Classic or hybrid? The performance of next generation ecological models to study the response of Southern Ocean species to changing environmental conditions

Type Article
Date 2022-11
Language English
Author(s) Guillaumot Charlene1, 2, Belmaker JonathanORCID3, Buba Yehezkel3, Fourcy Damien4, Dubois Philippe1, Danis Bruno1, Le Moan ElineORCID2, Saucede Thomas2
Affiliation(s) 1 : Marine Biology Lab, Université Libre de Bruxelles, Bruxelles, Belgium
2 : Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
3 : School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
4 : ESE, Ecology and Ecosystem Health, INRAE, Rennes, France
Source Diversity And Distributions (1366-9516) (Wiley), 2022-11 , Vol. 28 , N. 11 , P. 2286-2302
DOI 10.1111/ddi.13617
WOS© Times Cited 1
Keyword(s) Bayesian inference, data-poor systems, integrated approaches, Kerguelen Islands, sea urchin, species distribution modelling
Abstract

Aim In the context of intensifying threats of climate change on marine communities, ecological models are widely applied for conservation strategies, though polar studies remain scarce given the limited number of datasets available. Correlative (e.g. species distribution models, SDM) and mechanistic (e.g. dynamic energy budget models, DEB) modelling approaches are usually used independently in studies. Using both approaches in integrative, hybrid models could help to better estimate the species potential ecological niche, as mechanistic and correlative models complement each other very well, giving more insights into species potential response to fast-changing environmental conditions. Location The study focusses on the Baie du Morbihan, a silled basin located in the east of the Kerguelen Islands (sub-Antarctic). Methods A hybrid, correlative-mechanistic model was implemented to predict the response of the endemic sea urchin Abatus cordatus (Verrill, 1876). We compared the performances of classic and integrated approaches to predict A. cordatus distribution according to two dates representing seasonal contrasts. Two integrated approaches were studied and performed by either (1) including the spatial projection of the DEB model as an input layer inside the SDM ('integrated SDM-DEB') or (2) using a Bayesian procedure to use DEB model outputs as priors of the SDM ('integrated Bayesian' approach). Results Results show higher performances of 'integrated Bayesian' approaches to evaluate A. cordatus potential ecological niche compared with 'classic' and 'integrated SDM-DEB' methods. The influence of environmental conditions on model predictions is further captured with these Bayesian procedures and better highlights the environmental influence on the species-predicted distribution. Model performance is good for the different simulations, and uncertainty in predictions is well-highlighted. Main conclusions The good performances of 'integrated Bayesian' approaches to estimate species potential ecological niche opens perspectives for future applications to a broad panel of natural examples, noteworthy for decision-making and conservation management purposes.

Full Text
File Pages Size Access
Publisher's official version 17 14 MB Open access
Appendix S1 12 MB Open access
Top of the page

How to cite 

Guillaumot Charlene, Belmaker Jonathan, Buba Yehezkel, Fourcy Damien, Dubois Philippe, Danis Bruno, Le Moan Eline, Saucede Thomas (2022). Classic or hybrid? The performance of next generation ecological models to study the response of Southern Ocean species to changing environmental conditions. Diversity And Distributions, 28(11), 2286-2302. Publisher's official version : https://doi.org/10.1111/ddi.13617 , Open Access version : https://archimer.ifremer.fr/doc/00810/92240/