Slow build-up of turbidity currents triggered by a moderate earthquake in the Sea of Marmara

Pierre Henry ${ }^{1}$, M Sinan Özeren ${ }^{2}$, Nurettin Yakupoğlu ${ }^{3}$, Ziyadin Çakir ${ }^{3}$, Emmanuel de Saint-Léger ${ }^{4}$, Olivier Desprez de Gésincourt ${ }^{4}$, Anders Tengberg ${ }^{5}$, Cristele Chevalier ${ }^{6}$, Christos Papoutsellis ${ }^{1}$, Nazmi Postacıoğlu ${ }^{7}$, Uğur Dogan ${ }^{8}$, Hayrullah Karabulut ${ }^{9}$, Gülsen Uçarkuş³, M Namık Çağatay³

Abstract

${ }^{1}$ Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Aix-en-Provence, France, ${ }^{2}$ Istanbul Technical University, Eurasia Institute of Earth Sciences, Maslak, Istanbul, Turkey, ${ }^{3}$ Istanbul Technical University, Geological Engineering Dept., Maslak, Istanbul, Turkey, ${ }^{4}$ CNRS, DT INSU, Parc national d'instrumentation océanographique, Plouzané, France, ${ }^{5}$ Aanderaa Data Instruments AS, Bergen, Norway, ${ }^{6}$ Aix Marseille Univ, CNRS, IRD, MIO, Aix-en-Provence, France, ${ }^{7}$ Istanbul Technical University, Physics Dept., Maslak, Istanbul, Turkey, ${ }^{8}$ Yıldız Technical University, Geomatic Engineering Dept., Istanbul, Turkey, ${ }^{9}$ Bogazici University, KOERI, Istanbul, Turkey

Supplementary Material

The purpose ot the supplementary material is to provide an assessment of the response of the Seaguard RCM tiltmeter and compass to tilting beyond usual conditions of operations.

Figure S1. Photos of system used showing the position of the device for an applied X-tilt of -90 (X-axis vertical up)

Figure S2. Response of the Seguard RCM tiltmeter to instrument tilting in the X direction. Accuracy is always better than 3° for an absolute tilt of less than 60° but measurements then saturate around 80°. Measurements also appear less accurate when the instrument is upside down (applied tilt less than -90° or more than 90°)

Figure S3. Response of the Seguard compass to instrument tilting in the X direction with X oriented $\mathrm{N} 0^{\circ}, \mathrm{N} 90^{\circ}, \mathrm{N} 180^{\circ}$ and $\mathrm{N} 270^{\circ}$. The test was performed in Brest where magnetic inclination is 63°. The theoretical azimuth is calculated to take into account the effect of tilt measured in the Y -direction with the a approximate correction: $\operatorname{atan}(\sin (Y-t i l t) / \cos (X-t i l t))$.

