in all studied sites. However, high level of ecotoxicity were often found near effluents. Such results are a first step within the framework of encouraging awareness and actions in West Africa.

Graphical abstract

Highlights

► A first assessment of microplastic pollution performed over West African continental shelf waters. High levels of organic matter limit the assessment of microplastics through classical approaches. ► Dakar city contributes to high level of plastic pollution in the ocean, possibly rafting microbiological contaminants, including *E. coli*. ► High spatial variability of marine pollution around Dakar city. ► High ecotoxicity of the marine sediment not related to Hg level.

Keywords : Plastic pollution ; Marine litter ; Vibrio ; Mercury Marine sediment ; Senegal

1. Introduction In West Africa, most municipal and industrial wastewater is discharged onto the coast with little or no treatment, increasing the risks to public health. Less than 10% of African urban areas have wastewater collection systems. As a result, only a tiny fraction of wastewater is treated (World Bank, 2012). Marine pollution threatens the health of fish, which are an essential resource in West Africa and a primary source of protein for coastal populations. This pollution reduces the yield of fisheries by degrading the natural habitat, increasing egg mortality and reducing egg quality. Plastic debris inflicts significant damage on the African coastline: it threatens the survival of marine species that swallow it or become trapped in it, threatens human health, increases the risk of flooding (by clogging drainage infrastructure), and reduces the region's attractiveness to tourists.

An increasing number of studies reveals microplastic pollution of the world ocean (Adamopoulou et al., 2021) and their various impacts (Tallec et al., 2018; Hale et al., 2020; Galgani and Loiselle, 2021). Microplastics can be divided into two categories: primary microplastics (industrial production, or fibers shed from clothes and other textiles) and secondary microplastics, which are the result of the degradation macroplastics in the environment, which are broken down into smaller and smaller fragments by the action of sunlight, natural mechanical forces and other factors (GESAMP, 2010). At the level of individual organisms, impacts of microplastics are numerous and affect the entire marine food chain (Lehel and Murphy, 2021). Once ingested, these microplastics can either clog the digestive system, or simply pass through it (Wang et al. 2020). However, smaller particles, such as nanoplastics, will also be able to pass through the digestive membranes and migrate into the circulatory system and even in other organs (GESAMP, 2010). The impact of microplastics on in the environment and marine organisms is still not well known and several questions currently arise: intrinsic dangers of microplastics, adsorption properties of microplastics (vector of chemical and biological contaminants from PCBs/polychlorinated biphenyls to heavy metals

like, Hg, and Vibrio (Galgani et al., 2020). The impacts of plastic debris (macroplastic) are ecological, economics and social (Galgani et al. 2010; Maximenko et al. 2019); in West Africa their impacts on tourism, sanitation and fishing are the most reported until now. Nevertheless, there are few studies led in African waters (Sparks and Immelman, 2020; Alimi et al., 2021). The number 14 (Life below water, SDG14) of the sustainable development goals (SDG) of the United Nations explicitly targets the assessment of microplastics in water. Based on that, the African countries are also expected to assess the density of microplastics in their exclusive economic zone (EEZ).

20 103 Senegal is part of this story and requires an initial assessment, most particularly after its recent decision to ban the use of plastic bags in 2020 (JO, 2020). In Senegal, like in Dakar, small scale 25 105 fisheries activities (Diankha et al., 2017) are of essential socio-economics importance and a key employment sectors in the country (Ba et al., 2017). The surrounding seawaters are highly productive areas (Diogoul et al., 2021), particularly for small pelagic fishes (Ba et al., 2016; 32 108 Thiaw et al., 2017; Baldé et al., 2019). Studies conducted by Ndour et al (2018) at the surface water level (0 - 25 m) on zooplankton abundance in the Senegal and Guinea zones show a 37 110 predominance of copepods (68.5%) out of 19 zooplankton groups identified. Analysis of relative abundance by zone showed a predominance of copepods representing 71.7% in the 42 112 northern zone and 65.4% in the southern zone. The abundance of almost all other groups was low (<5%), with the exception of gastropod groups in the northern zone (9.7%) and pteropods 47 114 (10.4%) and ostracods (7.4%) in the southern zone. Concerning Ichthyoplankton, Ndour et al (2018) identified eggs and larvae of 29 fish families of which the most dominant are the following: Clupeidae (35.8%), Myctophidae (14.3%), Carangidae (9.6%) and Scombridae 54 117 (9.3%). The abundance of the other families identified did not exceed 6.5%. Analysis of the relative abundance of larvae in each zone showed the dominance of Clupeidae (43.2%), 59 119 followed by Myctophidae (21.5%) and Gadidae (7.4%) in the waters of the northern zone. In

the waters of the southern zone, the ichthyoplankton was also dominated by Clupeidae larvae (28.3%), followed by Carangidae (16.0%) and Scombridae (15.7%). Therefore, the importance of assessing marine pollution is obvious but is seldom performed. Recent study have stress the potential impact on fish particularly on their larvae (Wang et al. 2020).

Big cities have been found to provide high density of microplastics in their wastewaters (Franco et al., 2021) and several ways to measure them exist, including by direct measurement (Galgani et al., 2013), indirect assessment through oceanic models (Gago et al., 2015), or using bioindicators (Matsuguma et al., 2017). While modelling levels up uncertainty (Worsfold et al., 2019), we decided to use a direct approach to assess microplastics pollution in the vicinity of 20 128 the Senegalese Dakar city (West Africa). This assessment also include ecotoxicological bioassays, harmful bacteria, often associated with plastic pollution (Kirstein et al., 2016) and marine sediment analysis. The primary goal of this study was to provide a first assessment of the presence of microplastics and macroplastics in surface waters in the region, in a context of ³² 133 ³³ new law rationalizing plastic use in West Africa. The second objective was to evaluate the microbiological contamination (e.g. enterococci, Vibrio). The microbiological analysis allows 37 135 to get a large picture of marine population for the various sites studied and check potential interaction or relation. The third objective concerns the chemical quality in relation to the mercury content and to assess the ecotoxicological quality of marine sediments. These will allow to provide an original overview of the marine pollution around an emblematic west African big city.

	141	2. Material and Method										
1	142	2.1. Study location										
2 3 4	143	The study area is the city of Dakar located on the Cap-Vert peninsula in Senegal, West Africa										
5 6	144	(Fig. 1), with a population over one million inhabitants and over 2.4 million people in the										
7 8 9	145	greater metropolitan area of Dakar Region, spread on 84 km ² .										
10 11 12	146	Seven coastal sites according to their location around the peninsula were selected for sampling										
12 13 14	147	purposes covering the North, South and West coast of the Peninsula. All the sampling sites										
15 16 17	148	were carried out near the coast (maximum distance from the coast < 500 m), except one done										
18 19	149	offshore. The national park of the "Iles de la Madeleine" (islands). Located more offshore (> 2										
20 21 22	150	000 m) than the six others did it was selected at the least exposed presumed site (Fig. 1). One										
23 24	151	site, Cambérène is under the influence of the presence of a sewage discharge effluent (< 0.5 km										
25 26 27	152	from the sampling site (Fig. 1, Table 1)). The national park of the "Iles de la Madeleine"										
28 29	153	(islands), was selected as the least exposed site, located more offshore than the six others did										
30 31	154	(Fig. 1).										
32 33 34	155											
35 36	156	2.2. Data collection										
37	157	2.2.1. Microplastics and macroplastics										
38 39	158	All the seven sites to collect surface samples of microplastics and macroplastics were performed										
40 41 42	159	using a small craft on June 6 th , 2016 in straight line at 2 knots during 20 minutes. An adapted										
43 44	160	Bongo net of 200 μ m mesh size with trawl pole mounted on the left rear side of the boat was										
45 46 47	161	used. The Bongo net of 1.15 meter diameter (e.g. Habtes et al., 2014) was kept stable on the										
48 49	162	surface by three ropes hooked to a spinnaker pole that holds the net on the windward side of										
50 51 52	163	the boat. And indeed high density plastics will be less concerned in this quantification. Samples										
53 54	164	were put in numbered labelled glass bottles for post processing in the laboratory.										
55 56	165											
57	105											
58 59												
60												
₀⊥ 62		7										
63		·										
ь4 65												

1	66	2.2.2 Microbiology
1 1 2	.67	Enumeration of <i>E. coli</i> and enterococci was conducted for each site (Fig. 1). 500 mL of surface
3 4 1	68	water were also collected in sterile polypropylene bottle. Two surface additional water samples
6 1 7	69	were collected at each site, in sterile 1-liter glass bottles, for the detection of presence of
⁸ ₉ 1	70	Salmonella and harmful Vibrio sp., respectively. All the samples were kept in cooler with ice
10 11 1 12 13	71	blocks before further processing within 24h at the laboratory facility.
14 1 15 1 16 1	.72 .73	2.2.3. Physicochemical parameters, Marine sediment and climatic conditions Meteorological conditions were quiet during the sampling operations (06/06/2016): swell 1,4 -
18 1 19	74	1,6 m from East and wind at 5 - 12 knots from East/North-East. The distance travelled by the
²⁰ 1	75	boat was recorded by a Global Position System (GPS) and local depth reported using a manual
22 23 1 24	76	and hull mounted echosounders. Physico-chemical parameters (temperature, salinity dissolved
25 1 26	77	oxygen and pH) were recorded in surface (20 cm depth) at each station. An Ekman grab was
27 28 1	78	used to collect the sediment. Sediment samples for sizing were dried at room temperature and
30 1 31	79	classified into five categories: clay, fine silt, coarse silt, fine sand and coarse sand (Guevara-
$\frac{32}{33}$ 1	80	Riba et al., 2004). The sediment samples used for the Magellana gigas bioassay (Galgani et al.,
34 35 1 36	81	2009; Brehmer et al., 2011) and inorganic mercury quantification were kept cool (4°C) before
37 38 39	82	analysis.
40 41 1	.83	3. Data analysis
$\frac{42}{12}$ 1	84	3.1. Microplastics and macroplastics
43 - 44 1 45	85	Six samples on seven collected were considered (Cambérène, Ngor, Ouakam, Iles de la
$46 \\ 47 \\ 1$	86	Madeleine, Hann1 and Hann2). Yoff Tonghor was not considered, due to an overload of
48 49 1 50	87	biological component particles (i.e. macro-zooplankton, see Supplementary A). Counting of
51 52	88	microplastics was done at IFREMER laboratory (La Seyne-sur-Mer, France). While laboratory
53 54 1	89	contamination mainly relate to the presence of fibers and very small microplastics, the work
56 1 57	.90	presented provides information on larger microplastic contamination. Protocols are adapted to
58 59 1	91	measure particles of $330\mu m$ - 5mm, after sieving, to fit with the EU guidelines for regular
61		
62 63		8
64		
65		

monitoring, an approach that is widely recognized (Galgani et al., 2013; GESAMP, 2019), with the advantage of avoiding contamination by smaller particles. The quantification of micro and macroplastics is carried out in accordance with the GESAMP 2019 guide which uses the needle to confirm microplastics. Each sample was decanted after shaking in a 1-liter graduated test tube for 12 hours. Agitation allowed the dissociation of the different particles present in the sample. After sedimentation of the plankton (floating plastics are lighter), the supernatant, which contained the microplastics, was sieved (5 mm and 300 µm mesh) and rinsed extensively 17 199 with distilled water. A mineral salt can be dissolved in the collected seawater to increase the density of the water and float the plastic fragments (Andrady, 2011). Microplastics were poured into two Petri dishes listed <5 mm (named 'microplastics) and > 5 mm (so called ²⁴ 202 25 macroplastics,) with small amount of water, possibly scraping the surface of the sieve with a 27 spatula when the remaining quantity was large. After removing plant debris and large plankton organisms from the pliers, the Petri dish was placed on a graph paper. All materials used have been cleaned beforehand to avoid contamination with microplastics. Using a magnifying glass, 34 206 verification of the size and counting of microplastics in each box was done. Particles were counted and stored for subsequent weight measurement. After counting, the contents of the Petri dishes were divided into two dishes (microparticles and macroparticles) and placed in an oven at 50°C for 24 hours to weigh. The contents were then stored for further physico-chemical analysis. In this study, the identification (nature and colour) of microplastics and macroplastics 46 211 was not carried out. The number of microplastics and macroplastics and their weight were related to the sampling surface and expressed as number of items per km².

55 214

57

3.2. Microbiology

The microbiological analyses consisted *E. coli* and enterococci counts. The detection methods 59 216 NF EN ISO 9308-1/A1 for E. coli and NF EN ISO 7899-2 for enterococci were used with both

detection limits at <15 CFU·100 mL⁻¹ Salmonella detection was done according to the method described in NF EN ISO 19250. For the molecular detection by polymerase chain reaction (PCR) of harmful Vibrio sp., 500 mL of surface water was filtered through 0.22 µm polycarbonate membrane filters. Then, filters were individually immersed in 20 mL enriched culture medium of Alkaline Peptone Water (AKP) at pH=8.6 at 37°C for 24 hours. Then, total DNA was extracted and molecular primers (utox-F, vptox-R, vvtox-R, vctox-R according to Bauer and Rørvik, 2007) for harmful Vibrio sp. were used to detect the presence of Vibrio. cholerae, Vibrio. parahaemolyticus, and Vibrio. 20 225 vulnificus. Subsequently, all Vibrio. cholerae-positive broths were tested with specific primers 23 to target the pandemic serogroup O1 (O1 rfb) or O139 (O139 rfb) according to Hoshino et al., 25 227 (1998) and the cholera toxin sub-unit A (ctxA) according to Shirai et al., (1991) and Nandi et al., (2000). 3.3. Marine Sediment: granulometry, mercury content and global toxicity

Two proxies of marine pollution were used to characterize each site. The evaluation of Global 32 230 Toxicity of Sediments (GTS) was performed using a bioassay, as measured using the larval 37 232 development of the oyster Magellana gigas (His et al., 1999; Galgani et al., 2009; Brehmer et al., 2013). Direct Mercury Analyzer (DMA, Automatic Mercury Analyzer, type DMA-80) was 41 used for estimating the mercury content of 0.1 g sediment samples without prior pre-treatment, 45 i.e., without removal of methylmercury (MeHg) by organic extraction (Maggi et al., 2009). 47 Finally, the granulometry of sediment samples was measured, providing percentages of clay, 49 237 fine silt, coarse silt, fine and coarse sand (Guevara-Riba et al., 2004). Before measuring the particle size, the organic matter was destroyed by adding 30% hydrogen peroxide at 150°C for 1 hour and the organo-mineral cements are disintegrated by adding a solution of sodium pyrophosphate solution for 2 h at room temperature. The sediments were then placed in a 10 59 241 cm long extension tube to determine the fall time of the clays and fine clays/silt. The samples

_	242	were taken from the sponge before the fall times of the clays and clays/silt using the Robinson
1 2 3	243	pipette (Brousse and Arnaud-Fassetta 2011). The sampled volumes were then poured into a
4 5	244	tared capsule and dried at 105 °C for 24 h. After drying, the masses of clays and silts were
6 7 8	245	measured. The fractions of coarse silt, fine sand and coarse sand were evaluated by sieving.
9 10 11	246	Granulometry, a parameter influencing the distribution, mobility and bioavailability of
12 13	247	sedimentary pollutants, is essential information in the study of pollution in this matrix of the
14 15 16	248	marine environment. Various studies showed that pollutants such as heavy metals and
17 18	249	polyaromatic hydrocarbons with low water solubility (high molecular weight), in comparison
19 20 21	250	with more water soluble polyaromatic hydrocarbons, tend to be preferentially fixed to the fine
22 23	251	particles of sediments. The mobility and bioavailability of these pollutants decrease with the
24 25 26	252	increase of this fine fraction of the sediments (Raoux and Garrigues 1993). Coarse particles
20 27 28	253	(fine and coarse sands) are less cohesive and have a small contact surface with the pollutants,
29 30 31	254	which reduces the fixation of these pollutants (i.e. Heavy metals) in the sediments (Geffard
32 33	255	2001; Le Hir 2008).
34 35	256	2.4. Statistical analysis

3.4. Statistical analysis

³⁵ 256 37 257 38 39 258 40 41 42 259 We tested the linear relationship between the quantity of microplastics or macroplastics and the bacterial count of E. coli or enterococci. The purpose of this test was to check whether $_{42}^{-}$ 259 abundance of plastic particles is linked to microbiological contamination. The relationship $^{44}_{45}$ 260 between microplastics and macroplastics was tested, as well. The residuals distribution of the 261 models was plotted and visually inspected. All statistical calculations were carried out using 49 262 50 the statistical software "R" version 4.1.1 (R Core, 2021).

4. Results

256

43

46 47

48

51 52 53 263

55

54 264

4.1. Micro and macro plastics

Results revealed very high concentrations of microplastics, reaching 945 607 microplastics km⁻ 265 56 57 58 266 ² and 159 g km⁻² at Cambérène, but lower values in the other sites at Ngor (106 203 59 60 61 62 11 63 64 65

microplastics km⁻² and 11 g km⁻²), Hann1 (303 059 microplastics km⁻² and 60 g km⁻²) and Hann2 (152 038 microplastics km⁻² and 15 g km⁻²) (Table 2). The lowest densities of microplastics were observed in Ouakam (34 236 microplastics km⁻² and 6 g km⁻²) and Iles de la Madeleine (12 641 microplastics km⁻² and 2 g km⁻²) on the West coast of the peninsula. The concentrations obtained for macroplastics presented a pattern similar to the one of 13 microplastics, with higher concentrations at Cambérène (189 995 macroplastics km⁻²), Hann1 15 (31 302 macroplastics km⁻²), and a lower level Ngor (3 354 macroplastics km⁻²). Even no 17 274 macroplastics was recorded on both West coast site. The corresponding weights were high at Cambérène (328 g km⁻²) and Hann1 (250 g km⁻²), and weak at Ngor (6 g km⁻²). Mean values (n 22 = 6) were measured at 258 964 microplastics km⁻² and 42 g km⁻² for microplastics and 37 442 24 277 25 macroplastics km⁻² and 97 g km⁻² for MP.

4.2. Microbiology

27 28 27 27 278 29 279 For five over seven sites, enumeration of *E. coli* ranged from 3.10³ to 1.10⁴ CFU per 100 mL 32 33 34 35 and for 4 over 7 sites, enumeration of enterococci from 1.8.10² to 1.7.10³ CFU per 100 mL (Table 2; Fig. 2). Salmonella was detected only in Cambérène where the effluent of the major 37 sewage treatment plant is present. V. cholerae was identified in a single site (Hann 1) and not 39 detected in all the subsequent analyses, corresponded to a non-toxigenic non-O1/non-O139 41 284 V. cholerae. V. parahaemolyticus was also detected in one site, Yoff Tonghor. None of the 44 samples was positive for V. vulnificus. Last, Cambérène the station with highest microplastics 46 286 and macroplastics, was the only site where Salmonella presence was observed.

4.3. Physicochemical parameters, mercury content and global toxicity

51 All sites were characterized by the granulometry of sediment and basic physicochemical 53 289 parameters (Table 2). Seawater salinity and temperature were similar in all sites with a slight temperature decrease in Cambérène, the most offshore location (~0.5 km from the coast) from 58 291 the six coastal stations. All sampling sites were above anoxic level and well-oxygenated and 60 292 maximum $\Delta_{pH} = 0.5$ with a mean around 8.1. However, more heterogeneity was found for

49 287

marine sediment grain sizes among sites. Ngor, Ouakam and Iles de la Madeleine were mainly composed of coarse sand while Cambérène, Yoff Tonghor, Hann1 and 2 were mainly composed of fine sand. Hann1 and 2 presenting the finest granulometry (clays, fine silts and coarse silts) of all sites.

The mercury contents in the sediments were globally low except in the southern part, with a 7 times higher level found at Hann1, close to an effluent (Table 2). Collected sediments presented a high level of toxicity, all sites displayed 100% of abnormal larvae according to the larval M. gigas embryo test, except at Cambérène, and Ouakam, where 29.5 and 61.9 % of abnormal larvae were measured (Table 2).

4.4. Statistical analysis

26 303 Positive and significant linear relationship between the microplastics and macroplastics was found (Fig. 2 and Supplementary B, Model 1). Same observation was done between the microplastics or macroplastics and count of E. coli CFU (Supplementary B, Model 2 and 3, respectively), indicating a higher concentration of E. coli with an increase of the concentration of microplastics or macroplastics. However, relationships between enterococci and 38 308 microplastics or macroplastics were not significant. The linear regression on microplastics, macroplastics and E. coli aimed to verify whether abundance was linked to microbiological 43 310 44 contamination. Although this statistical test did not necessarily imply a cause-and-effect relationship. All the plotted residuals looked random with absence of clear patterns and 48 312 distributions were centered on 0. It should be noted that the distance between the sampling point and the effluent outlet, in addition to maritime agitation, can influence the consistency of the results. The greater the distance, the more microplastics and bacteria are dispersed in the water. This can be observed at the Cambérène site with a distance of 474 m to the effluent outlet and the presence of a wastewater treatment plant. It is nevertheless important to point out that the 60 317 insufficient number of sites makes the statistical test hardly representative.

1	318	5. Discussion									
2	519	in absence of river in the Cap- vert pennisura, and without evidence of abandoned of fast defenct									
4 5	320	fishing gear at sea (Matsuoka et al., 2005), this study suggests that the presence of microplastics									
6 7	321	relates either to the direct dumping of domestic and industrial effluents, or to the inputs from									
8 9 10	322	the remote effluent from Dakar city. The variability of microplastics and macroplastics can be									
10 11 12 13 14	323	explained by the nature and the flows from effluents (Table 1) and the phenomenon of currents									
	324	and upwelling. In addition to the behaviours of populations in urban areas that often rel waste into the environment (Tavares et al., 2020) can play a role as tangible evidence (Ada									
15 16 17	325										
18 19	326	al., 2020). In Waste Water Treatment plants, microplastics are often concentrated, and most of									
20 21	327	them released in the water system, as in Cambérène. As in Hann bay, they may be also originate									
22 23 24	328	from the spilling of waste and plastic items directly in the effluent discharge site (Bettarel et									
25 26	329	al., 2008), doubtless aggravated by coastal water retention in the south coast (isolation of Hann									
27 28 29 30 31	330	Bay from ocean current flows) (Ndoye et al., 2017). Direct dumping at sea of plastic waste in									
	331	an effluent is a common scheme occurring also in the fishermen village of Ngor (Supplementary									
32 33 34	332	C), while it cannot occur in the remote Iles de la Madeleine or in Ouakam, located far from									
35 36 37 38	333	effluents and inhabitants. Note that the coasts of Ouakam, Ile de la Madeleine, Hann1 and									
	334	Hann2 are influenced by ocean currents. The physical shape of the Dakar peninsula (Fig. 1)									
40 41	335	distances these sites from the currents observed in the Atlantic. Average values obtained around									
42 43	336	the Dakar Peninsula are higher than those measured in 2013 and 2014 in Spain (North West									
44 45 46	337	Iberian upwelling system) and Cantabrian Sea (Gago et al., 2015). It is also above the levels									
47 48	338	reported by Nel and Froneman (2015) in South Africa, by Eriksen et al., (2013), in northern									
49 50 51	339	Spain (Gago et al., 2015) and even in the Mediterranean Sea, which e.g. average levels found									
52 53	340	at 116 000 microplastics km ⁻² with a maximum of 360 000 microplastics km ⁻² (Collignon et al.,									
54 55 56	341	2012) In contrast, very high amounts (64 million microplastics per km ²) have been observed in									
57 58	342	the Mediterranean Sea (van der Hal et al., 2017). The comparison of the present microplastics									
59 60	343	results with others shown the high heterogeneity as in South Africa but on smaller geographical									
62 63		14									
64 65											

extend (Table 3). Even if the Northeast vector component of the wind during the sampling could increase the retention of microplastics and macroplastics at the coast on North and West Coasts, the Dakar peninsula contribution (with an average of $\sim 260\ 000\ \text{microplastics}\ \text{km}^2$) can be considered as high.

High values of *E. coli* were systematically associated with high values of microplastics (Cambérène and Hann1) (Fig. 2). The microplastics and macroplastics around Dakar peninsula appear statistically linked to microbiological contamination of E. coli via effluent release. It also reinforce the hypothesis that microplastics and macroplastics can be highly suspected to be vector of microbiological contaminants which colonized them (Kirstein et al., 2016). At the 20 352 Ouakam and Ile de la Madeleine sites, the no-detection of bacteria and the low presence of microplastics suggest the presence of other factors for microbial proliferation than microplastics. In terms of ecosystems, microplastics and macroplastics provide a new habitat for many species at sea, including many microorganisms, bacteria, viruses, fungi, microalgae like diatoms. These species will quickly colonize plastic waste at sea, by attaching themselves to it and even developing (Du et al., 2022). Since plastics are persistent and highly mobile 37 359 materials, they will have the capacity to transport these species over large scales of space and time, the so-called "raft" effect (Galgani et al., 2020). Recent observation of harmful algal bloom in this area (Brehmer et al., 2021), which occur alternatively on the North and South coast of the peninsula, could be transported by microplastics and macroplastics and should be 47 363 investigated.

The high level of microplastics and macroplastics in Cambérène corresponds to the low level of Hg and the lower GTS, which could be the effect of the wastewater treatment plant: concentration of microplastics (Kazour et al., 2019) and decrease of Hg discharges to water (Balogh and Nollet, 2008). Moreover, for this station, the microbiological pollution was as high 60 368 as the microplastics level. This link between microplastics concentrations and microbiological

pollution (E. coli and enterococci) was also observed at the Ngor, Hann1 and Hann2 sites. Furthermore, the stations with the lowest concentrations of microplastics (Iles de la Madeleine and Ouakam) were also the lowest in terms of microbiological pollution (E. coli and enterococci). A direct correlation between Hg and overall sediment toxicity was not observed between the different sites. Finally, as expected, the overall toxicity of the sediments, such as their Hg content, appeared to be unrelated to the microplastic concentration as well as the microbiological level in the upper part of the water column.

We have not found in the literature Hg measurement in Senegalese marine sediment. All Hg 20 377 levels were below the reference levels established for dredged sediments (Geffard, 2001) and the Canadian criteria for assessing the quality of marine sediments (Environment Canada, 2007). Despite these low Hg levels, the high variability observed between sites proves that there was indeed anthropogenic pollution. This observed variability could be attributed, in part, to the granulometry, linked to local currents. The southern coast (Hann1 and Hann2) contained much more fine fractions than the other sites (low swell and current favouring sedimentation) (Gueye et al., 2017; Almar et al., 2019). Various studies show that pollutants such as heavy 37 384 metals and Polycyclic aromatic hydrocarbons (PAHs) with low water solubility (high molecular weight), in comparison with more water-soluble PAHs, tend to be preferentially fixed to the fine particles of sediments. The mobility and bioavailability of these pollutants decrease with the increase of this fine fraction of the sediments (Raoux and Garrigues 1993). Coarse particles 47 388 (fine and coarse sands) are less cohesive and have a small contact surface with the pollutants, which reduces the fixation of these pollutants (*i.e.* heavy metal) in the sediments (Geffard 2001; Le Hir 2008). The Global sediment toxicity (GST) (e.g. Brehmer et al., 2013) observed between sites was characteristic of the nature and intensity of the pollution: treated wastewater discharges at Cambérène, Ngor (average flow), untreated urban and industrial wastewater 59 393 discharges at Hann1 and 2, wreckage at Iles de la Madeleine, high anthropogenic activity at

Yoff Tonghor and domestic wastewater discharges at Ouakam (Table 1). Granulometry could

provide additional information (link between GST and granulometry) if the samples had been diluted for GTS, which would have made it possible to discriminate the most toxic sites. While the main limitation of the study is the small number of samples, it may support larger-scale harmonisation and a better comparison at regional, continental and global scales. Plastic ingestion by marine organisms have not been considered in the present study and can 15 400 underestimate the microplastics and macroplastics assessment as mentionned by Markic et al. (2020) Plastic is a compound of synthetic organic polymers obtained by the polymerization of monomers extracted from oil or gas. There are several types of plastics, up to 200 families of 20 402 which the most abundant are polyethylene (PE), polypropylene (PP), polystyrene (PS), 25 404 polyvinyl chloride (PVC), polyethylene terephthalate (PET), nylon and acrylonitrile butadiene styrene (ABS) (GESAMP, 2010). Obviously, the nature of the microplastics should be

identified using e.g., FTIR and Raman spectroscopy (Kumar et al., 2021). At this stage, it must 32 407 be perceived as a starting point for Senegal (where plastic bags were partially banned in 2015) and more generally North-Western Africa where most of main cities are coastal.

38 409 Thirty-five other African countries banned or ruled on the use of plastic bag, even if 40 410 implementation remains often an issue. Awareness is a key challenge in West Africa. Nevertheless, as part of the Ocean Decade programme SGD14.1.1, we advocate for capacity 45 412 building and training to support the implementation of monitoring. Our results show the importance of microplastics contamination and may raise attention for policy makers. Being 50 414 the first in Western Africa, our study provides scientific and technical basis for the monitoring of microplastics, supporting the implementation of monitoring, reduction measures, education, and more generally regional initiatives such as the Abidjan Convention. At sub regional level, it enters in the framework of the sub regional fisheries commission (SRFC), understanding that 60 418 both microplastics and macroplastics are a cause of concern for resources and affect the

fisheries sector (Nash, 1992, Gregory, 2009). Finally, it may favour the involvement of civil society, through participative sciences, together with policy makers and environmental managers.

6. Conclusions

Mercury levels in the Dakar city sediments were generally low. Nevertheless, the sediments 12 424 shown high level of ecotoxicity, we do not found the source of this ecotoxicity, that call for a wider screening. The microbiological results (on E. coli, enterococci, salmonella, Vibrio) show 17 426 that most of the sites do not comply with bathing water quality. That could also prevent aquaculture activities around the city. The analysis of microplastics reveals high concentrations and densities in general and very high near effluent of wastewater plant. Such level can trigger 24 429 impact on fish larvae but deeper studies are required before to statute on this point. 27 Macroplastics as microplatitics densities shown a high spatial variability, probably due to the 29 431 complexity of oceanic current near the coast and the peninsula geographical configuration. Positive and significant linear relationship between the microplastics and macroplastics was 34 433 found. Same observation was done between the microplastics or macroplastics and count of E. coli CFU. This supports the hypothesis that microplastics are a vector of microbiological pollution. The presence of effluents all along the coast of Dakar city required an urgent need of sanitation to preserve marine habitat as recreational areas and to give people the right to enjoy a healthy environment. Future more detailed studies will be conducted on the link between 46 438 microplastics and bacterial parameters.

7. Declaration of competing interest

51 440 The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

59 444 The work was supported by First the AWA project (IRD-BMBF, grant 01DG12073E; 60 445 www.awa.ird.fr "ecosystem approach to the management of fisheries and the marine

446 environment in West African waters") implemented by the Sub Regional Fisheries Commission 1 447 (SRFC/CSRP), as a demonstration project named Awatox and received additional funding from 448 the civil society (crowdfunding). Chemical analysis has been done by LAMA (ISO9001 ₄ 449 certified laboratory) of IRD (US 191 Imago, Senegal) and UCAD ESP for Hg analysis. Finally, 5 450 this work was also supported by the blue belt initiative (www.laceinturebleue.org) a 451 collaborative platform to act together and put into practice innovative solutions for the 452 adaptation of the fisheries sectors to climate change and for the resilience of oceans and climate. 9 453 We thank the Senegalese minster of environment (MEDD/DEEC) for their interest and facilitation all along our activities until now.

10 454 11 12 455 13 14 15^{-1} 456 References 16 457 Adam, I., Walker, T.R., Bezerra, J.C., Clayton, A., 2020. Policies to reduce single-use plastic ¹⁷ 458 marine pollution in West Africa. Mar. Policy 116, 103928. 18 459 https://doi.org/10.1016/j.marpol.2020.103928 19 20 460 Adamopoulou, A., Zeri, C., Garaventa, F., Gambardella, C., Ioakeimidis, C., Pitta, E., 2021. 21 461 Distribution Patterns of Floating Microplastics in Open and Coastal Waters of the 22 462 Eastern Mediterranean Sea (Ionian, Aegean, and Levantine Seas). Front. Mar. Sci. 8. 23 463 https://doi.org/10.3389/fmars.2021.699000 24 464 Alimi, O.S., Fadare, O.O., Okoffo, E.D., 2021. Microplastics in African ecosystems: Current 25 26 465 knowledge, abundance, associated contaminants, techniques, and research needs. Sci. 27 466 Total Environ. 755, 142422. https://doi.org/10.1016/j.scitotenv.2020.142422 28 467 Almar, R., Kestenare, E., Boucharel, J., 2019. On the key influence of remote climate variability 29 468 from Tropical Cyclones, North and South Atlantic mid-latitude storms on the 30 31 469 Commun. 1, 071001. Senegalese coast (West Africa). Environ. Res. 32 470 https://doi.org/10.1088/2515-7620/ab2ec6. 33 471 Andrady, A. L. 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62: 1596-1605. ³⁴ 472 https://doi.org/10;1016:j.marpolbul.2011.05.030. 35 473 Ba, A., Schmidt, J., Dème, M., Lancker, K., Chaboud, C., Cury, P., Thiao, D., Diouf, M., 36 37 474 Brehmer, P.P., 2017. Profitability and economic drivers of small pelagic fisheries in 38 475 West Africa: A twenty year perspective. Mar. Policy 76, 152 - 158.39 476 https://doi.org/10.1016/j.marpol.2016.11.008 40 477 Ba, K., Thiaw, M., Lazar, N., Sarr, A., Brochier, T., Ndiaye, I., Faye, A., Sadio, O., Panfili, J., 41 478 Thiaw, O.T., Brehmer, P., 2016. Resilience of Key Biological Parameters of the 42 43 479 Senegalese Flat Sardinella to Overfishing and Climate Change. PLOS ONE 11, 44 480 e0156143. https://doi.org/10.1371/journal.pone.0156143 ⁴⁵ 481 Baldé, B.S., Fall, M., Kantoussan, J., Sow, F.N., Diouf, M., Brehmer, P., 2019. Fish-length 46 482 based indicators for improved management of the sardinella fisheries in Senegal. Reg. 47 48 483 Stud. Mar. Sci. 31. https://doi.org/10.1016/j.rsma.2019.100801 49 484 Balogh, S.J., Nollet, Y.H., 2008. Mercury mass balance at a wastewter treatment plant 50 485 employing sludge incineration with offgas mercury control. Sci. Total Environ. 289, ⁵¹ 486 125-131. https://doi.org/10.1016/j.scitotenv.2007.08.021 52 487 Banque mondiale, 2016. Réduire la pollution marine et côtière. Programme de gestion du 53 54 488 littoral ouest africain. Fiche de connaissances N°5. 55 489 Bauer, A., Rørvik, L.M., 2007. A novel multiplex PCR for the identification of Vibrio 56 490 parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. Lett. Appl. Microbiol. 45, 57 491 371-375. https://doi.org/10.1111/j.1472-765X.2007.02195.x 58 59 60

64 65

61 62

63

2

3

6

7

8

492 1 493	Bettarel, Y., Arfi, R., Bouvier, T., Bouvy, M., Briand, E., Colombet, J., Corbin, D., Sime- Ngando, T., 2008. Virioplankton distribution and activity in a tropical eutrophicated
$^{2}_{2}$ 494	bay. Estuar. Coast. Shelf Sci. 80. https://doi.org/10.1016/j.ecss.2008.08.018
$^{3}_{4}$ 495	Brehmer, P., Chi, T., Thierry, L., Galgani, F., Laloë, F., Darnaude, A., Fiandrino, A., Mouillot,
5 496 5	D., 2011. Field investigations and multi-indicators for shallow water lagoon
6 497	management: Perspective for societal benefit. Aquat. Conserv. Mar. Freshw. Ecosyst.
7 498	21, 728–742. https://doi.org/10.1002/aqc.1231
⁸ 499	Brehmer, P., Constantin de Magny, G., Sonko, A., Guinot, P., Diallo, B., 2016. Mesures
$10^{9} 500$	microbiologiques, chimiques, microplastiques et écotoxicologiques des eaux maritimes
10_{11} 501	proches d'effluents de la presqu'île de Dakar et enquête auprès de la population
12 502	littorale : campagnes AWATox 1, 2, 3 & 4 : rapport de mission.
¹³ 503	Brehmer, P., Laugier, T., Kantoussan, J., Galgani, F., Mouillot, D., 2013. Does coastal lagoon
$\frac{14}{15}$ 504	habitat quality affect fish growth rate and their recruitment? Insights from fishing and
$^{15}_{16}$ 505	acoustic surveys. Estuar. Coast. Shelf Sci. 126, 1-6.
17 506	https://doi.org/10.1016/j.ecss.2013.03.011
18 507	Brehmer, P., Ndiave, W.N., Mbave, A., Fricke, A., Hess, P., Mertens, K., Chomérat, N., Ndour,
¹⁹ 508	L. Diedhiou, F., Constantin de Magny, G., Sonko, A., Faye, S., Galgani, F., 2021.
²⁰ 509	Découverte de la présence d'une toxine avant un effet sur la santé humaine émise par
$21 50^{21}$	une micro-algue marine sur la presqu'ïle du Can-Vert (Sénégal) pollution marine
23 511	dégradation des habitats marins et effets du changement climatique en Afrique de
24 512	l'Ouest: Note politique AWA 13 p. https://doi.org/10.23708/FDI:010082398
²⁵ 513	Collignon A Heca I-H Glagani F Voisin P Collard F Goffart A 2012 Neustonic
$^{26}_{-514}$	microplastic and zooplankton in the North Western Mediterranean Sea Mar Pollut
29 515	Bull 64 861–864 https://doi.org/10.1016/i.marpolbul.2012.01.011
29 516	Diankha O Demarca H Fall M Thiao D Thiaw M Sow B A Gave A T Brehmer
30 517	P 2017 Studying the contribution of different fishing gears to the Sardinella small-
³¹ 518	scale fishery in Seneralese waters Aquat Living Resour 30 27
³² 510	https://doi.org/10.1051/alr/2017027
33 519	Diagoul N Brohmer P. Domerca H. El Avoubi S. Thiam A. Sarra A. Mougat A. Darrat
34 J20 35 5 21	V 2021 On the robustness of an asstern boundary unwalling aposystem exposed to
36 522	multiple stressors. Sei Den 11 1008 https://doi.org/10.1028/s41508.021.81540.1
³⁷ 522	Du V Lin H Dong V Vin 7 2022 A raviou on marine plastique: biodiversity formation
38 525	Du, 1., Elu, II., Dolig, A., Tili, Z., 2022. A fevice of marine plastique. biourversity, formation,
39 524	and fole in degradation. Computational and Structural Diotechnology Journal 20, 975–
40 525	Frikson M. Mason S. Wilson S. Pox C. Zallars A. Edwards W. Earley H. Ameto S.
42 527	2012 Microplestic pollution in the surface waters of the Lourantian Creat Lakes Mar
43 520	Dollut Pull 77, 177, 182, https://doi.org/10.1016/i.mormolbul.2012.10.007
44 520	Fondi, Buil. 77, 177–182. https://doi.org/10.1010/j.httaipoioui.2015.10.007
45 529	M.D. 2021 Microplestic pollution in westewater treatment plants in the city of Códia.
47 521	M.D., 2021. Microplastic pollution in wastewater treatment plants in the city of Caulz.
48 522	Abundance, removal enciency and presence in receiving water body. Sci. Total
49 532	Case L. Hanny, M. Calasni, E. 2015. First characteria an neutonic plastics in victoria offi
50 333	Gago, J., Henry, M., Galgani, F., 2015. First observation on neustonic plastics in waters of
51 334 52 525	Nw Spain (spring 2015 and 2014). Mar. Environment 111 27.22
53 520	https://d-i erg/10.1016/i mergenerge 2015.07.000
54 530	Calardi E. Durand S. Duflas C. Estra E. Chialiana I. Crimond D. Casara M. Haust
55 331	Gaigaili, F., Diuzaud, S., Dullos, G., Faole, E., Ghiglione, J., Grimaud, K., George, M., Huvel,
56 JJO	A., Lagard, F., Faul-Foin, I., Ter Haile, A., 2020. Follution desoceans par les plastiques
51 539	colognia E. Honko, C. Warner, S. Oostarkaan, L. Nilaar, D. Elast, D. King, G.
540 59 <u>-</u> 41	Thomason D. Deletinus A. Ven Frenchen L. Vila Letinus, T. C. H. M. M. M.
60 541	mompson, K., Falaunus, A., van Francker, J., Vlachogianni, I., Scoullos, M., Veiga,
61	
62 63	20
64	

542	J., Matiddi, M., Alcaro, L., Maes, T., Korpinen, S., Budziak, A., Leslie, H., Gago, J.,											
1 543	Liebezeit, G., 2013. Guidance on Monitoring of Marine Litter in European Seas: a											
² 544	guidance document within the Common Implementation Strategy for the Marine											
$^{3}_{4}$ 545	Strategy Framework Directive. (Report). Publications Office of the European Union.											
$\frac{4}{5}$ 546	https://doi.org/10.2788/99475											
6 547	Galgani, F., Senia, J., Guillou, J.L., Laugier, T., Munaron, D., Andral, B., Guillaume, B.,											
7 548	Coulet, E., Boisserv, P., Brun, L., Bertrandy, M.C., 2009, Assessment of the											
8 549	environmental quality of French continental Mediterranean lagoons with ovster embryo											
⁹ 550	bioassay Arch Environ Contam Toxicol 57 540–551											
10 550 11 551	https://doi.org/10.1007/s00244-009-9302-2											
12557	Galgani I. Loiselle S.A. 2021 Plastic pollution impacts on marine carbon biogeochemistry											
13 553	Environ Pollut Barking Essey 1987 268 115598											
¹⁴ 554	https://doi.org/10.1016/i.envpol.2020.115598											
15 555	Geffard O 2001 Toxicite potentielle des sediments marine et estuariens contamines :											
16 555	avaluation chimique et biologique biodisposibilite des contaminants sedimentaires.											
18 557	Université de Pordeeux 1. Erança											
19 550	CESAMD 2010. Proceedings of the CESAMD international workshop on microplastic particle.											
20 550	DESAMIP, 2010. Floceedings of the DESAMIP international workshop on interoprastic particle											
21 559	as a vector in transporting persistent, bloaccumulating and toxic substances in the											
22 500	oceans. (No. 82). UNESCO-IOC, Paris.											
23 561	GESAMP, 2019. Guidelines for the monitoring & assessment of plastic litter in the ocean.											
²⁴ 562 25 5 62	Report and studies Series 99.											
26 563	Gregory, M.R., 2009. Environmental implications of plastic debris in marine settings—											
27 564	entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions.											
28 565	Philos. Trans. R. Soc. B Biol. Sci. 364, 2013–2025.											
29 566	https://doi.org/10.1098/rstb.2008.0265											
³⁰ 567	Guevara-Riba, A., Sahuquillo, A., Rubio, R., Rauret, G., 2004. Assessment of metal mobility											
³¹ ₃₂ 568	in dredged harbour sediments from Barcelona, Spain. Sci. Total Environ. 321, 241–255.											
₃₃ 569	https://doi.org/10.1016/j.scitotenv.2003.08.021.											
34 570	Gueye, A., Klof, S., Thiaw, M., Faye, S., Mbaye, A., Ndoye, S., Capet, X., Diop, A., Brehmer,											
³⁵ 571	P., ICAWA : International Conference AWA, 3., Dakar (SEN), 2016/12/13-15, 2017.											
³⁶ 572	"Discovery of oil and gas in Senegal : marine environment, protected fishing areas and											
38 573	marine protected areas": advocacy for collective prevention of ecological risks											
39 574	[résumé], in: Brehmer, P., Ba, B., Kraus, G. (Eds.), International Conference ICAWA											
40 575	2016 : Extended Book of Abstract : The AWA Project : Ecosystem Approach to the											
41 576	Management of Fisheries and the Marine Environment in West African Waters.											
$\frac{42}{42}$ 577	SRFC/CSRP, Dakar, pp. 119–120.											
⁴³ ₄₄ 578	Habtes, S., Muller-Karger, F.E., Roffer, M.A., Lamkin, J.T., Muhling, B.A., 2014. A											
45 579	comparison of sampling methods for larvae of medium and large epipelagic fish species											
46 580	during spring SEAMAP ichthyoplankton surveys in the Gulf of Mexico. Limnol.											
⁴⁷ 581	Oceanogr. Methods 12, 86–101. https://doi.org/10.4319/lom.2014.12.86											
⁴⁸ / ₄₀ 582	Hale, R.C., Seeley, M.E., La Guardia, M.J., Mai, L., Zeng, E.Y., 2020. A Global Perspective											
50 583	on Microplastics. J. Geophys. Res. Oceans 125, e2018JC014719.											
51 584	https://doi.org/10.1029/2018JC014719											
52 585	His, E., Heyvang, I., Geffard, O., Montaudouin, X., 1999, A comparison between ovster											
⁵³ 586	(Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for											
54 55 587	toxicological studies. Water Research. https://doi.org/10.1016/S0043-1354(98)00381-9											
56 588	Hoshino, K., Yamasaki, S., Mukhopadhyay, A.K., Chakraborty, S., Basu, A., Bhattacharya											
57 589	S.K., Nair, G.B., Shimada, T., Takeda, Y., 1998, Development and evaluation of a											
⁵⁸ 590	multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139											
59												
6U												
0⊥ 62	21											
63	21											
64												
65												

591	FEMS Immunol. Med. Microbiol. 20, 201–207. https://doi.org/10.1111/j.1574-
1 592	695X.1998.tb01128.x
² 593	JO 2020. Loi n2020-04 du 8 janvier. 20 janvier 2020. Journal officiel du Senegal.
4 594 4 595	Kazour, M., Ierki, S., Rabhi, K., Jemaa, S., Khalaf, G., Amara, R., 2019. Sources of
₅ 595	microplastiques pollution in the marine marine environment: importance of wasterwater
6 596	treatment plant and coastal landfill. Mar. Pollut. Bull. 146, 608–618.
7 597	https://doi.org/10.1016/j.marpolbul.2019.06.066
° 598	Kirstein, I.V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Löder, M., Gerdts, G.,
10 599	2016. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on
11 600	microplastic particles. Mar. Environ. Res. 120, 1–8.
12 601	https://doi.org/10.1016/j.marenvres.2016.07.004
¹³ 602	Kumar, V.B.N., Loschel, L.A., Imhof, H.K., Loder, M.G.J., Laforsch, C., 2021. Analysis of
$^{14}_{15}$ 603	microplastics of a broad size range in commercially important mussels by combining
$^{15}_{16}$ 604	FTIR and Raman spectroscopy approaches. Environmental Pollution 269, 116147.
17 605	https://doi.org/10.1016/j.envpol.2020.116147.
18 606	Lehel, J., Murphy, S. (2021). Microplastics in the Food Chain: Food Safety and Environmental
$^{19}_{22}$ 607	Aspects. In: de Voogt, P. (eds) Reviews of Environmental Contamination and
$^{20}_{21}$ 608	Toxicology Volume 259. Reviews of Environmental Contamination and Toxicology,
22 609	vol 259. Springer, Cham. https://doi.org/10.1007/398_2021_77
23 610	Le Hir, P. 2008. Aide mémoire de dynamique sédimentaire. 7ème édition.
24 611	https://archimer.ifremer.fr/doc/00000/6273/.
$^{25}_{26}$ 612	Maggi, C., Berducci, M.T., Bianchi, J., Giani, M., Campanella, L., 2009. Methylmercury huon
²⁰ ₂₇ 613	in marine sediment and organisms by Direct Mercury Analyser. Anal. Chim. Acta 641,
28 614	32–36. https://doi.org/10.1016/j.aca.2009.03.033
29 615	Markic, A., Gaetner, JC., Gaetner-Mazoumi, N., Koelmans, A.A., 2020. Plastic ingestion by
³⁰ 616	marine fish in the wild. Crit. Rev. Environ. Sci. Technol. 50, 657-697.
$^{31}_{22}$ 617	https://doi.org/10.1080/10643389.2019.161990.
3 ² 618	Matsuguma, Y., Takada, H., Kumata, H., Kanke, H., Sakurai, S., Suzuki, T., Itoh, M., Okazaki,
34 619	Y., Boonyatumanond, R., Zakaria, M.P., Weerts, S., Newman, B., 2017. Microplastics
³⁵ 620	in Sediment Cores from Asia and Africa as Indicators of Temporal Trends in Plastic
$^{36}_{27}$ 621	Pollution. Arch. Environ. Contam. Toxicol. 73, 230–239.
$\frac{37}{38}$ 622	https://doi.org/10.1007/s00244-017-0414-9.
39 623	Matsuoka, T., Nakashima, T., Nagasawa, N., 2005. A review of ghost fishing: scientific
40 624	approaches to evaluation and solutions. Fish. Sci. 71, 691–702.
⁴¹ 625	https://doi.org/10.1111/j.1444-2906.2005.01019.x
$^{42}_{42}$ 626	Maximenko, N., Corradi, P., Law, K.L., Van Sebille, E., Garaba, S.P., Lampitt, R.S., Galgani,
⁴³ ₄₄ 627	F., Martinez-Vicente, V., Goddijn-Murphy, L., Veiga, J.M., Thompson, R.C., Maes, C.,
45 628	Moller, D., Löscher, C.R., Addamo, A.M., Lamson, M.R., Centurioni, L.R., Posth,
46 629	N.R., Lumpkin, R., Vinci, M., Martins, A.M., Pieper, C.D., Isobe, A., Hanke, G.,
⁴⁷ 630	Edwards, M., Chubarenko, I.P., Rodriguez, E., Aliani, S., Arias, M., Asner, G.P.,
48 631	Brosich, A., Carlton, J.T., Chao, Y., Cook, AM., Cundy, A.B., Galloway, T.S.,
50 632	Giorgetti, A., Goni, G.J., Guichoux, Y., Haram, L.E., Hardesty, B.D., Holdsworth, N.,
51 633	Lebreton, L., Leslie, H.A., Macadam-Somer, I., Mace, T., Manuel, M., Marsh, R.,
⁵² 634	Martinez, E., Mayor, D.J., Le Moigne, M., Molina Jack, M.E., Mowlem, M.C., Obbard,
$^{53}_{54}$ 635	R.W., Pabortsava, K., Robberson, B., Rotaru, AE., Ruiz, G.M., Spedicato, M.T., Thiel.
5 ⁴ 55 636	M., Turra, A., Wilcox, C., 2019. Toward the Integrated Marine Debris Observing
56 637	System. Front. Mar. Sci. 6.
57 638	Nandi, B., Nandy, R.K., Mukhopadhyay, S., Nair, G.B., Shimada, T., Ghose, A.C., 2000. Rapid
⁵⁸ 639	method for species-specific identification of Vibrio cholerae using primers targeted to
59	
61	
62	22
63	

640	the gene of outer membrane protein OmpW. J. Clin. Microbiol. 38, 4145-4151.
1 641	https://doi.org/10.1128/JCM.38.11.4145-4151.2000
² 642	Nash, A.D., 1992. Impacts of marine debris on subsistence fishermen An exploratory study.
³ 643	Mar. Pollut. Bull. 24, 150–156. https://doi.org/10.1016/0025-326X(92)90243-Y
⁴ ₅ 644	Ndoye, S., Capet, X., Estrade, P., Sow, B., Machu, E., Brochier, T., Lilkendey, J., Brehmer, P.,
6 645	2017. Dynamics of a "low-enrichment high-retention" upwelling center over the
7 646	southern Senegal shelf Geophys Res Lett https://doi.org/10.1002/2017GL072789
⁸ 647	Nel H A Froneman P W 2015 A quantitative analysis of microplastic pollution along the
⁹ 6/8	south-eastern coastline of South Africa Mar Pollut Bull 101 274-279
10 040	https://doi.org/10.1016/i.marpolbul.2015.00.043
12 650	NE EN ISO 7800.2 [W/W/W Decument] n.d. After Ed LIPI
13 651	https://www.houtigue.ofpor.org/fr.fr/pormo/nf.op.78002/guelite.de.loou
14^{-5} (51)	https://www.boutique.amor.org/n-n/horme/m-en-iso-78992/quante-de-leau-
$15 \begin{array}{c} 0.52 \\ (52) \end{array}$	recherche-et-denomorement-des-enterocoques-intestinaux-part/ra049013/1/422
16 055	(accessed 1.21.22).
17 654	NF EN ISO 9308-1/AI [WWW Document], n.d. Afnor Ed. URL
18 655	https://www.boutique.atnor.org/fr-fr/norme/nf-en-1so-93081-a1/qualite-de-leau-
20 656	denombrement-des-escherichia-coli-et-des-bacteries-coliform/fa188929/85146
$\frac{10}{21}$ 657	(accessed 1.21.22).
₂₂ 658	NF EN ISO 19250 [WWW Document], n.d. Afnor Ed. URL https://www.boutique.afnor.org/fr-
23 659	fr/norme/nf-en-iso-19250/qualite-de-leau-recherche-de-salmonella-
²⁴ 660	spp/fa050381/41451 (accessed 1.21.22).
$^{25}_{26}$ 661	R Core, T., 2021. A language and environment for statistical computing. R Foundation for
$^{20}_{27}$ 662	Statistical Computing, Vienna, Austria. [WWW Document]. URL
28 663	https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-
29 664	in-rivers/r-development-core-team-2006 (accessed 2.14.22).
³⁰ 665	Raoux C. Y., Garriques P. 1993. Mechanism model of polycyclic aromatic hydrocarbons
$^{31}_{22}$ 666	contamination of marine coastal sédiments from the Mdeterranean sea. In Proceedings
32 667	of the 13 th international symposium on polunuclear aromatic hydrocarbons. Garrigues
34 668	P, Lamotte M, eds. Gordon and Breach publishers. 443-450 pp.
³⁵ 669	Shirai, H., Nishibuchi, M., Ramamurthy, T., Bhattacharya, S.K., Pal, S.C., Takeda, Y., 1991.
³⁶ 670	Polymerase chain reaction for detection of the cholera enterotoxin operon of Vibrio
$^{37}_{22}$ 671	cholerae. J. Clin. Microbiol. https://doi.org/10.1128/icm.29.11.2517-2521.1991
38 672	Sonko, A., Brehmer, P., Cisse, I., Gassama, A., Constantin de Magny, G., Henry, JC., Dion,
40 673	C., Diarra, M., 2016, AWATOX · ecotoxicological survey around the peninsula of
⁴¹ 674	Dakar, combining sediment ecotoxicity, water column microbiological, trace metal.
⁴² 675	physicochemical and microplastic analysis- fdi 010067829- Horizon WWW
43 676	Document] URL https://www.documentation.ird.fr/hor/fdi/010067829 (accessed
44 670	
46 678	Snarks C. Immelman S. 2020 Microplastics in offshore fish from the Agulhas Bank South
47 679	Africa Mar Pollut Bull 156 111216
48 680	https://doi.org/10.1016/i.marpolbul.2020.111216
49 080	Tallaa K. Huwat A. Di Dai C. Conzálaz Farnándaz C. Lambart C. Dattan P. La Gaïa
50 001	M. Darahal M. Soudant D. Daul Dont I. 2018 Nanonlastics impaired overar free
51 002	N., Bercher, M., Soudant, F., Faul-Font, I., 2018. Nanoplastics imparted byster free
53 (94	hving stages, gametes and emotyos. Environ. Fonut. 242 , $1220-1255$.
54 684	nups://doi.org/10.1010/j.envpoi.2018.08.020
55 083	ravares, D.C., Moura, J.F., Ceesay, A., Merico, A., 2020. Density and composition of surface
56 080	and burled plastic debris in beaches of Senegal. Sci. 10tal Environ. 737 , 139633.
5/ 08/	ntips://doi.org/10.1016/j.scitotenv.2020.139633
59 688	Iniaw, M., Auger, PA., Ngom, F., Brochier, T., Faye, S., Diankha, O., Brehmer, P., 2017.
60 689	Effect of environmental conditions on the seasonal and inter-annual variability of small
61	
62 63	23
о <i>з</i> 64	
65	

$\begin{array}{r} 690 \\ 1 & 691 \\ 2 & 692 \\ 3 & 693 \\ 4 & 693 \\ 5 & 694 \\ 6 & 695 \\ 7 & 696 \\ 8 & 697 \end{array}$	 pelagic fish abundance off North-West Africa: The case of both Senegalese sardinella. Fish. Oceanogr. 26, 583–601. https://doi.org/10.1111/fog.12218 van der Hal, N., Ariel, A., Angel, D.L., 2017. Exceptionally high abundances of microplastics in the oligotrophic Israeli Mediterranean coastal waters. Mar. Pollut. Bull. 116, 151–155. https://doi.org/10.1016/j.marpolbul.2016.12.052 Wang, W., Ge, J., Yu, X., 2020. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicology and Environmental Safety 189, 109913. https://doi.org/10.1016/j.ecoeny.2019.109913
9 698 10 699 11 699 12 700 13 701	Worsfold, P.J., Achterberg, E.P., Birchill, A.J., Clough, R., Leito, I., Lohan, M.C., Milne, A., Ussher, S.J., 2019. Estimating Uncertainties in Oceanographic Trace Element Measurements. Front. Mar. Sci. 5, 515. https://doi.org/10.3389/fmars.2018.00515
14 15 16 17 18	
19 20 21 22 23 24	
25 26 27 28 29	
30 31 32 33 34 25	
36 37 38 39 40	
41 42 43 44 45	
48 47 48 49 50 51	
52 53 54 55 56	
57 58 59 60 61	
62 63 64 65	24

	703	Legend
1 2	704	
3 4	705	Figures
5 6 7	706	
, 8 9	707	Fig. 1. Sampling sites around the Cap-Vert peninsula, Senegal, West Africa. The Cap-Vert
10 11	708	Peninsula were divided in three main area: North, West and South (dotted lines). Considering
12 13 14	709	X as the first letter of the sampling site, all sites were identified on the map by (i) the position
15 16	710	of microplastic sampling (NX), (ii) the position of the nearest wastewater effluent (EX), and
17 18	711	(iii) the position of water and sediment sampling (site name). EC = Effluent Cambérène, NY =
20 21	712	Net Yoff Tonghor, EY = Effluent Yoff Tonghor, FN = Net Ngor, EN = Effluent Ngor, FO = Net
22 23	713	Ouakam, EO = Effluent Ouakam, FM = Net Madeleines, FH1 = Net Hann1, EH1 = Effluent
24 25 26	714	Hann1, FH2 = Net Hann2 and EH2 = Effluent Hann2. Statistical pie chart characterizes the
27 28	715	sediment granulometry in percentage for all site (clay, fine and coarse silt, fine and coarse sand).
29 30 31 32	716	
33 34	717	
35 36	718	Fig. 2. Graphic of coastal microplastics (mp, <5 mm) and macroplatics (MP, > 5mm)
37 387 39	719	abundance and density (g km ²) around the peninsula of Dakar city. On second axis the
40 41	720	Escherichia coli and enterococci in CFU/100mL.
42 43	701	
44 45	721	
40	122	
48 49		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		
61		
62		25
64		
65		

	723	Tables
1 2 2	724	
3 4 5	725	Table 1: Sampling site detail: Station name, around the peninsula of the Cap-Vert, their distance
6 7	726	(in meter) "to the nearest effluent and the coast (D_{efflu},D_{coast}), their local depth, the distances
8 9 10	727	and areas sampled for microplastics (D _{microp} , Area _{micropl}). All stations are georeferenced (GPS,
11 12	728	DD: Decimal degrees). Type of pollution, effluent flow (H: high, M: medium and L: low), and
13 14 15	729	type of bottom are indicative (S: sand; R: reef).
16 17	730	
19 20	731	Table 2. Coastal microplastics (mp, <5 mm) and macroplastics (MP, >5 mm) abundance (km ⁻
21 22	732	²) and density (g km ⁻²) around the North, West and South parts of the peninsula of Cap-Vert
23 24 25	733	(Dakar city). For microbiological results A: Absence; P: presence. Escherichia coli and
26 27	734	Enterococci are in CFU/100mL and for Salmonella, Vibrio cholera, V. parahaemolyticus, V.
28 29 20	735	vulnificus only "A" Absence or "P" presence (in grey) is notified. Marine sediment
31 32	736	granulometry in proposition (%) of clay, fine silt, coarse silt, fine sand and coarse sand. GTS :
33 34	737	Global Toxicity of Sediments (% of abnormal larvae) ; Hg : mercury content (in μ g kg ⁻¹) in the
35 36 37	738	marine sediment. Physicochemical parameters in each studied site.
38 39	739	
40 41 42	740	Table 3. Comparison of microplastics abundance in surface waters found in the present study
43 44	741	around the Cap-Vert peninsula throughout various studies led in Africa, Europe and the
45 46 47	742	United States of America.
48 49	743	
50 51	744	
52 53 54		
55 56		
57 58		
59 60 61		
62 63		26
64 65		

Table (Editable version)

Click here to access/download;Table (Editable version);Table_1.docx

Click here to access/download;Table (Editable version);Table_2.docx 🛓

Tabl⁵ (Editable version) 17 18 19 20 21 22 Table 2 23

22																						
24 25 26 o		micropla	astics	macropla	astics	coli L)	بے ت	ø	rae	yticus	SI		(9	(%	(%	(%)		((1
7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Site	km ⁻²	g km ⁻²	km ⁻²	g km ⁻²	Escherichia (CFU/100 n	Enterococ (CFU/100 n	Salmonell	Vibrio chole	V. parahaemo	V. vulnificu	Clay (%)	Fine silt (%	Coarse silt (Fine sand (Coarse sand	GTS (%)	Hg (µg kg	T (°C)	Hq	Sal (psu)	O2 (mg L-
33	Cambérène	945 607	159	189 995	328	10 000	390	Р	A	Α	Α	2.0	0.7	0.2	95.3	1.8	29.5	1.9	19.0	8.50	33.9	6.93
³ ⁴ North	Yoff Tonghor	n/a	n/a	n/a	n/a	3 000	< 15	Α	A	Р	Α	1.8	0.9	0.3	90.7	6.3	100	3.8	21.3	8.09	33.3	6.44
35	Ngor	106 203	11	3 354	6	4 500	1 700	Α	Α	Α	Α	1.8	0.9	0.0	0.1	97.2	100	5.1	21.4	7.96	33.9	6.23
37	Ouakam	34 236	6	0	0	<15	< 15	Α	A	A	Α	1.2	0.7	0.5	12.7	84.9	61.9	4.4	21.9	7.99	33.9	5.71
38West	lles de la Madeleine	12 641	2	0	0	<15	< 15	Α	A	Α	A	1.8	0.9	0.3	1.0	96.0	100	3.5	22.4	8.02	33.8	5.20
3 9 40	Hann1	303 059	60	31 302	250	4 500	620	Α	Ρ	Α	A	2.8	1.3	3.9	89.6	2.4	100	34.9	22.3	8.13	34.0	4.99
41South	Hann2	152 038	15	0	0	3 900	180	Α	A	Α	Α	6.7	2.9	11.8	43.1	35.5	100	17.1	22.6	7.96	33.7	3.73
42																						
43																						
44																						
46																						
47																						
48									1													
49																						
50																						
51																						
52																						
53																						
55																						
33																						

 $\begin{array}{c} 4\,3\,4\,4\,5\,6\\ 4\,4\,7\,8\,9\,0\,5\,1\,2\,5\,3\,4\\ 5\,5\,5\,5\,6\,5\,7\,5\,9\,6\,1\,2\\ 6\,3\,6\,4\\ 6\,5\end{array}$

Table (Editable version)

Click here to access/download;Table (Editable version);Table_3.docx

Table 3

1 2	Table 3			C.
3 4 5 6 7 8 9 0 112 13 14 5 6 7 8 9 0 112 13 14 5 6 7 8 9 0 112 13 14 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 23 24 5 6 7 8 9 0 122 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Country / sea / lake	Area	mp km ⁻²	References
	South Africa	South western cape province	257 000 000	(Alimi et al., 2021)
	Iberia	NW Iberia upwelling system	980 000	(Gago et al., 2015)
	Senegal	Cambérène	945 607	Present study
	Cantabria	Cantabrian Sea	407 000	(Gago et al., 2015)
	Senegal	Hann 1	303 059	Present study
	South Africa	Kwa Zulou-Natal	280 000	(Alimi et al., 2021)
	Senegal	Peninsula of Cap-Vert (Dakar)	258 954	Average present study
	Senegal	Hann 2	152 038	Present study
	Europa	North Western Mediterranean	110 000	(Collignon et al., 2012)
	Senegal	Ngor	106 203	Present study
	Usa	Laurentian Great Lake	43 000	(Eriksen et al., 2013)
	Senegal	Ouakam	34 236	Present study
	Senegal	Iles de la Madeleine	12 641	Present study
	South Africa	South-eastern major bays	11 000	(Alimi et al., 2021)
	Greece	Corfu Gulf	9 800	(Adamopoulou et al., 2021)
	Mediterranean	North Lonian Sea	5 600	(Adamopoulou et al., 2021)
	Kenya	Naivasha	3 640	(Alimi et al., 2021)
	Greece	Corfu Gulf	2 800	(Adamopoulou et al., 2021)
	Mediterranean	North Lonian Sea	2 200	(Adamopoulou et al., 2021)
	Greece	Inner Saronikos Gulf	1 100	(Adamopoulou et al., 2021)
	Greece	Inner Saronikos Gulf	600	(Adamopoulou et al., 2021)

Conflict of Interest

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.