

Rapport de campagne océanographique

Rapport de la campagne CASSISED-2019

Leg 1 : 04 mars au 07 mars 2019, N/O L'Europe Leg 2 : 04 avril au 24 avril 2019, N/O L'Europe Leg 3 : 25 août au 29 août 2019, N/O L'Europe Leg 4 : 30 août au 01 septembre 2019, N/O Téthys II

Chef de mission : Bernard Dennielou IFREMER, Unité de Recherche Géosciences Marines

Table des matières

1	Int	Introduction11							
2	Oł	Objectifs scientifiques							
3	Or	ganis	ation de la mission	15					
4	Οι	Outils et travaux réalisés 16							
	4.1	Мо	uillages, instrumentation de la colonne d'eau	16					
	4.	.1.1	Lignes de mouillage Aniitra et PeerGynt	16					
	4.	.1.2	ADCP 300 kHz + cage antichalutage	23					
	4.	.1.3	Lignes de thermistances Mastodons	24					
	4.	.1.4	CTD (Conductivity, Temperature, Depth) et prélèvements d'eau	27					
	4.2	AU۱	/ (Autonomous Underwater Vehicle)	34					
	4.	.2.1	Données sondeur de sédiment	38					
		4.2.1	.1 Séquence de contrôle qualité bord	38					
		4.2.1	.2 Corrections de navigation	42					
		4.2.1	.3 Découpe des fichiers SEGY en profils	44					
	4.	.2.2	Données multi-faisceaux EM2040	46					
		4.2.2	2.1 Acquisition des données SMF	48					
		4.2.2	2.2 Traitement des données SMF	52					
		4.2.2	2.3 Conclusion	60					
	4.3	Pré	lèvements	60					
	4.	.3.1	Carottier à piston Kullenberg	60					
	4.	.3.2	Carottier multi-tube « Fantacore »	63					
	4.4	Pos	itionnement Base Ultra Courte (BUC)	75					
5	Jo	urnal	des opérations	76					
	5.1	CAS	SISED-2019-1, du 4 au 9 mars 2019, N/O L'Europe	76					
	5.	.1.1	Lundi 4 mars 2019	76					
	5.	.1.2	Mardi 5 mars 2019	77					
	5.	.1.3	Mercredi 6 mars 2019	78					
	5.	.1.4	Jeudi 7 mars 2019	79					
	5.2	CAS	SISED-2019-1, du 4 au 25 avril 2019, N/O L'Europe	79					
	5.	.2.1	Jeudi 4 avril 2019	79					
	5.	.2.2	2 Vendredi 5 avril 2019						
	5.	.2.3	Samedi 6 avril 2019	80					
	5.	.2.4	Dimanche 7 avril 2019	81					

	5.2.5	Lundi 8 avril 2019					
	5.2.6	Mardi 9 avril 2019					
	5.2.7	Mercredi 10 avril 2019					
	5.2.8	Jeudi 11 avril 2019					
	5.2.9	Vendredi 12 avril 2019					
	5.2.10	Samedi 13 avril 2019					
	5.2.11	Dimanche 14 avril 2019					
	5.2.12	Lundi 15 avril 2019					
	5.2.13	Mardi 16 avril 2019					
	5.2.14	Mercredi 17 avril 2019					
	5.2.15	Jeudi 18 avril 2019					
	5.2.16	Vendredi 19 avril 2019					
	5.2.17	Samedi 20 avril 2019					
	5.2.18	Dimanche 21 avril 2019					
	5.2.19	Lundi 22 avril 2019					
	5.2.20	Mardi 23 avril 2019					
	5.2.21	Mercredi 24 avril 2019					
	5.2.22	Jeudi 25 avril 2019					
	5.3 CAS	SSISED-2019-3, du 25 au 29 août 2019, N/O L'Europe					
	5.3.1	Dimanche 25 août 2019					
	5.3.2	Lundi 26 août 2019					
	5.3.3	Mardi 27 août 2019					
	5.3.4	Mercredi 28 août 2019					
	5.3.5	Jeudi 29 août 2019					
	5.4 CAS	SSISED-2019-4, du 30 août au 1er septembre 2019, N/O Téthys II					
	5.4.1	Vendredi 30 août 2019					
	5.4.2	Samedi 31 août 2019					
	5.4.3	Dimanche 1er septembre 2019					
6	Résulta	ts préliminaires					
	6.1 Mo	rphologie et nature des fonds					
	6.2 Col	onne d'eau					
	6.3 Ob	servations sur le fond					
7	7 Liste des références bibliographiques 103						
Fic	Fiches de mise à l'eau des lignes de mouillages Aniitra et PeerGynt106						
Fic	he de mi	se à l'eau du mouillage Cage ADCP 300 kHz	110				
Fic	Fiches de mise à l'eau des Mastodons 114						

Ifremer

Graphes des données cinématiques des carottages Kullenberg12	20
Profils sondeur de sédiment (SDS) Echoes 5000 acquis avec l'AUV 12	24

Liste des figures

Figure 1 : Localisation du canyon de Cassidaigne dans le Golfe du Lion (Méditerranée Occidentale). 12
Figure 2 : Morphologie du canyon de Cassidaigne dans le Golfe du Lion (Méditerranée Occidentale)12
Figure 3 : Couloirs d'érosion associés à l'écoulement des boues rouges au débouché de l'exutoire (données bathymétriques résolution de 10 m)13
Figure 4 : Teneur en Titane des sédiments de surface montrant l'écoulement des effluents depuis l'exutoire, le long du canyon de Cassidaigne et la diffusion vers l'ouest sur la pente continentale (Dauvin, 2003)
Figure 5 : Configuration des lignes de mouillage Aniitra et PeerGynt17
Figure 6 : Localisation des mouillages Aniitra, PeerGynt et Cage ADCP300 kHz18
Figure 7 : Préparation des mouillage sur la plage arrière du N/O L'Europe, à quai le jour de la mobilisation du leg CASSISED-2019-1
Figure 8 : (haut) bouée de flottabilité PeerGynt contenant également l'ADCP 300 kHz ; (bas) chassis et flottabilité Aniitra contenant l'ADCP 75 kHz (à droite, le piège à particules)
Figure 9 : (gauche) piège à particules ; (droite) largueur utilisé pour le déploiement des lignes de mouillage et positionné au dessus de la flottabilité
Figure 10 : mise à l'eau de la cage Aniitra 21
Figure 11 : (haut-gauche) cage antichalutage sur la plage arrière, le couvercle jaune sur le sommet protège l'ADCP ; (haut-droite) balise de largage ; (bas) mise à l'eau de la cage antichalutage 24
Figure 12 : Vues des lignes Mastodon. (gauche) ligne conditionnée et prête au déploiement ; (milieu) lest et cône après récupération ; (droite) thermistance enveloppée dans une protection avec indication du numéro
Figure 13 : Localisation des sites de déploiement des lignes Mastodon (étoiles). Les lignes noires indiquent la trajectoire suivie par le navire pendant le déploiement. A droite, représentation schématique d'un mouillage Mastodon
Figure 14 : Cartes bathymétriques détaillées des sites de déploiement des lignes Mastodon
Figure 15 : Châssis CTD et bouteilles Niskin sur la plage arrière de L'Europe
Figure 16 : Carte de localisation des profils CTD réalisés. Jaune : SBE25 avec prélèvements d'eau ; XR- 620 avec carottier multi-tube Fantacore
Figure 17 : Profils CTD sur le site du mouillage ADCP 300 kHz CSD-CAGE01
Figure 18 : Profils CTD en proximité aval de l'émissaire de boues rouges
Figure 19 : Profils CTD sur le site du mouillage Aniitra CSD-ANT01
Figure 20 : Profils CTD sur le site du mouillage PeerGynt CSD-PGT02
Figure 21 : Profils CTD sur le site du mouillage PeerGynt CSD-PGT01

Figure 22 : Profils CTD réalisés simultanément aux carottages Fantacore ; (gauche) CSD-CTD-MTB01, (droite) CSD-CTD-MTB02
Figure 23 : Profils CTD réalisés simultanément aux carottages Fantacore ; (gauche) CSD-CTD-MTB03, (droite) CSD-CTD-MTB04
Figure 24 : Séquence de mise à l'eau de l'AUV avec le système de déploiement CALISTE à partir de la plage arrière de L'Europe. Haut : ensemble CALIXTE+AUV sur la plage arrière, milieu : débordement de l'ensemble avec le portique arrière, bas : libération de l'AUV du CALISTE 35
Figure 26 : Levés AUV, emprise des levés multi-faisceaux EM2040 et navigation des plongées sondeur de sédiment ECHOES 5000
Figure 27 : QCsubop, aperçu des fenêtre de traitement du logiciel QCsubop. (haut) liste des fichiers bruts, des fichiers « reports » générés et liste des concaténation des fichiers brut fragmentés. (bas, gauche) figure issue du contrôle qualité (QCSubopV5.1) d'un fichier brut. Les paramètres d'acquisition, le positionnement, le délai d'enregistrement, la cadence de tir et les variations des corrections statiques (pilonnement) sont contrôlés. Cette figure ne montre aucun défaut d'acquisition. (bas, droite) figure issue du contrôle qualité (QCSubopV5.1) d'un fichier brut. La figure du haut montre les changements de délai liés aux variations de bathymétrie. La fenêtre Max Signal indique l'amplitude maximale par tir (vérification de la non saturation) ; la figure Raw Noise indique le niveau de bruit moyen calculé dans la colonne d'eau sur les données brutes (entre les deux courbes rouges) ; la figure Signal / Noise indique le rapport S/B de la trace traitée et la figure du bas donne une estimation du coefficient de réflexion fond de l'eau. Les résultats de ces trois dernières figures dépendent du pointé automatique du fond de l'eau réalisé par le logiciel
Figure 28 : traitement QC_Subop V5.1, visualisation des données SDS après traitement. Niveau 100 %, émission 1800-6200 Hz sur une durée de 30 ms). (Haut) visualisation dans la fenêtre du logiciel ; (bas) export fait à partir du logiciel
Figure 29 : Différence entre navigation brute et traitée sur un profil
Figure 30 : Localisation et numéro des profils sondeur de sédiments. La liste des fichiers SEGY et des profils, les images des profils sondeur de sédiment et les cartes de localisation détaillées sont en annexe
Figure 31 : Localisation des profils de levé bathymétrique effectivement réalisés lors des trois plongées AUV de la mission CASSISED
Figure 32 : Ecart type bathymétrique et profil bathymétrique en vis-à-vis illustrant le phénomène de mauvais positionnement des sondes
Figure 33 : Zoom sur un artefact particulier : on voit clairement l'incohérence spatiale des sondes, et l'espacement inter-ping qui augmente avant ce phénomène. Dans le cas de ce dernier exemple, en analysant l'attitude de l'AUV aux instants correspondant aux sondes affectées, on s'aperçoit que le tangage atteint des valeurs proches de 40°
Figure 34 : Distance longitudinale et tangage du porteur correspondant aux sondes aberrantes : les valeurs atteignent 40° de tangage, ce qui qui positionne les sondes longitudinalement 50m en avant de l'AUV

Figure 35 : Présence de sondes aberrantes au même endroit sur la pente, lors de deux profils, de face comme de dos à la pente
Figure 36 : Illustration des causes des artefacts observés. L'AUV se retrouve en position cabré (tangage > 40°) dans une position où le dépointage effectué par la compensation en tangage est impossible
Figure 37 : Dates aberrantes des profils de célérité utilisées lors de l'acquisition temps réel
Figure 38 : Sondes provenant des deux profils de calibration de la plongée 249 avant (orange et cyan) et après (vert et fuchsia) correction du biais de roulis
Figure 39 : MNT des données brutes en sortie de plongée (navigation brute)
Figure 40 : MNT des données traitées, incluant la navigation recalée
Figure 41 : Bathymétrie brute, navigation temps réel55
Figure 42 : Bathymétrie traitées, navigation DelphINS55
Figure 43 : Bathymétrie traitées, navigation DelphINS recalée
Figure 44 : Mosaïque de réflectivité acoustique brute, issue de GLOBE56
Figure 44 : Détermination du diagramme de directivité d'antenne de l'EM2040 de l'AUV, pour compensation des données
Figure 46 : Segmentation du BS en 3 classes, par pas de 5°. En haut, décomposition en distribution gaussienne de valeurs de BS par classes d'angle d'incidence. En bas à gauche, construction des courbes des BS pour chacune des classe en fonction de l'angle d'incidence. En bas à droite, mosaïque des données de BS semgentées
Figure 47 : Segmentation 4 classes
Figure 48 : segmentation en 5 classes58
Figure 49 : Segmentation par classe de 1°, 3 classes de nature de fond
Figure 50 : Segmentation par classe de 1°, 4 classes de nature de fond
Figure 51 : Segmentation par classe de 1°, 5 classes de nature de fond
Figure 51 : (haut) Schéma de la configuration du carottier à piston Kullenberg. Les étoiles jaunes indiquent la position des instruments (profondimètres, accéléromètres) destinés à mesure la cinématique du carottage ; (bas) signification des données et courbes obtenues avec les instruments cinématiques
Figure 52 : Localisation des carottes Kullenbergs dans la tête du canyon de Cassidaigne
Figure 53 : (haut) Illustrations du carottier multi-tube Fantacore, (bas) protocole du fonctionnement du carottier et du déclenchement acoustique
Figure 54 : Carte de localisation des carottes multi-tube65
Figure 55 : Cartes de localisation du carottier Fantacore perdu74

- Figure 60 : Morphologie du fond du canyon (profondeur 1525 m). Le chenal incisé et les chenaux de drainages adjacents sont interprétés comme fossiles et hérités du dernier bas niveau marin...99

Liste des tableaux

Tableau 1 : Liste des mouillages Cage ADCP300 kHz, Aniitra et PeerGynt déployés 17
Tableau 2 : Flacons du piège à particules CSD-ANT01 (Aniitra) – altitude 30 m
Tableau 3 : Flacons du piège à particules CSD-PGT01 (PeerGynt) – altitude 30 m
Tableau 4 : Flacons du piège à particules CSD-PGT02 (PeerGynt) – altitude 30 m
Tableau 5 : Répartition des thermistances sur les lignes mastodon
Tableau 6 : Liste des lignes Mastodon déployées
Tableau 7 : Liste des CTD réalisées
Tableau 8 : Paramètres du contrôle qualité obtenus après analyse des fichier SDS segy dans QCsubop
Tableau 9 : Correspondance entre le nom des fichier SDS SEGY brut fournis par Genavir et les fichiers renommés
Tableau 10 : Liste des fichiers SEGY et Navigation après découpe en profils
Tableau 11 : Caractéristiques du sondeur multi-faisceaux EM2040 47
Tableau 12 : Liste et caractéristiques des opération de carottage à piston Kullenberg
Tableau 13 : Localisation des carottes Kullenberg 61
Tableau 14 : Liste des carottes multi-tube 66
Tableau 15 : Liste et caractéristiques des opérations de carottage multi-tube Fantacore
Tableau 16 : Liste et caractéristiques des opérations de carottage multi-tube Fantacore
Tableau 17 : Images du fond lors des opérations de carottage multi-tube Fantacore 73

1 Introduction

Les processus de transports, de dépôt et de remobilisation des sédiments sur les marges continentales à l'échelle saisonnière et événementielle restent peu connus. Cela constitue un maillon important et peu exploré dans la compréhension et l'interprétation des enregistrements géologiques. Dans ce contexte, les canyons sont des structures morpho-sédimentaires des marges continentales qui jouent un rôle clef dans les transferts sédimentaires terre-mer et dans la construction des marges car ils chenalisent les sédiments, souvent sous la forme de courants de densités chargés et montrent de fortes interactions avec l'hydrodynamisme (marée, ondes internes, upwelling, convection, cascading, courants de pente). Les sédiments ainsi exportés qui transitent puis sortent des canyons sous-marins sont naturellement interceptés par des courants géostrophiques dans une interaction hydro-sédimentaire peu connue et rarement étudiée.

Dans le Golfe du Lion (Méditerrannée Occidentale), le transport sédimentaire sur le plateau et dans les canyons est fortement contrôlé par la circulation océanique cyclonique (courant liguroprovencal), les tempêtes de SE (downwelling) et de N-NW (cascading d'eaux denses, convection profonde et upwelling) (Marshall and Schott, 1999 ; Millot, 1999 ; Palanques et al., 2006 ; Schaeffer et al., 2011 ; Ulses et al., 2008). Le sédiment, majoritairement apporté par les tempêtes et crues hivernales du Rhône, est exporté dans les canyons par downwelling et le cascading d'eaux denses avec un gradient positif vers l'ouest et un transfert maximal dans le canyon Cap de Creus, le plus à l'ouest (Palanques et al., 2006; Palanques et al., 2009).

Le canyon de Cassidaigne, situé à l'est du Golfe du Lion à seulement 6 km au large de Cassis (Figure 1 ; Figure 2), est le siège des upwellings les plus intenses du Golfe du Lion, associés au Mistral, durant lesquels les eaux profondes remontent le long du canyon jusqu'au plateau continental (Albérola and Millot, 2003). Inversement, pendant les périodes de downwelling, les courants de fond peuvent transporter d'importantes quantités de sédiment à grande profondeur (Fabri et al., 2017). Des phénomènes induits comme des courant oscillatoires liés à la chenalisation dans le canyon (Millot, 1990) ou à des ondes internes à l'interface de l'Eau Levantine peuvent également favoriser la remise en suspension et le transport sédimentaire (Fabri et al., 2017).

Le canyon présente également la particularité d'avoir été l'exutoire des rejets solides appelés « boue rouges » produits par l'industrie de l'Aluminium depuis le printemps 1967 jusqu'en en décembre 2015, actuellement remplacés par des rejets liquides (dérogation pour 6 années). L'exutoire se situe à 320 m de profondeur, dans la tête du canyon (Dauvin, 2010). Depuis cette époque, les boues rouges s'écoulent dans le canyon jusqu'à la plaine abyssale (Bourcier, 1969; Dauvin, 2003; Dauvin, 2010; Fontanier et al., 2015). Un sillon érosif de 5 m de profondeur dans la prolongation de l'exutoire est visible sur la bathymétrie multifaisceaux, au pas de 10 m (Figure 3), et démontre que les rejets on une empreinte morphologique marquée sur le fond de mer. Ces boues, de forte densité, sont potentiellement très mobiles et peuvent être remises en suspension par des courant de 20-40 cm.s⁻¹ (Albérola and Millot, 2003). Ainsi, les cartes de concentration en Titane des sédiments de surface (Dauvin, 2003 ; Fontanier et al., 2015) montrent que les effluents se dispersent suivant 3 axes, le long du canyon de Cassidaigne jusqu'à pied de pente à 2300 m, et vers l'est, jusque dans les canyons adjacents de Planier et de Marseille, à mi-pente et au pied de pente (Figure 4). Une remobilisation et un déplacement vers les faibles profondeur, sur le plateau et dans la baie de Cassis par les plus forts courants d'échelle moyenne est également possible (Albérola and Millot, 2003).

Le canyon de Cassidaigne offre ainsi une conjonction unique entre des phénomènes hydrosédimentaires importants et un stock sédimentaire artificiel « idéalement tracé » durant presque 50

ans, dont on connaît avec précision la localisation, la nature et la quantité, au delà de tout système naturel envisageable et pouvant servir de marqueur. Cela représente une opportunité de mener une expérimentation physique à des échelles temporelles et spatiales naturelles et ainsi de mieux comprendre les processus et les dépôts gravitaires et hydro-sédimentaires sur les marges continentales et dans les canyons.

Figure 1 : Localisation du canyon de Cassidaigne dans le Golfe du Lion (Méditerranée Occidentale)

Figure 2 : Morphologie du canyon de Cassidaigne dans le Golfe du Lion (Méditerranée Occidentale)

Figure 3 : Couloirs d'érosion associés à l'écoulement des boues rouges au débouché de l'exutoire (données bathymétriques résolution de 10 m)

Figure 4 : Teneur en Titane des sédiments de surface montrant l'écoulement des effluents depuis l'exutoire, le long du canyon de Cassidaigne et la diffusion vers l'ouest sur la pente continentale (Dauvin, 2003).

2 Objectifs scientifiques

L'objectif principal de la campagne était de caractériser et quantifier le transfert particulaire du canyon de Cassidaigne vers les zones adjacentes en utilisant les boues rouges comme traceurs. Il s'agissait d'évaluer l'importance de la modulation induite par les courants de fond (Courant Liguro-Provençal) et les mouvements d'upwelling. Le rôle de possibles instabilités gravitaires dans l'écoulement des boues sera également évalué. Une meilleure compréhension de ces interactions contribuera à une meilleure compréhension d'objets sédimentaires majeurs, que sont les chenaux-levées turbiditiques, les lobes terminaux, les contourites, et qui sont d'un intérêt majeur en termes écosystémique, environnemental, climatique et des ressources associées.

De nombreuses études menées par le comité de suivi du rejet des effluents offrent un aperçu de la répartition en surface des boues rouges (Figure 4). Néanmoins, il existe très peu d'information sur la répartition « 3D » du stock rejeté car l'épaisseur des dépôts ainsi que leur intégration dans les sédiments marins par la bioturbation, les phénomènes hydro-dynamiques et des instabilités gravitaires n'est pas connue.

L'évaluation quantitative (étendue, épaisseur, structure) de la distribution des sédiments rejetés les 50 dernières années sera menée par des levés bathymétriques et sondeur de sédiment près du fond par AUV et par du carottage multitube et Kullenberg. La reconnaissance AUV multifaisceaux permettra d'identifier de possibles morphologies et structures sédimentaires associés à des déplacements de sédiment par instabilité ou hydrodynamisme telles que des rides de courant ou des escarpements. La reconnaissance AUV sondeur de sédiment du canyon pour identifier les dépôts de boue rouge, si leur épaisseur et caractéristiques physiques permettent de les identifier. Les prélèvements de sédiment par carottier multitube et par Kullenberg (partie amont) permettront d'identifier l'expression sédimentaire des boues rouges et de comprendre les processus de transport et de dépôt tels que le transport sur le fond (décantation, courants de turbidité, courants de fonds) ou encore l'enfouissement par la bioturbation. Les prélèvements permettront également de calibrer la cartographie obtenue par la reconnaissance géophysique.

Les boues rouges et des sédiments éventuellement mélangés seront analysés de sorte à établir leur comportement mécanique (minéralogie, rhéométrie, consolidation et vitesse de chute).

Les objectifs sont d'évaluer l'hydrodynamique dans le canyon et l'impact sur la remise en suspension et la dispersion des sédiments, particulièrement provenant des dépôts de boues rouges. Il s'agira particulièrement de mesurer, sur la partie haute du canyon (<300 m), les épisodes d'upwelling pendant les événements de Mistral, sur la partie intermédiaire (300-500 m) la possible expression d'ondes internes à l'interface de l'eau Levantine et sur la partie basse (1500-2000 m), des possibles courants de densités chargés en sédiments. Ces mesures obtenues, complétées par des mesures hydrologiques, permettront de compléter la base de données sur la zone, indispensable à la modélisation hydrodynamique (Mars3D ou CROCO) dans le canyon et pour évaluer la nécessité de prendre en compte les processus de fines échelles dans la modélisation (par exemple les effets non-hydrostatiques).

Un modèle numérique, Nixes-TC, simulant des courants de turbidité, sera utilisé pour discuter des chemins préférentiels des courants de gravité ayant été générés par le rejet particulaire, arrêté fin 2015 et pour évaluer les zones de dépôts. Ce modèle ne résout pas le dynamisme propre à la colonne

d'eau ; celui-ci est pris en compte comme un champ de courant ambiant, stationnaire mais non uniforme.

3 Organisation de la mission

La mission s'est déroulée en 4 legs pour des raisons de logistique liées au déploiement et à la récupération des mouillages et à la disponibilité des outils et des équipes techniques Génavir.

- Le leg 1 s'est déroulé du 04 mars au 07 mars 2019 sur le N/O L'Europe. Il a permis de déployer 1 ligne mouillage Aniitra, 2 lignes de mouillage PeerGynt, 1 cage ADCP 300 kHz et 4 CTD et prélèvements de la colonne d'eau
 - Participants (scientifiques) :

Bernard Dennielou (IFREMER/REM/GM/LGS) : chef de mission Ricardo Silva Jacinto (IFREMER/REM/GM/LGS) : mouillages, bathysonde Ronan Apprioual (IFREMER/REM/GM/CTDI) : mouillages Mickael Roudaut (IFREMER/REM/GM/CTDI) : mouillages Michel Hamon (IFREMER/ODE/LOPS/TOIS : (bathysonde) Rosalie Fuchs (IFREMER/ODE/LERPAC (mouillage cage ADCP)

Participants (sédentaires Génavir) Loïc Bonnet (DSM/SOE) : positionnement BUC

 Le leg 2 s'est déroulé du 04 avril au 24 avril 2019 sur le N/O L'Europe. Il a permis de réaliser des levés sondeur de sédiment et sondeur multi-faisceaux avec les AUV AsterX et IdefiX, de déployer 4 mouillages Mastodon, de prélever 3 carottes Kullenberg (carottier à piston) et des carottes multi-tube sur 3 sites

Participants (scientifiques) :

Bernard Dennielou (IFREMER/REM/GM/LGS) : chef de mission Ricardo Silva Jacinto (IFREMER/REM/GM/LGS) : carottages, mouillages Arnaud Gaillaud (IFREMER/REM/GM/CTDI) : traitement bathymétrie

Participants (sédentaires Génavir)

Xavier Saint-Laurent (DSM/SOE) : AUV Wandy Kulik (DSM/SOE) : AUV Rémi Suda (DSM/SOE) : AUV Guillaume De Parseval (DSM/SOE) : positionnement Gaps Yvan Réaud (DEC-SEEM) : carottage Yohann Kergoat (DEC-SEEM) : carottage

- Le leg 3 s'est déroulé du 25 août au 29 août 2019 sur le N/O L'Europe. Il a permis de récupérer les mouillages et de déployer 5 CTD et prélèvement dans la colonne d'eau

Participants (scientifiques) :

Bernard Dennielou (IFREMER/REM/GM/LGS) : chef de mission Ricardo Silva Jacinto (IFREMER/REM/GM/LGS) : bathysonde, mouillages Mickael Roudaut (IFREMER/REM/GM/CTDI) : mouillages

Pierre Guyavarch (IFREMER/REM/GM/CTDI) : mouillages Florian Pohl (Universiteit Utrecht) : bathysonde

- Le leg 4 s'est déroulé du 30 août au 01 septembre 2019 sur le N/O Téthys II. Il a permis de prélever des carottes multi-tube sur 9 sites

Participants (scientifiques) :

Bernard Dennielou (IFREMER/REM/GM/LGS) : chef de mission Mickael Roudaut (IFREMER/REM/GM/CTDI) : carottages Florian Pohl (Universiteit Utrecht) : bathysonde

Des informations sur les différents legs sont accessibles sur les pages de la Flotte Océanographique Française (https://campagnes.flotteoceanographique.fr/). Les legs y sont groupés en deux campagnes auxquelles sont attribués un DOI :

Cassised 2019 - 1-3 : https://doi.org/10.17600/18000904

Cassised 2019 - 4 : <u>https://doi.org/10.17600/18001262</u>

4 Outils et travaux réalisés

4.1 Mouillages, instrumentation de la colonne d'eau

4.1.1 Lignes de mouillage Aniitra et PeerGynt

La ligne de mouillage Aniitra (Figure 5) est composée, du haut vers le bas d'un ADCP 75 kHz (300 m d'altitude) (Figure 7 ; Figure 10) d'un piège à particules 24 bouteilles (30 m d'altitude) (Figure 8), d'un largueur acoustique (10 m d'altitude) (Figure 9). Rotation du piège à particule tout les 7 jours (Tableau 2).

Les lignes de mouillage PeerGynt (Figure 5) sont composées du haut vers le bas, d'un ADCP 300 kHz (100 m d'altitude) (Figure 8), d'un piège à particules 24 bouteilles et d'un turbidimètre STBD 6000 (30 m d'altitude), d'un largueur acoustique (10 m d'altitude). Rotation du piège à particule (Figure 9) . Rotation du piège à particule tout les 7 jours (Tableau 3 ; Tableau 4).

Le mouillage Aniitra CSD-ANTO1 a été déployé dans le chenal profond à 1906 m de profondeur ; le mouillage PeerGynt CSD-PGTO2 a été déployé au débouché de la partie du canyon qui incise le plateau continental à une profondeur de 1628 m ; le mouillage PeerGynt-CSD-PGTO1 a été déployé dans le haut de la tête du canyon à une profondeur de 422 m (Figure 6 ; Tableau 1).

Figure 5 : Configuration des lignes de mouillage Aniitra et PeerGynt

Mouillage	Latitude	Longitude	Profondeur	Date, heure de déploiement	Date, heure de récupération, commentaire	
Aniitra CSD-ANT01	N42°56,1653	E005°25,5704	1906 m	5 mars 2019 ; 8H18 TU	27 août 2019 ; 12H24 TU	
PeerGynt CSD-PGT01	N43°08,2367	E005°30,7570	422 m	5 mars 2019 ; 10H19 TU	26 août 2019 ; 11H36 TU	
PeerGynt CSD-PGT02	N43°01,3409	E005°25,3316	1628 m	5 mars 2019 ; 13H17 TU	27 août 2019 ; 7H17 TU	
Cage ADCP 300 kHz CSD-CAGE01	N43°08,7780	E005°32,2440	86 m	4 mars 2019 ; 17H33 TU	Echec, pas de réponse à l'interrogation	

Tableau 1 : Liste des mouillages Cage ADCP300 kHz, Aniitra et PeerGynt déployés

Figure 6 : Localisation des mouillages Aniitra, PeerGynt et Cage ADCP300 kHz

Figure 7 : Préparation des mouillage sur la plage arrière du N/O L'Europe, à quai le jour de la mobilisation du leg CASSISED-2019-1

Figure 8 : (haut) bouée de flottabilité PeerGynt contenant également l'ADCP 300 kHz ; (bas) chassis et flottabilité Aniitra contenant l'ADCP 75 kHz (à droite, le piège à particules)

Figure 9 : (gauche) piège à particules ; (droite) largueur utilisé pour le déploiement des lignes de mouillage et positionné au dessus de la flottabilité

Figure 10 : mise à l'eau de la cage Aniitra

Tableau 2 : Flacons du piège à particules CSD-ANT01 (Aniitra) – altitude 30 m

Tableau 3 : Flacons du piège à particules CSD-PGT01 (PeerGynt) – altitude 30 m

Tableau 4 : Flacons du piège à particules CSD-PGT02 (PeerGynt) – altitude 30 m

4.1.2 ADCP 300 kHz + cage antichalutage

Caractéristiques techniques de la cage (Figure 11)

- Trawl resistant Mount, Model AL-200.
- Dimensions de la cage : 1910 x 1910 x 770mm Emprise au sol : 3,6m2
- Poids dans l'air : 580 kg
- Flotteur de 60 litres relié à un treuil qui permet la récupération de la cage

Équipement scientifique dans la cage :

- ADCP Workhorse Teledyne-RDI 300kHz (mesure et enregistrement des profils de courant et de température). Les mesures ne sont pas transmises en temps réel, elles sont enregistrées sur une carte mémoire de l'ADCP, et récupérables uniquement lors de la sortie de la partie flottante où l'ADCP est fixé. Un pack batterie supplémentaire est possible pour plus d'autonomie.
- Système de largage acoustique par largueur Benthos Teledyne (modèle 867).

La cage a été déployée à une profondeur de 86 m sur le rebord du plateau sur le bord NW de la tête du canyon (Figure 6 ; Tableau 1)

La cage ADCP 300 kHz n'a pas été récupérée car elle est restée muette lors de l'interrogation. Le problème peut venir du fait que l'interrogation ne s'est pas faite avec une valise de télécommande du même fournisseur que le largueur (Benthos). La valise Edgtech avait été programmée avec les paramètres suivants :

Fréquence de transmission et de réception :

Rx: 10.0 Hz Tx: 12.0 Hz

Repeat rates

Ena: B = 110.9 Hz Rel: D = 100.0 Hz

Le mouillage a été finalement récupéré le 18 novembre 2019 par le navire Antédon II (campagne ROMARIN, chef de mission Christian GRENZ :

10H45 (TU + 1) : arrivée sur zone

10H53 (TU + 1) : envoi du code "enable" au largeur sans réponse, 3 fois de suite envoi du code de largage, réponse du largueur. Le flotteur apparait à la surface quelques minutes après. Récupération du flotteur puis de la cage sans difficultés particulières.

Récupération du matériel par Christophe Ravel (IFREMER, LERPAC)

Figure 11 : (haut-gauche) cage antichalutage sur la plage arrière, le couvercle jaune sur le sommet protège l'ADCP ; (hautdroite) balise de largage ; (bas) mise à l'eau de la cage antichalutage.

4.1.3 Lignes de thermistances Mastodons

Le système MASTODON consiste en une ligne de 3 mm de diamètre le long de laquelle sont attachés à intervalles régulier des thermistances autonomes (Tableau 5). La base la ligne est lestée (cône de chantier lesté) au sommet de la ligne est attaché une bouée de flottabilité (Figure 12). Le déploiement se fait par simple lâcher depuis la plage arrière du navire. La longueur de la ligne est adaptée à la profondeur d'eau et de manière à ce que la bouée se situe à 10 m sous la surface. Pour la récupération, le largage (*burn wire*) est programmé et libère 50 m de ligne supplémentaire qui

permet à la bouée de remonter à la surface. Le largage était programmé **26/08/19 à 7h00 TU**, pour une arrivée attendue en surface à **9h00 TU**, le temps de brûlage des burnwires étant d'environ 2 heures.

La localisation du déploiement des lignes Mastodon correspond à celle des déploiements réalisés pendant les campagne UPCAST 2017 (Pairaud, 2017) pour les mastodons BDE et Turbident 2018 (Pairaud et al., 2018) pour les mastodons BCD (Figure 13 ; Figure 14 ; Tableau 6).

Pour cibler les sites de mouillage le déploiement des lignes a été réalisé à 1 nœud le long a atteindre Le déploiement des lignes a été réalisé le long d'une trajectoire rectiligne orientée afin de s'assurer que la mise à l'eau du lest se situe à la profondeur d'eau désirée.

Figure 12 : Vues des lignes Mastodon. (gauche) ligne conditionnée et prête au déploiement ; (milieu) lest et cône après récupération ; (droite) thermistance enveloppée dans une protection avec indication du numéro.

	Mastodon B	Mastodon C	Mastodon D	Mastodon E
Profondeur d'eau	125 m	100 m	190 m	180 m
Bouée (altitude)	115 m	90 m	180 m	170 m
Thermistance (altitude)	105 m	80 m	170 m	160 m
Thermistance (altitude)	90 m	70 m	150 m	145 m
Thermistance (altitude)	75 m	60 m	125 m	120 m
Thermistance (altitude)	60 m	50 m	100 m	95 m
Thermistance (altitude)	45 m	40 m	75 m	70 m
Thermistance (altitude)	30 m	30 m	50 m	45 m
Thermistance (altitude)	20 m	20 m	25 m	25 m
Thermistance (altitude)	10 m	10 m	10 m	10 m
Lest	0 m	0 m	0 m	0 m

Tableau 5 : Répartition des thermistances sur les lignes mastodon

Mouillage	Latitude	Longitude	Profondeur	Date, heure de déploiement	Date, heure de récupération, commentaire
Mastodon B	N 43° 6,20518'	E 5° 26,85731'	123 m	7 avril 2019 ; 9H27 TU	Échec (non-remonté ou perdu
Mastodon C	N 43° 2,46847'	E 5° 38,86324'	99 m	7 avril 2019 ; 7H38 TU	28 août 2019 ; 5H10 TU Ligne rompue, seulement 5 thermistances récupérées
Mastodon D	N 43° 7,38744'	E 5° 30,30721'	188 m	7 avril 2019 ; 8H52 TU	Échec (non-remonté ou perdu)
Mastodon E	N43° 8,48397'	E 5° 26,75005'	180 m	7 avril 2019 ; 9H55 TU	Échec (non-remonté ou perdu)

Tableau 6 : Liste des lignes Mastodon déployées

Figure 13 : Localisation des sites de déploiement des lignes Mastodon (étoiles). Les lignes noires indiquent la trajectoire suivie par le navire pendant le déploiement. A droite, représentation schématique d'un mouillage Mastodon.

Figure 14 : Cartes bathymétriques détaillées des sites de déploiement des lignes Mastodon

Sur les quatre lignes Mastodon, une seule, Mastodon C, a été récupérée et seulement partiellement (5 thermistances) à cause d'une rupture de la ligne lors de la mise à bord. Nous savons qu'une ligne était déjà remontée dès le mois d'avril car une bouée a été retrouvée sur une plage du Golfe du Lion. Malheureusement les bouées n'étaient pas identifiées par et nous ne savons pas quelle ligne est perdue. Les deux autres lignes n'ont pas été retrouvées lors du rendez-vous programmé le 26 août 2019 matin vers 9H TU.

4.1.4 CTD (Conductivity, Temperature, Depth) et prélèvements d'eau

Le châssis utilisé a été fournie par l'UMR LOPS (Laboratoire d'Océanographie Physique et Spatiale) est équipé d'une CTD SBE25 et de 8 bouteilles Niskin (Figure 15). La calibration de la CTD a été réalisée avant la campagne. La CTD a été mise en œuvre par Michel Hamon et Ricardo Silva Jacinto (Cassised 1-3 leg 1) puis par Ricardo Silva Jacinto (Cassised 1-3 leg 3) et Florian Pohl (Cassised 4). Il était prévu de la déployer également pendant Cassised 1-3 leg 2 mais les mauvaises conditions météo n'ont pas permis d'appareiller. Le positionnement est celui du navire au moment de la mise à l'eau de la CTD. L'acquisition des profils CTD a été réalisé lors de la descente et de la remontée, les

prélèvements d'eau on été réalisés pendant la remontée en démarrant à 5 m du fond. L'altitude était déterminée à partir de l'altimètre Valport qui détecte le fond à partir de 100 m. Les prélèvements d'eau et ont été positionnés sur des altitudes par rapport au fond de mer, variables en fonction du site (Tableau 7 ; Figure 16). Les courbes acquises sont présentées (Figure 17 ; Figure 18 ; Figure 18 ; Figure 19 ; Figure 20 ; Figure 21 ; Figure 22 ; Figure 23)

Figure 15 : Châssis CTD et bouteilles Niskin sur la plage arrière de L'Europe

Sites	Nom CTD	Date	Latitude	Longitude	Profondeur	Prélèvements d'eau
Mouillage	CSD-CTD04	6 mars 2019	N 43° 8,66649'	E 5° 32,00992'	89 m	Altitude : 5, 10, 20, 50 m
CSD-CAGE01	CSD-CTD06	26 août 2019	N 43° 8,6999'	E 5° 32,00498'	90 m	Altitude : 20, 37 m
Proximité, aval émissaire	CSD-CTD03	6 mars 2019	N 43° 7,97546'	E 5° 29,978'	531 m	Altitude : 5, 10, 20, 30, 50 m Immersion : 400 m
de boues rouges	CSD-CTD08	28 août 2019	N 43° 7,97601'	E 5° 29,99647'	540 m	Altitude : 5, 31 m
Mouillage CSD-	CSD-CTD01	8 mars 2019	N 42° 56,23721'	E 5° 25,57329'	1910 m	Altitude : 5, 10, 20, 30 m Immersion : 1200, 400, 240, 100 m
ANT01	CSD-CTD09	28 août 2019	N 42° 56,1658'	E 5° 25,54484'	1912 m	Altitude : 5, 30 m
Mouillage	CSD-CTD02	5 mars 2019	N 43° 1,25781'	E 5° 25,37093'	1629 m	Altitude : 5, 10, 20, 30 m Immersion : 1200, 400, 236, 100 m
CSD-PGT-02	CSD-CTD07	27 août 2019	N 43° 1,26331'	E 5° 25,307'	1497 m	Altitude : 5, 30 m
Mouillage PeerGynt CSD-PGT01)	CSD-CTD05	26 août 2019	N 43° 8,23288'	E 5° 30,75546'	423 m	Altitude : 5, 30 m
Carotte CSD- MTB01	CSD-CTD- MTB01	17 août 2019	N 43° 7,87282'	E 5° 29,9089'	537 m	_
Carotte CSD- MTB02	CSD-CTD- MTB02	18 août 2019	N 43° 1,41206'	E 5° 25,30379'	1648 m	-
Site carotte	CSD-CTD- MTB03	18 août 2019	N 42° 24.3337'	E 5°27.3915'	1652 m	_
CSD-MTB04	CSD-CTD- MTB04	18 août 2019	N 42° 54.3263'	E 5°27.4220'	1659 m	_

Tableau 7 : Liste des CTD réalisées

Figure 16 : Carte de localisation des profils CTD réalisés. Jaune : SBE25 avec prélèvements d'eau ; XR-620 avec carottier multi-tube Fantacore

Figure 18 : Profils CTD en proximité aval de l'émissaire de boues rouges

Figure 20 : Profils CTD sur le site du mouillage PeerGynt CSD-PGT02

Figure 21 : Profils CTD sur le site du mouillage PeerGynt CSD-PGT01

Figure 22 : Profils CTD réalisés simultanément aux carottages Fantacore ; (gauche) CSD-CTD-MTB01, (droite) CSD-CTD-MTB02

Figure 23 : Profils CTD réalisés simultanément aux carottages Fantacore ; (gauche) CSD-CTD-MTB03, (droite) CSD-CTD-MTB04

4.2 AUV (Autonomous Underwater Vehicle)

Les AUV AsterX et IdefX (Figure 24) ont été déployés respectivement avec les charges utiles sondeur de sédiment (SDS) et multi-faisceaux EM2040. L'utilisation de 2 AUV a permis d'éviter un changement de charge utile et de limiter les manœuvres à un déchargement et chargement d'AUV.

Ces 2 AUV peuvent plonger jusqu'à une profondeur de 2850 m et naviguent à une vitesse d'environ 2 nœuds. L'acquisition des données SDS et EM2040 se fait à une altitude d'environ 70 m. Des détails techniques sont accessible sur la page web de la FOF (<u>https://www.flotteoceanographique.fr/La-Flotte/Systemes-sous-marins/asterX-et-idefX/Caracteristiques-detaillees</u>).

La navigation de l'AUV est réalisée par une station inertielle Phins embarquée. Le positionnement de l'AUV est de type USBL (Ultra-short-baseline). Les décalages de navigations étaient corrigés en communiquant avec l'AUV aux changements de profils. La navigation finale de l'AUV est déterminée en combinant les enregistrements USBL et PHIN.

Figure 24 : Séquence de mise à l'eau de l'AUV avec le système de déploiement CALISTE à partir de la plage arrière de L'Europe. Haut : ensemble CALIXTE+AUV sur la plage arrière, milieu : débordement de l'ensemble avec le portique arrière, bas : libération de l'AUV du CALISTE.

Figure 25 : Levés AUV, emprise des levés multi-faisceaux EM2040 et navigation des plongées sondeur de sédiment ECHOES 5000

Plongée AUV CASSISED-19-426-01: 17,5 km multi-faisceaux EM2040 Plongée AUV CASSISED-19-427-02: 34,6 km multi-faisceaux EM2040 Plongée AUV CASSISED-19-IX-249-01 : 31,2 km, SDS Echoes 5000 Plongée AUV CASSISED-19-IX-250-02 : 36,9 km, SDS Echoes 5000 Plongée AUV CASSISED-19-IX-251-03 : 6,9 km, SDS Echoes 5000

4.2.1 Données sondeur de sédiment

Le sondeur de sédiment installé sur AsterX est un sondeur Echoes 5000 Ixblue/Ifremer. Le signal émis est de type chirp avec une gamme de fréquence comprise entre 1,8 et 6,5 kHz. Le traitement des données a été réalisé avec le logiciel QC Subop qui permet de contrôler la qualité des enregistrements à bord, de visualiser les données en intégrant les changements de délais et d'exporter les données dans un format SEGY standardisé (Figure 26). Le logiciel permet également de visualiser et d'extraire les données sur des zones d'intérêt (découpe en profils p.e.) et de positionner des points d'intérêt (sites de carottage p.e.) avec l'affichage des coordonnées géographiques (Figure 27).

4.2.1.1 Séquence de contrôle qualité bord

Objectifs : contrôler les paramètres d'acquisition, le positionnement, le pilonnement, la qualité de suivi du fond de l'eau, la qualité du signal (Tableau 8) ; traiter les sections acquises et concaténer les fichiers.

1. Mise en œuvre du logiciel de contrôle qualité temps différé QC Subop version 5.1 (64 bits).

2. L'arborescence QC Subop du rejeu des données est créée automatiquement sur le disque.

- 3. Contrôle systématique des paramètres d'acquisition, des capteurs de servitude, des niveaux de bruit et de signal pour chaque fichier brut :
 - Traitements appliqués : édition du délai ; corrélation (compression du signal Chirp), correction de divergence sphérique, correction de roulis/tangage/pilonnement ; enregistrement des données traitées en phase (pas en enveloppe) ;
 - Collecte et sauvegarde des paramètres d'acquisition et des résultats d'analyse pour bancarisation :
 - Création automatique de trois figures au format pdf présentant les résultats de l'analyse pour chaque fichier SEGY ;
 - Création automatique du fichier SEGY traité dans le répertoire PROC_SBP ; ce fichier constitue le fichier de données validées au sens de la bancarisation IFREMER/GM ;
 - Création d'un fichier ASCII de positionnement associé : positions sourcerécepteur (degrés décimaux, WGS84) et d'une image du profil corrigé du délai (format pdf);
- 4. Concaténation automatique des fichiers et finalisation de la collecte des informations relatives au profil pour la bancarisation :
 - Création d'un fichier SEGY concaténé regroupant au maximum quatre fichiers SEGY traités (< 200 Mo);
 - Création d'un fichier ASCII de positionnement associé : positions CMP calculées et fournies par SUBOP ;

Création d'une image associée au format pdf ;

Figure 26 : QC Subop, aperçu des fenêtre de traitement du logiciel QC Subop. (haut) liste des fichiers bruts, des fichiers « reports » générés et liste des concaténation des fichiers brut fragmentés. (bas, gauche) figure issue du contrôle qualité (QCSubopV5.1) d'un fichier brut. Les paramètres d'acquisition, le positionnement, le délai d'enregistrement, la cadence de tir et les variations des corrections statiques (pilonnement) sont contrôlés. Cette figure ne montre aucun défaut d'acquisition. (bas, droite) figure issue du contrôle qualité (QCSubopV5.1) d'un fichier brut. La figure du haut montre les changements de délai liés aux variations de bathymétrie. La fenêtre Max Signal indique l'amplitude maximale par tir (vérification de la non saturation) ; la figure Raw Noise indique le niveau de bruit moyen calculé dans la colonne d'eau sur les données brutes (entre les deux courbes rouges) ; la figure Signal / Noise indique le rapport S/B de la trace traitée

et la figure du bas donne une estimation du coefficient de réflexion fond de l'eau. Les résultats de ces trois dernières figures dépendent du pointé automatique du fond de l'eau réalisé par le logiciel

Ibris	Configuration	First shot	Last shot	Total shots	Length	Sweep length	Output level	Bathy	Navigation : points aberrants	Mean shot interval ms	Mean shot interval m	Water Velocity (min-max)	Static correction (amulitude)	Mean signal amplitude	Mean raw noise	Mean S/N	Niveau de qualité	Mean SBR coef.
					(m)	(ms)	(%)	(m) min- max	(%)	(ms)	(m)	(m/s)		(V)	(mV)	(dB)	(0 à 3)	
CSD-SDS-AUV0001																		
CSD-SDS-AUV0001_D20190405_T053604		1	38	37	108	30	1		0	500	3	1500-1500	0,3	0,07	35	3	1	0,95
CSD-SDS-AUV0002				0	0													
CSD-SDS-AUV0002_D20190405_T092943		1	2589	2588	2587	30	100		0	801	1	1500-1500	3,41	0,48	69	15	3	0,06
CSD-SDS-AUV0002_D20190405_T100419		2590	4336	1746	1745	30	100		0	806	1	1500-1500	2,85	1,25	3017	7	2	0,03
CSD-SDS-AUV0003																		
CSD-SDS-AUV0003_D20190405_T112600		1	2589	2588	2587	30	100		0	805	1	1500-1500	4,14	0,55	61	13	3	0,08
CSD-SDS-AUV0003_D20190405_T120045		2590	5178	2588	2587	30	100		0	856	1	1500-1500	6,14	0,8	266	4	1	0,05
CSD-SDS-AUV0003_D20190405_T123742		5179	6271	1092	1091	30	100		0	864	1	1500-1500	4,74	0,09	95	5	1	0,01
CSD-SDS-AUV0004																		
CSD-SDS-AUV0004_D20190405_T133839		1	1179	1178	1177	30	100		0	804	1	1500-1500	2,47	1,63	261	12	3	0,06
CSD-SDS-AUV0006																		
CSD-SDS-AUV0006_D20190408_T064830		1	2589	2588	2587	30	100		0	801	1	1500-1500	4,1	0,4	34	15	3	0,07
CSD-SDS-AUV0006_D20190408_T072306		2590	5178	2588	2587	30	100		0	808	1	1500-1500	5,05	0,54	38	19	3	0,1
CSD-SDS-AUV0006_D20190408_T075757		5179	7767	2588	2587	30	100		0	810	1	1500-1500	6,3	0,65	56	20	3	0,12
CSD-SDS-AUV0006_D20190408_T083252		7768	7800	32	31	30	100		0	800	1	1500-1500	1,52	0,49	26	22	4	0,1
CSD-SDS-AUV0007																		
CSD-SDS-AUV0007_D20190408_T090539		1	2589	2588	2587	30	100		0	802	1	1500-1500	2,94	0,31	30	18	3	0,06
CSD-SDS-AUV0007_D20190408_T094017		2590	5178	2588	2587	30	100		0	802	1	1500-1500	3,82	0,31	27	16	3	0,05
CSD-SDS-AUV0007_D20190408_T101454		5179	7767	2588	2587	30	100		0	800	1	1500-1500	3,7	0,29	30	15	3	0,05
CSD-SDS-AUV0007_D20190408_T104926		7768	10356	2588	2587	30	100		0	802	1	1500-1500	3,31	0,24	33	14	3	0,05
CSD-SDS-AUV0007_D20190408_T112403		10357	12856	2499	2498	30	100		0	800	1	1500-1500	3,5	0,11	24	7	2	0,02
CSD-SDS-AUV0008																		
CSD-SDS-AUV0008_D20190408_T124351		1	2528	2527	2526	30	100		0	800	1	1500-1500	2,5	0,27	47	10	2	0,05

Tableau 8 : Paramètres du contrôle qualité obtenus après analyse des fichier SDS segy dans QC Subop

Figure 27 : traitement QC_Subop V5.1, visualisation des données SDS après traitement. Niveau 100 %, émission 1800-6200 Hz sur une durée de 30 ms). (Haut) visualisation dans la fenêtre du logiciel ; (bas) export fait à partir du logiciel.

4.2.1.2 Corrections de navigation

Objectifs : Intégrer la navigation traitée par le service Positionnement, Robotique, Acoustique et Optique (PRAO) dans les entêtes des fichiers SEGY.

La navigation de la plongée retraitée par le logiciel DelphINS par les équipes de Genavir/Toulon a été utilisée. Néanmoins, nous avons remarqué que la navigation retraitée de la plongée n°1

(AUV CASSISED-19-IX-249-01) une fois injectée dans les fichiers SEGY ne permettait pas de recaler la morphologie du fond vue par le sondeur de sédiment avec celle vue par les MNT existants. La comparaison des navigations brutes (PHINS) dont le calage avec la morphologie MNT était satisfaisant montre en fait un décalage temporel de 3 minutes avec la navigation recalée sur la navigation USBL (Ultra-short-baseline). Le problème semble venir d'une mauvaise synchronisation des horloges PHINS, USBL et Sondeur de sédiment. Ce problème a été pris en compte dans le traitement de la navigation de la plongée (Figure 28). A noter que la navigation PHINS enregistrée et utilisée pour la correction de navigation est incomplète pour les profils 1, 2 et 3a (Tableau 10). Pour ces profils c'est la navigation PHINS intégrée dans les fichiers SEGY dès l'acquisition qui a été conservée.

- 1. Mise en œuvre du logiciel de corrections de navigation AUV_Cornav.
- 2. Intégration d'un répertoire Nav_traitée à l'arborescence de QC Subop.

- 3. Contrôle de la présence d'un fichier de navigation traitée dans le répertoire Nav_Traitée.
- 4. Contrôle de la présence de fichiers SEGY concaténés sous le répertoire PROC_SBP/CONCATENATION.

Figure 28 : Différence entre navigation brute et traitée sur un profil

5. Écriture de la navigation traitée dans les entêtes de fichiers SEGY et création d'un nouveau fichier de navigation au format ASCII.

4.2.1.3 Découpe des fichiers SEGY en profils

Les fichiers SEGY brut issus du sondeur de sédiment ont été renommés pour conserver des numéros incrémentés sur la durée de la mission et pas uniquement sur la durée de chaque plongée. La correspondance entre les noms originaux livrés par Genavir et les nouveaux noms est donnée dans le Tableau 9.

Après le traitement avec le logiciel QC Subop, les fichiers SEGY ont été redécoupés, avec ce même logiciel, en fichiers plus petits correspondant à une découpe en profils. La position des profils est montrée sur la Figure 29, la liste des fichiers SEGY et navigation par profil est donnée dans le Tableau 10.

Fichiers renommés	Taille	Date	Heure	Nom original sortie AUV
Journée du 5 avril 2019: Plongée AUV CASSISED-19	-IX-249-01	•		
CSD-SDS-AUV0001_D20190405_T053604.SEG	755 KB	05/04/2019	05:36:26	AUV0001_D20190405_T053604.SEG
CSD-SDS-AUV0002_D20190405_T092943.SEG	51187 KB	05/04/2019	10:04:20	AUV0002_D20190405_T092943.SEG
CSD-SDS-AUV0002_D20190405_T100419.SEG	34560 KB	05/04/2019	10:41:28	AUV0002_D20190405_T100419.SEG
CSD-SDS-AUV0003_D20190405_T112600.SEG	51187 KB	05/04/2019	12:00:46	AUV0001_D20190405_T112600.SEG
CSD-SDS-AUV0003_D20190405_T120045.SEG	51187 KB	05/04/2019	12:37:44	AUV0001_D20190405_T120045.SEG
CSD-SDS-AUV0003_D20190405_T123742.SEG	21612 KB	05/04/2019	12:53:28	AUV0001_D20190405_T123742.SEG
CSD-SDS-AUV0004_D20190405_T133839.SEG	23328 KB	05/04/2019	13:38:40	AUV0002_D20190405_T133839.SEG
Journée du 8 avril 2019: Plongée AUV CASSISED-19	-IX-250-02			
CSD-SDS-AUV0005_D20190408_T053024.SEG	538 KB	08/04/2019	05:30:40	AUV0001_D20190408_T053024.SEG
CSD-SDS-AUV0006_D20190408_T064830.SEG	51187 KB	08/04/2019	07:23:08	AUV0002_D20190408_T064830.SEG
CSD-SDS-AUV0006_D20190408_T072306.SEG	51187 KB	08/04/2019	07:57:58	AUV0002_D20190408_T072306.SEG
CSD-SDS-AUV0006_D20190408_T075757.SEG	51187 KB	08/04/2019	08:32:54	AUV0002_D20190408_T075757.SEG
CSD-SDS-AUV0006_D20190408_T083252.SEG	656 KB	08/04/2019	09:04:34	AUV0002_D20190408_T083252.SEG
CSD-SDS-AUV0007_D20190408_T090539.SEG	51187 KB	08/04/2019	09:40:18	AUV0003_D20190408_T090539.SEG
CSD-SDS-AUV0007_D20190408_T094017.SEG	51187 KB	08/04/2019	10:14:56	AUV0003_D20190408_T094017.SEG
CSD-SDS-AUV0007_D20190408_T101454.SEG	51187 KB	08/04/2019	10:49:28	AUV0003_D20190408_T101454.SEG
CSD-SDS-AUV0007_D20190408_T104926.SEG	51187 KB	08/04/2019	11:24:04	AUV0003_D20190408_T104926.SEG
CSD-SDS-AUV0007_D20190408_T112403.SEG	49428 KB	08/04/2019	12:42:46	AUV0003_D20190408_T112403.SEG
CSD-SDS-AUV0008_D20190408_T124351.SEG	49981 KB	08/04/2019	13:17:38	AUV0004_D20190408_T124351.SEG

Tableau 9 : Correspondance entre le nom des fichier SDS SEGY brut fournis par Genavir et les fichiers renommés

Fichiers SEGY découpés par profil	Taille	Fichiers navigation découpés par profil	Taille
Profil 1 CSD-SDS-AUV0002_00001_01381.seg	55573 KB	Profil 1 CSD-SDS-AUV0002_00001_01381.nav	181 KB
Profil 2 CSD-SDS-AUV0002_01381_02699.seg	49575 КВ	Profil 2 CSD-SDS-AUV0002_01381_02699.nav	173 KB
Profil 3a CSD-SDS-AUV0002_02773_02918.seg	4316 KB	Profil 3a CSD-SDS-AUV0002_02773_02918.nav	20 KB
Profil 3b CSD-SDS-AUV0003_00100_00550.seg	13994 КВ	Profil 3b CSD-SDS-AUV0003_00100_00550.nav	60 KB
Profil 4a CSD-SDS-AUV0003_00555_01311.seg	20765 КВ	Profil 4a CSD-SDS-AUV0003_00555_01311.nav	100 KB
Profil 4b CSD-SDS-AUV0003_01311_01645.seg	7386 KB	Profil 4b CSD-SDS-AUV0003_01311_01645.nav	44 KB
Profil 4c CSD-SDS-AUV0003_01645_01931.seg	7270 KB	Profil 4c CSD-SDS-AUV0003_01645_01931.nav	38 KB
Profil 5a CSD-SDS-AUV0003_01951_02254.seg	7771 KB	Profil 5a CSD-SDS-AUV0003_01951_02254.nav	40 KB
Profil 5b CSD-SDS-AUV0003_03220_03707.seg	17277 КВ	Profil 5b CSD-SDS-AUV0003_03220_03707.nav	64 KB
Profil 6 CSD-SDS-AUV0004_00001_00508.seg	17548 KB	Profil 6 CSD-SDS-AUV0004_00001_00508.nav	67 KB
Profil 7 CSD-SDS-AUV0004_00508_01172.seg	17827 KB	Profil 7 CSD-SDS-AUV0004_00508_01172.nav	88 KB
Profil 8 CSD-SDS-AUV0008_01423_02460.seg	28067 KB	Profil 8 CSD-SDS-AUV0008_01423_02460.nav	136 KB
Profil 9 CSD-SDS-AUV0008_00443_01397.seg	26419 KB	Profil 9 CSD-SDS-AUV0008_00443_01397.nav	126 KB
Profil 10a CSD-SDS-AUV0008_00001_00402.seg	9961 KB	Profil 10a CSD-SDS-AUV0008_00001_00402.nav	53 KB
Profil 10b CSD-SDS-AUV0007_12539_12852.seg	9891 KB	Profil 10b CSD-SDS-AUV0007_12539_12852.nav	42 KB
Profil 11a CSD-SDS-AUV0007_12414_12539.seg	3942 KB	Profil 11a CSD-SDS-AUV0007_12414_12539.nav	17 KB
Profil 11b CSD-SDS-AUV0007_11363_12414.seg	35677 KB	Profil 11b CSD-SDS-AUV0007_11363_12414.nav	138 KB
Profil 12a CSD-SDS-AUV0007_11242_11331.seg	2838 KB	Profil 12a CSD-SDS-AUV0007_11242_11331.nav	12 KB
Profil 12b CSD-SDS-AUV0007_10081_11242.seg	33053 KB	Profil 12b CSD-SDS-AUV0007_10081_11242.nav	153 KB
Profil 13 CSD-SDS-AUV0007_08807_09982.seg	46130 KB	Profil 13 CSD-SDS-AUV0007_08807_09982.nav	154 KB
Profil 14 CSD-SDS-AUV0007_07770_08758.seg	34932 KB	Profil 14 CSD-SDS-AUV0007_07770_08758.nav	130 KB
Profil 15 CSD-SDS-AUV0007_06483_07770.seg	39152 KB	Profil 15 CSD-SDS-AUV0007_06483_07770.nav	169 KB
Profil 16 CSD-SDS-AUV0007_05506_06484.seg	34655 KB	Profil 16 CSD-SDS-AUV0007_05506_06484.nav	129 KB
Profil 17 CSD-SDS-AUV0007_05088_05505.seg	12742 КВ	Profil 17 CSD-SDS-AUV0007_05088_05505.nav	55 KB
Profil 18 CSD-SDS-AUV0007_04764_05067.seg	9576 KB	Profil 18 CSD-SDS-AUV0007_04764_05067.nav	40 KB
Profil 19 CSD-SDS-AUV0007_04042_04765.seg	32700 КВ	Profil 19 CSD-SDS-AUV0007_04042_04765.nav	95 KB
Profil 20 CSD-SDS-AUV0007_02735_04017.seg	59949 КВ	Profil 20 CSD-SDS-AUV0007_02735_04017.nav	168 KB
Profil 21 CSD-SDS-AUV0007_01120_02710.seg	72848 КВ	Profil 21 CSD-SDS-AUV0007_01120_02710.nav	209 KB
Profil 22 CSD-SDS-AUV0007_00462_01094.seg	25870 KB	Profil 22 CSD-SDS-AUV0007_00462_01094.nav	83 KB
Profil 23a CSD-SDS-AUV0007_00303_00456.seg	3434 KB	Profil 23a CSD-SDS-AUV0007_00303_00456.nav	21 KB
Profil 23b CSD-SDS-AUV0007_00001_00303.seg	7580 KB	Profil 23b CSD-SDS-AUV0007_00001_00303.nav	40 KB
Profil 24 CSD-SDS-AUV0006_07425_07799.seg	10289 КВ	Profil 24 CSD-SDS-AUV0006_07425_07799.nav	50 KB
Profil 25 CSD-SDS-AUV0006_06352_07193.seg	33161 KB	Profil 25 CSD-SDS-AUV0006_06352_07193.nav	111 KB
Profil 26a CSD-SDS-AUV0006_06243_06333.seg	2514 KB	Profil 26a CSD-SDS-AUV0006_06243_06333.nav	13 KB
Profil 26b CSD-SDS-AUV0006_05585_06197.seg	19306 KB	Profil 26b CSD-SDS-AUV0006_05585_06197.nav	81 KB
Profil 27a CSD-SDS-AUV0006_05294_05569.seg	10808 KB	Profil 27a CSD-SDS-AUV0006_05294_05569.nav	37 KB
Profil 27b CSD-SDS-AUV0006_03957_04751.seg	37397 КВ	Profil 27b CSD-SDS-AUV0006_03957_04751.nav	105 KB
Profil 28 CSD-SDS-AUV0006_02752_03930.seg	64485 KB	Profil 28 CSD-SDS-AUV0006_02752_03930.nav	155 KB
Profil 29 CSD-SDS-AUV0006_01442_02753.seg	45622 KB	Profil 29 CSD-SDS-AUV0006_01442_02753.nav	172 KB
Profil 30 CSD-SDS-AUV0006_01032_01442.seg	12721 КВ	Profil 30 CSD-SDS-AUV0006_01032_01442.nav	54 KB
Profil 31 CSD-SDS-AUV0006_00187_01031.seg	20934 КВ	Profil 31 CSD-SDS-AUV0006_00187_01031.nav	111 KB
Profil 32 CSD-SDS-AUV0006_00012_00187.seg	3965 KB	Profil 32 CSD-SDS-AUV0006_00012_00187.nav	24 KB

Tableau 10 : Liste des fichiers SEGY et Navigation après découpe en profils.

Figure 29 : Localisation et numéro des profils sondeur de sédiments. La liste des fichiers SEGY et des profils, les images des profils sondeur de sédiment et les cartes de localisation détaillées sont en annexe.

4.2.2 Données multi-faisceaux EM2040

Les aléas météorologiques ont permis d'effectuer deux plongées complètes et une avortée. Un levé multifaisceaux complet dans la tête du canyon a été réalisé, là où l'impact morphologique du rejet des boues rouges est probablement le plus important. Un levé a également été réalisé le long du canyon jusqu'à une profondeur de 1640 m (Figure 25 ; Figure 30).

Le multi-faisceaux EM2040 présente les caractéristiques suivantes (Tableau 11):

Fréquence :	200, 300 ou 400 kHz
Profondeur max. :	250 m

Faisceaux :	256 (400 en mode HD)
Largeur des faisceaux :	0.75° x 0.75° @ 400 kHz
	1° x 1° @ 300 kHz
	1.5° x 1.5° @ 200 kHz
Fauchée :	140° (600 m à 200 kHz)

Tableau 11 : Caractéristiques du sondeur multi-faisceaux EM2040

Sur l'AUV il était opéré en mode 200 kHz

Le traitement des données a été débuté à bord et avait le double objectif d'effectuer un contrôle de la qualité des données et de produire rapidement une carte pour permettre le choix des cibles de carottage pendant les legs suivants.

Figure 30 : Localisation des profils de levé bathymétrique effectivement réalisés lors des trois plongées AUV de la mission CASSISED

4.2.2.1 Acquisition des données SMF

(Recopie du rapport Gaillot Arnaud (2019). Mission CASSISED : Traitement des données SMF AUV EM2040. PDG/REM/CTDI/ 20190909_AG01_CASSISED_TraitementSMF., <u>https://w3.ifremer.fr/archimer/doc/00513/62438/66732.pdf</u>)

4.2.2.1.1 Problème de compensation en attitude

Lors des deux premières plongées en tête de canyon, où les pentes observées sont importantes (généralement >30°), nous avons observé un important taux de sondes aberrantes. Il s'est avéré que ces sondes correspondaient à des pings pour lesquels l'AUV se retrouvait complètement cabré, car naviguant de face ou de dos à de fortes pentes (Figure 31 ; Figure 32 ; Figure 33 ; Figure 34 ; Figure 35).

Figure 31 : Ecart type bathymétrique et profil bathymétrique en vis-à-vis illustrant le phénomène de mauvais positionnement des sondes.

Figure 32 : Zoom sur un artefact particulier : on voit clairement l'incohérence spatiale des sondes, et l'espacement inter-ping qui augmente avant ce phénomène. Dans le cas de ce dernier exemple, en analysant l'attitude de l'AUV aux instants correspondant aux sondes affectées, on s'aperçoit que le tangage atteint des valeurs proches de 40°.

Figure 33 : Distance longitudinale et tangage du porteur correspondant aux sondes aberrantes : les valeurs atteignent 40° de tangage, ce qui qui positionne les sondes longitudinalement 50m en avant de l'AUV.

Ce phénomène se produit aussi bien de face que dos à la pente, comme illustré par la Figure 34.

Pendant toutes les plongées, la compensation en attitude (tangage, roulis) était activée. Or cette compensation ne fonctionne que pour une gamme de valeurs d'attitude bien définie :

- Roll stabilized beams: ±15^o
- Pitch stabilized beams: ±10^o
- Yaw stabilized beams: ±10^o

(source : Kongsberg EM 2040 Multibeam echo sounder Product Description, REV A, 2010)

Les valeurs atteintes ici sont largement supérieures aux valeurs admissibles par l'algorithme de compensation qui permet le dépointage électronique de l'antenne pour une émission ramenée à la verticale. Ceci est sans aucun doute la cause principale des artefacts observés, comme illustré par la Figure 35.

Figure 34 : Présence de sondes aberrantes au même endroit sur la pente, lors de deux profils, de face comme de dos à la pente

Figure 35 : Illustration des causes des artefacts observés. L'AUV se retrouve en position cabré (tangage > 40°) dans une position où le dépointage effectué par la compensation en tangage est impossible.

4.2.2.1.2 Problème de datation des profils de célérité

La date des profils de célérité utilisés lors de l'acquisition temps réel est aberrante : elle est figée au 00/01/0000 à 00 :00 :00.000, comme illustré par le contenu du datagram SSP pour le fichier 0003_20190410_082442_raw.all (Figure 36). Il semblerait que le problème provienne du contrôleur de charge utile.

ords	Record detail
rouped Sequenced Datagram Statistics	Datagram: U 0x55 Model: 2040
Datagram Index Ping/Seq. Time	Date: 10 APR 2019
> Height (h), Total=4232	Time: 7:6:1.992
 Attitude (A), Total=420 Clock (C), Total=436 Depth XYZ (X), Total= 1133 Installation (I), Total= 1 Water Column (k), Total=3632 Raw Range (N), Total=1133 Position (P), Total=4358 Runtime (R), Total=9 Seabed Image (Y), Total=1133 	Datagram Counter: 1 Serial Num: 105 Checksums match: Computed Checksum = 24880 Declared Checksum = 24880 Date of profile: 20010000
✓ SSP (U), Total=1 SSP (U) 1 07:06:01.	Time of profile: 0 ==> 00:00:00.000
 ✓ Installation Stop (i), Total= 1 Installation Stop (i) 1 1 07:06:01. ➢ PU Status. Total=437 	Number of entries: 56 Depth resolution: 1 cm
	Depth: 0 ==> 0.00000 m Sound speed: 15080 dm/s Depth: 1000 ==> 10.000000 m

Figure 36 : Dates aberrantes des profils de célérité utilisées lors de l'acquisition temps réel.

4.2.2.2 Traitement des données SMF

4.2.2.2.1 Calibration en roulis

Pour chaque plongée, deux profils aller-retour sur fond plat ont permis de déterminer des biais en roulis systématique (Figure 37) :

- 0.4° pour la plongée 249
- 0.7° pour la plongée 250
- 1.0° pour la plongée 251

Les données ont par la suite été corrigées de ces biais pour chacune des plongées.

Figure 37 : Sondes provenant des deux profils de calibration de la plongée 249 avant (orange et cyan) et après (vert et fuchsia) correction du biais de roulis.

4.2.2.2.2 Traitement des données bathymétriques

Les données de bathymétrie issues du sondeur EM2040 (AUV) ont été traitées à l'aide du logiciel GLOBE, suivant les étapes ci-dessous (Figure 38 ; Figure 39):

- 1. Conversion des fichiers .all en .mbg,
- 2. Compensation du biais en roulis,
- 3. Découpe des fichiers en profils,
- 4. Filtrage automatique des données,
- 5. Épuration manuelle des sondes,
- 6. Import de la navigation post-traitée par le logiciel DelphINS,
- 7. Recalage fin de la navigation et contrôle qualité des sondes (module regbat du logiciel Caraibes v5.0),
- 8. Maillage des fichiers MBG en DTM,
- 9. Export des navigations par profil et des DTM en GeoTIFF, pour le SIG.

Figure 38 : MNT des données brutes en sortie de plongée (navigation brute)

Figure 39 : MNT des données traitées, incluant la navigation recalée.

Correction de navigation

La navigation retraitée par le logiciel DelphINS par les équipes de Genavir/Toulon a été utilisée en première approche. Toutefois, un certain nombre de discordances dans le MNT résultant a conduit à un recalage fin de la navigation, basé sur la continuité morphologique des structures cartographiées, avec mise en correspondance des structures globales observables sur le MNT coque issu de la campagne ESSROV2010, N/O Pourquoi pas ? (module Regbat sous Caraibes V5.0).

La plus-value apportée par ce type de traitement est illustrée (Figure 40 ; Figure 41 ; Figure 42) :

Figure 40 : Bathymétrie brute, navigation temps réel.

Figure 41 : Bathymétrie traitées, navigation DelphINS.

Figure 42 : Bathymétrie traitées, navigation DelphINS recalée.

4.2.2.2.3 Traitement des données de réflectivité acoustique

Les données de réflectivité acoustique (Figure 43) ont fait l'objet d'un traitement spécifique, visant à produire une couche de segmentation permettant de mettre en lumière la répartition des grands types de natures de fond.

Figure 43 : Mosaïque de réflectivité acoustique brute, issue de GLOBE

Il s'agit d'une segmentation par classe angulaire d'incidence, dont le principe peut être décomposé comme suit (Figure 45 ; Figure 46 ; Figure 47 ; Figure 48 ; Figure 49 ; Figure 50) :

- 1. Obtention du backscatter (BS, caractéristique de la réponse acoustique du substrat) à partir de la réflectivité acoustique enregistrée par le sondeur. Ce qui implique la compensation des valeurs brutes de :
 - a. L'aire insonifiée,
 - b. Les pertes de propagation,
 - c. Le diagramme de directivité d'antenne en émission (Figure 44).
- 2. Pour un intervalle d'angle d'incidence considéré, décomposition de la distribution des valeurs de BS par une somme de distributions gaussiennes correspondant au nombre de classes.
- 3. Construction de la courbe de BS/angle d'incidence/classe par agrégation des valeurs moyenne de chaque distribution par classe et par angle.
- 4. Segmentation des données en amont (i.e. avant maillage) à partir de ces courbes.
- 5. Construction de la mosaïque des données segmentées.

L'ensemble de cette procédure se déroule pour partie sous SonarScope, puis via en ensemble de code reposant sur la bibliothèque de ce même logiciel.

Elle reprend le principe et l'algorithme développé par (Fezzani and Berger, 2018).

Figure 44 : Détermination du diagramme de directivité d'antenne de l'EM2040 de l'AUV, pour compensation des données.

Essai de segmentation par pas de 5°

Un premier essai de la méthode par pas de 5° a permis d'obtenir les résultats suivants :

Figure 45 : Segmentation du BS en 3 classes, par pas de 5°. En haut, décomposition en distribution gaussienne de valeurs de BS par classes d'angle d'incidence. En bas à gauche, construction des courbes des BS pour chacune des classe en fonction de l'angle d'incidence. En bas à droite, mosaïque des données de BS semgentées.

lfremer

Figure 46 : Segmentation 4 classes.

Figure 47 : segmentation en 5 classes.

Essai par pas de 1° et compensation du BS.

Un second essai de la méthode par pas de 1° a permis de mettre en place en étape final une compensation du BS, c'est à dire un « aplanissement » du BS par classe (= « belle image »).

Figure 48 : Segmentation par classe de 1°, 3 classes de nature de fond.

Figure 49 : Segmentation par classe de 1°, 4 classes de nature de fond.

Figure 50 : Segmentation par classe de 1°, 5 classes de nature de fond.

La segmentation par pas de 1° en trois classes donne le meilleur résultat en terme d'image compensée finale.

On note que les affleurements rocheux sont assez mal catégorisés par l'algorithme.

4.2.2.3 Conclusion

Les données de bathymétrie acquises lors de la mission Cassised par l'AUV sont de bonne qualité. Elles ont permis de générer une MNT au pas de 2m, montrant clairement les pentes, le fond du canyon ainsi que la sortie de l'exutoire de l'usine de traitement de bauxite.

Un recalage de navigation s'est avéré nécessaire pour assurer la continuité morphologique des fonds cartographiés.

Le traitement de la réflectivité acoustique a donné lieu à un essai de segmentation basé sur un algorithme innovant développé à l'Ifremer. Les résultats de ce processus mettent en lumière une répartition bien différenciée des natures de fond entre la pente et le thalweg du Canyon.

L'ensemble de ces données traitées servira de base à l'interprétation géomorphologique.

4.3 Prélèvements

4.3.1 Carottier à piston Kullenberg

Le carottier est composé des éléments suivants (Figure 51):

- D'un tube en acier de diamètre extérieur de 114 mm et d'épaisseur 6mm (16 kg par mètre de tube) ; dans lequel se trouve une chemise en PVC de diamètre intérieur de 90 mm et d'épaisseur 4 mm.
- d'un lest dont le poids est modulable
- d'un bras déclencheur

Le carottier était instrumenté afin de mesurer les mouvements verticaux du piston et du tube et par comparaison de déterminer la stationnarité du piston (Figure 51). Cette instrumentation permet, particulièrement en début de mission, d'adapter les réglages du carottier afin d'avoir un piston aussi stationnaire que possible et obtenir ainsi des prélèvements continus et nondéformés. Les capteurs (pression/accélération) étaient positionnés sur le bras de déclenchement (pour estimer les mouvements du pied de cable) et sur le lest (pour estimer les mouvements du tube). Ces mesures permettent ensuite de quantifier les déformations et perturbation dans le sédiment prélevé et de calculer les correspondances entre les profondeurs in situ et les profondeurs dans la carotte prélevées. Les graphes illustrant le fonctionnement du carottier et sa pénétration figurent en annexe.

Les déploiements ont été réalisés avec les caractéristiques techniques suivantes (Tableau 12) :

Carottage	Longueur du tube	Poids du lest	Chute libre	Boucle	Instrumentation Cinématique
EU19CSD-KS01	5 m	20 galettes (~400 kg)	1 m	1,10 m	oui
EU19CSD-KS02	5 m	20 galettes (~400 kg)	1 m	2,10 m	oui
EU19CSD-KS03	5 m	20 galettes (~400 kg)	1 m	2,10 m	oui

Tableau 12 : Liste et caractéristiques des opération de carottage à piston Kullenberg

Les 3 prélèvements se situent dans la tête de canyon où les structurent sédimentaires visibles montrent le dépôt d'une couche de sédiment d'environ 5 m d'épaisseur, devenant moins épaisse en s'éloignant de l'axe de la tête du canyon (Tableau 13 ; Figure 52).

Carotte	Longueur	Latitude	Longitude	Profondeur	Site
EU19CSD-KS01	3,51 m	N43° 7,87905'	E 5° 30,53839'	466 m	Tête de canyon
EU19CSD-KS02	4,36 m	N43° 7,90182'	E5° 30,33778'	492 m	Tête de canyon
EU19CSD-KS03	4,34 m	N43° 7,92483'	E5° 30,14995'	510 m	Tête de canyon

Tableau 13 : Localisation des carottes Kullenberg

Figure 51: (haut) Schéma de la configuration du carottier à piston Kullenberg. Les étoiles jaunes indiquent la position des instruments (profondimètres, accéléromètres) destinés à mesure la cinématique du carottage ; (bas) signification des données et courbes obtenues avec les instruments cinématiques.

Figure 52 : Localisation des carottes Kullenbergs dans la tête du canyon de Cassidaigne

4.3.2 Carottier multi-tube « Fantacore »

Ce carottier permet de prélever 4 carottes avec 4 tubes de 60 cm et ~94mm de diamètre intérieur (Figure 53). Le carottier est équipé d'une balise acoustique qui permet de positionner le carottier (type USBL, compatible avec le système Posidonia d'iXblue) et d'un largueur à déclenchement acoustique. Le mode opératoire consiste à poser le carottier sur la cible choisie puis à déclencher le carottier. Le carottier était également équipé d'une sonde CTD avec fluoromètre (CTD RBR-XR620-FI) et d'une caméra vidéo. Des problèmes techniques n'ont pas permis d'utiliser la caméra pour tous les déploiements (Tableau 15 ; Tableau 16).

Les sites de carottage ont été positionné pour déterminer l'occurrence et l'épaisseur des boues rouges dans le canyon et en altitude, sur des terrasses sédimentaires ainsi que sur le sommet et le flanc externe de la ride sédimentaire sur le côté droit (ouest) du canyon (Figure 54 ; Tableau 14).

Sur un total de 23 déploiements, uniquement 12 ont permis de collecter des échantillons. L'utilisation de la caméra a permis de voir le comportement du carottier sur le fond (Tableau 17) et de poser des hypothèques sur les échecs rencontrés. Nous nous sommes ainsi rendu compte

de deux causes possibles, (1) la présence d'une couche meuble dans laquelle le carottier se serait enfoncé en totalité, ce qui aurait empêché le fonctionnement du carottier après le déclenchement acoustique ce phénomène se voit sur un certain nombre de sites où la caméra et l'éclairages sont enfouis dans le sédiment ; (2) le carottier a été tracté sur le fond à cause d'une dérive trop forte du navire ; ceci est une conséquence du mode « dérive » du navire adopté lors des carottages. On peut supposer que la recherche d'une position stable du navire en utilisant le moteur aurait pu éviter ce genre de problème.

Figure 53 : (haut) Illustrations du carottier multi-tube Fantacore, (bas) protocole du fonctionnement du carottier et du déclenchement acoustique.

Figure 54 : Carte de localisation des carottes multi-tube.

Carotte	Longueur	Latitude	Longitude	Profondeur	Site		
EU19CSD-MTB01-A	60 cm	N42º 7 07202'	EE° 20 0090'	E27 m	Tête du canyon, terrasse gauche		
EU19CSD-MTB01-B	60 cm	1145 7,67262	ES 29,9089	557 11	(altitude 16 m) néochenal boues rouges		
EU19CSD-MTB02-A	36 cm						
EU19CSD-MTB02-B	45 cm	N43° 1,41206'	E5° 25,3038'	1648 m	Fond du canyon		
EU19CSD-MTB02-C	45 cm						
EU19CSD-MTB03	Sachet	N42° 24.3337'	E5°27.3915'	1652 m	Sommet ride sédimentaire		
EU19CSD-MTB04-A	33 cm						
EU19CSD-MTB04-B	31 cm	N42° 54.3263'	E5°27.4220'	1659 m	Sommet ride sédimentaire		
EU19CSD-MTB04-C	30 cm						
TT19CSD-MTB05-A	60 cm						
TT19CSD-MTB05-B	60 cm	N43° 0,597'	E 5° 23,470	1239 m	Sortie canyon terrasse gauche 460 m altitude		
TT19CSD-MTB05-C	60 cm						
TT19CSD -MTB06-A	34 cm	N428 0 464		4540	Sortie canyon terrasse gauche 165 m		
TT19CSD -MTB06-B	13 cm	N43 0,461	E5 24,727	1540 m	altitude		
TT19CSD -MTB07-A	18 cm						
TT19CSD -MTB07-B	18 cm	N42° 51,059'	E5° 27,866'	2107 m	Extérieur ride sédimentaire distal		
TT19CSD -MTB07-C	18 cm						
TT19CSD -MTB08-A	28 cm						
TT19CSD -MTB08-B	28 cm	N42° 52,509'	E5° 30,847'	1895 m	Sommet ride sédimentaire distal		
TT19CSD -MTB08-C	28 cm						
TT19CSD -MTB09-A							
TT19CSD -MTB09-B		N42° 52,051'	E5° 37,668'	2112 m	Sommet ride sédimentaire distal		
TT19CSD -MTB09-C							
TT19CSD-MTB10-A	42 cm	N42º E2 140'		1020 m	Sommat rida cádimantaira		
TT19CSD-MTB10-B	43 cm	1142 55,140	ES 29,005	1020 111	sommet nue seumentaire		
TT19CSD-MTB11-A	20 cm	N42° EE E00'	EEº 24 E22'	1402 m	Sommat rida cádimantaira		
TT19CSD-MTB11-B	23 cm	1142 55,505	LJ 24,JJJ	1455 11	Sommet nue seumentaire		
TT19CSD-MTB12-A	23 cm	N42º 54 651'	E5° 25 922'	1617 m	Sommat rida cádimantaira		
TT19CSD-MTB12-B	23 cm	1142 54,031	LJ 2J,032	1017/11	Sommer nue seumentalle		
TT19CSD-MTB13-A	29 cm	NA2º 22 622'	E5° 24 001'	1927 m	Evtérieur ride sédimentaire		
TT19CSD-MTB13-B	29 cm	1942 33,023	LJ 24,991	1327 111	LATENERI HRE SERIMENIANE		

Tableau 14 : Liste des carottes multi-tube

Site	N° Yvan Réaud	Nom carottes	Latitude Longitude	Profondeur	Date	Largueur acoustique	Observation/commentaire	
			Camp	agne Cassised	-2019-2 N/O L'	Europel		
Tête du canyon, terrasse gauche (atlitude 16 m) néochenal boues rouges	FC1	EU19CSD-MTB01	N 43° 7,873' E 5° 29,909'	537	17/04/2019			
Canyon de Cassidaigne, fond du canyon	FC2	EU19CSD-MTB02	N 43° 1,412' E 5° 25,304'	1648	18/04/2019			
Canyon de Cassidaigne, sommet	FC3	EU19CSD-MTB03	N 42° 54,308' E 5° 27,434'	1652	18/04/2019			
ride sédimentaire	FC4	EU19CSD-MTB04	N 42° 54,307' E 5° 27,438'	1659	18/04/2019			
			Camp	agne Cassised	l-2019-4 N/O T	éthys II		
Canyon de Cassidaigne, sortie canyon terrasse gauche 460 m altitude	FC1	EU19CSD-MTB05	N 43° 0,597' E 5° 23,470	1239	30/08/2019	Ok, perturbé par sondeur	4 tubes remplis, la caméra est entrée dans le sédimet. Station "en dérive".	
	FC2	Echec	N 43° 0,461' E 5° 24,601'	1535	30/08/2019	Perturbé par sondeur, pas déclenché	Echec, le sondeur bloque la communication, le largueur est inopérant. la dérive est trop forte, il faut replacer le bateau.	
Canyon de Cassidaigne, sortie canyon terrasse gauche 165 m	FC2 bis	Echec	N 43° 0,392' E 5° 24,712'	1510	30/08/2019	Ok	Pas marché, car un tube s'est mis de guingois et à empêché la descente de l'ensemble (il est fendu). Un nokalon perdu.	
attitude	FC2 ter	TT19CSD-MTB06	N 43° 0,461' E 5° 24,727'	1515	30/08/2019	Ok	Les mécanismes de fermeture ont bougé seulement de quelques centimètres. On réussi à sauver 1 tube et demi. 2ème nokalon perdu. Mécanisme bloqué par boue rouge ?	
Canyon de Cassidaigne, fond du canyon, débouché vers chenal-levee	FC3	Echec	N 43° 0,384' E 5° 25,117'	1650	30/08/2019	A la fermeture du croc, la herse est trop basse. 1 diagnostic, 1 largage, puis communication difficile. Croc de largueur resté bloqué à mi course, retenu par la dent de loup.	Le largueur n'a pas fonctionné correctement. Peut être bloqué dans son mécanisme par la boue rouge ? Câble vrillé et coqué, à couper sur 20 mètres.	

	FC3 bis	Echec	N 43° 0,266' E 5° 25,152'	1690	30/08/2019	Ok	Largueur Ok, mais mécanismes pas actionnés : boue rouge. Beaucoup de temps perdu remettre le bateau dans le polygone.
Canyon de Cassidaigne, extérieur ride sédimentaire distal	FC4	TT19CSD-MTB07	N 42° 51,059' E 5° 27,866'	2012	31/08/2019	Ok	Tout s'est bien passé, mais la caméra s'est coupée dans la descente
Canyon de Cassidaigne, sommet ride sédimentaire distal	FC5	TT19CSD-MTB08	N 42° 52,509' E 5° 30,847'	1864	31/08/2019	Ok	Bien réussi
Canyon de Cassidaigne, terrasse gauche chenal, distal	FC6	Echec	N 42° 54,056' E 5° 32,563'	1994	31/08/2019	Ok	A bord, déclenché, pas actionné. Du sédiment sur 2 pattes : probablement trainé sur le fond
Canyon de Cassidaigne, sommet ride sédimentaire distal	FC7	TT19CSD-MTB09	N 42° 52,051' E 5° 37,668'	2112	31/08/2019	Ok	Bien réussi
Canyon de Cassidaigne, sommet ride sédimentaire	FC8	TT19CSD-MTB10	N 42° 53,148' E 5° 29,805'	1769	31/08/2019	Fermeture de la herse un peu dure	Bien réussi
Canyon de Cassidaigne, sommet	FC9	Echec	N 42° 53,749' E 5° 28,897'	1768	31/08/2019	Ok	Il a glissé sur une pente, posé sur une crête
ride sédimentaire, intermédiaire	FC9 Bis	Echec	N 42° 53,905' E 5° 28,802'	1753	31/08/2019	Ok	Déclenché mais pas actionné, sur la vidéo, il ne pénètre que de quelques centimètres : sédiment trop raide ?
Canyon de Cassidaigne, sommet ride sédimentaire	FC10	TT19CSD-MTB11	N 42° 55,509' E 5° 24,533'	1448	31/08/2019	Ok	Bien réussi
Canyon de Cassidaigne, sommet ride sédimentaire, proximal, juste après canyon	FC11	Echec	N 42° 56,648' E 5° 22,477'	2346	01/09/2019	Ok	Trainé sur le fond
Canyon de Cassidaigne, sommet	FC12	Echec	N 42° 54,634' E 5° 26,036'	1575	01/09/2019	Ok	Trainé sur le fond
ride sédimentaire	FC13	TT19CSD-MTB12	N 42° 54,651' E 5° 25,832'	1551	01/09/2019	Ok	Dévirage rapide au posé sur le fond, ça marche bien pour éviter de le trainer.
Canyon de Cassidaigne, extérieur ride sédimentaire	FC14	TT19CSD-MTB13	N 42° 53,623' E 5° 24,991'	1900	01/09/2019	Batteries à plat, 5,4V, largage puis pas de réponse	Bien réussi
Canyon de Cassidaigne, extérieur ride sédimentaire, distal	FC15	Echec	N 42° 49,522' E 5° 31,487'	2116	01/09/2019	Perdu	Carottier perdu, traction anormal pendant la montée : on a croché quelque chose.

Tableau 15 : Liste et caractéristiques des opérations de carottage multi-tube Fantacore

						Chrono (heure bord = TU+2)					
Site	N° Yvan Réaud	Nom carottes	Latitude Longitude	Profondeur	Date	Heure début	Heure fond	Heure fin	Carottes (conservées)	Film vidéo	СТD
Campagne Cassised-2019-2 N/O L'Europel											
Tête du canyon, terrasse gauche (atlitude 16 m) néochenal boues rouges	FC1	EU19CSD-MTB01	N 43° 7,873' E 5° 29,909'	537	17/04/2019	16h14	16h28	_	Oui (2)	Non	Oui
Canyon de Cassidaigne, fond du canyon	FC2	EU19CSD-MTB02	N 43° 1,412' E 5° 25,304'	1648	18/04/2019	9h30	10h12	-	Oui (3)	Oui	Oui
Canyon de Cassidaigne, sommet ride	FC3	EU19CSD-MTB03	N 42° 54,308' E 5° 27,434'	1652	18/04/2019	-	13h13	-	Oui (sachet)	Non	Oui
sédimentaire	FC4	EU19CSD-MTB04	N 42° 54,307' E 5° 27,438'	1659	18/04/2019	14h37	15h08	-	Oui (3)	Oui	Oui
			Campagne C	assised-2019-4	N/O Téthys II						
Canyon de Cassidaigne, sortie canyon terrasse gauche 460 m altitude	FC1	EU19CSD-MTB05	N 43° 0,597' E 5° 23,470	1239	30/08/2019	10h40	11h22	11h47	Oui (3)	Oui	Non
	FC2	Echec	N 43° 0,461' E 5° 24,601'	1535	30/08/2019	13h20	14h07	14h35	Echec	Non	Non
Canyon de Cassidaigne, sortie canyon terrasse gauche 165 m altitude	FC2 bis	Echec	N 43° 0,392' E 5° 24,712'	1510	30/08/2019	14h45	15h20	15h55	Echec	Non	Non
	FC2 ter	TT19CSD-MTB06	N 43° 0,461' E 5° 24,727'	1515	30/08/2019	16h15	16h55	17h22	Oui (2)	Oui	Non
Canyon de Cassidaigne, fond du	FC3	Echec	N 43° 0,384' E 5° 25,117'	1650	30/08/2019	18h00	18h45	19h30	Echec	Oui	Non
canyon, débouché vers chenal-levee	FC3 bis	Echec	N 43° 0,266' E 5° 25,152'	1690	30/08/2019	20h20	21h22	22h00	Echec	Oui	Non

Canyon de Cassidaigne, extérieur ride sédimentaire distal	FC4	TT19CSD-MTB07	N 42° 51,059' E 5° 27,866'	2012	31/08/2019	7h30	8h15	8h55	Oui (3)	Non	Non
Canyon de Cassidaigne, sommet ride sédimentaire distal	FC5	TT19CSD-MTB08	N 42° 52,509' E 5° 30,847'	1864	31/08/2019	9h30	10h00	10h30	Oui (3)	Oui	Non
Canyon de Cassidaigne, terrasse gauche chenal, distal	FC6	Echec	N 42° 54,056' E 5° 32,563'	1994	31/08/2019	11h00	11h35	12h15	Echec	Non	Non
Canyon de Cassidaigne, sommet ride sédimentaire distal	FC7	TT19CSD-MTB09	N 42° 52,051' E 5° 37,668'	2112	31/08/2019	13h05	13h40	14h15	Oui (3)	Oui	Non
Canyon de Cassidaigne, sommet ride sédimentaire	FC8	TT19CSD-MTB10	N 42° 53,148' E 5° 29,805'	1769	31/08/2019	15h15	15h40	16h15	Oui (2)	Oui	Non
Canyon de Cassidaigne, sommet ride sédimentaire, intermédiaire	FC9	Echec	N 42° 53,749' E 5° 28,897'	1768	31/08/2019	17h00	17h40	18h10	Echec	Oui	Non
	FC9 Bis	Echec	N 42° 53,905' E 5° 28,802'	1753	31/08/2019	18h35	19h00	19h30	Echec	Oui	Non
Canyon de Cassidaigne, sommet ride sédimentaire	FC10	TT19CSD-MTB11	N 42° 55,509' E 5° 24,533'	1448	31/08/2019	20h30	21h00	21h30	Oui (2)	Oui	Non
Canyon de Cassidaigne, sommet ride sédimentaire, proximal, juste après canyon	FC11	Echec	N 42° 56,648' E 5° 22,477'	2346	01/09/2019	7h20	7h45	8h15	Echec	Oui	Non
Canyon de Cassidaigne, sommet ride sédimentaire	FC12	Echec	N 42° 54,634' E 5° 26,036'	1575	01/09/2019	9h00	9h30	10h00	Echec	Oui	Non
	FC13	TT19CSD-MTB12	N 42° 54,651' E 5° 25,832'	1551	01/09/2019	10h45	11h10	11h35	Oui (2)	Oui	Non
Canyon de Cassidaigne, extérieur ride sédimentaire	FC14	TT19CSD-MTB13	N 42° 53,623' E 5° 24,991'	1900	01/09/2019	12h10	12h40	13h15	Oui (2)	Non	Non
Canyon de Cassidaigne, extérieur ride sédimentaire, distal	FC15	Echec	N 42° 49,522' E 5° 31,487'	2116	01/09/2019	14h15	14h35	15h15	Echec	Non	Non

Tableau 16 : Liste et caractéristiques des opérations de carottage multi-tube Fantacore

Opération	Descente	Arrivée	Atterrissage	Posé-déclenché	Extraction
Cassised-2 FC02 Carotte : EU19CSD-MTB-02 Fond du canyon N 43° 1,412' E 5° 25,304' 1648 m					
Cassised-2 FC04 Carotte : EU19CSD-MTB-04 Sommet ride sédimentaire N 42° 54,307' E 5° 27,438' 1659 m Cassised4-J1-FC01 Carotte :	in a				
EU19CSD-MTB05 Sortie canyon terrasse gauche 460 m altitude N 43° 0,597' E 5° 23,470 1239 m					
Cassised4-J1-FC02 ter Carotte : TT19CSD-MTB06 Sortie canyon terrasse gauche 165 m altitude N 43° 0,461' E 5° 24,727' 1515 m			6		
Cassised4-J1-FC03 Pas de carotte Fond du canyon, débouché vers chenal- levee N 43° 0,384' E 5° 25,117' 1650 m		P	P		

Tableau 17 : Images du fond lors des opérations de carottage multi-tube Fantacore

Le carottier a été perdu lors de l'opération TT19CSD-MTB13. Le déploiement et le carottage se sont bien déroulés. Lors de la remontée la tension sur le câble a subitement chuté. Cela s'est produit après environ 1000 m de remontée soit à une profondeur d'environ 1100 m (fonds de 2100 m). Au moment de la rupture la tension sur le câble était d'environ 300 kg. A la mise à bord il a été constaté qu'il n'y a pas eu de rupture du câble. L'écrou du système de fixation du carottier sur le câble semble s'être dévissé.

Le carottier s'est décroché entre 12H54 et 12H55 TU. La navigation du navire, enregistrée par le logiciel MaxSea montre un décalage de -2 minutes avec l'heure TU. Sur cette navigation la perte du carottier est donc située entre 12H52 et 12H53 heures MaxSea. La localisation est N42° 49,486' – E005° 31,558' – 2100 m (Figure 55).

Figure 55 : Cartes de localisation du carottier Fantacore perdu

4.4 Positionnement Base Ultra Courte (BUC)

Le système Posidonia - Ixsea a été utilisé pendant le leg1 pour positionner les mouillages. Le système GAPS – Ixsea a été utilisé pendant le leg 2 pour positionner les AUV et le carottier multitube Fantacore (Figure 56).

Les positionnements BUC réalisés sont les suivant :

Posidonia	Gaps
Ligne de mouillage PeerGynt CSD-PGT01	Plongée AUV CASSISED-19-426-01
Ligne de mouillage PeerGynt CSD-PGT02	Plongée AUV CASSISED-19-427-02
Ligne de mouillage Aniitra CSD-ANT01	Plongée AUV CASSISED-19-IX-249-01
	Plongée AUV CASSISED-19-IX-250-02
	Plongée AUV CASSISED-19-IX-251-03
	Carottage EU19CSD-MTB03
	Carottage EU19CSD-MTB04

Figure 56 : (haut, gauche) base ultra-courte Posidonia ; (haut, droite) base ultra-courte Gaps ; (bas) perche latérale, à bâbord, pour le déploiement du système des positionnement bases ultra courtes (BUC).

5 Journal des opérations

Date	Heure TU	Latitude	Longitude	Sonde (m)	Туре	Appareil	opération /échantillon	Nom Action	Observation
5.1 CA	SSISED-20	19-1, du 4 au	9 mars 2019	, N/O L'	Europe				
5.1.1 Lu	undi 4 mars	2019							
04/03/19	Embarquemer	nt du matériel							
04/03/19	16:30:00					Cage ADCP 300	CSD-CAGE01		Mise en route de l'ADCP, début de l'acquisition
04/03/19	17:05:00					Cage ADCP 300	CSD-CAGE01		Arrivée sur le site de déploiement.
04/03/19	17:16:24	N 43° 8,69698'	E 5° 32,20262'	87	Opération	Cage ADCP 300	CSD-CAGE01	Mise à l'eau	
04/03/19	17:30:00					Cage ADCP 300	CSD-CAGE01	En surface	La cage est de retour en surface, toujours câblée
04/03/19	17:33:17	N 43° 8,73407'	E 5° 32,21418'	86	Opération	Cage ADCP 300	CSD-CAGE01	Largué	La BUC ne fonctionne pas
04/03/19	17:39:26	N 43° 8,68309'	E 5° 32,2258'	84	Observation	Cage ADCP 300	CSD-CAGE01	Triangulation	Comme c'est un largage de surface on va faire une triangulation
04/03/19	17:55:03	N 43° 8,64145'	E 5° 32,40812'	84	Observation	Cage ADCP 300	CSD-CAGE01	Triangulation 1	Temps aller-retour ping : 0,3798 seconde
04/03/19	18:02:05	N 43° 8,7917'	E 5° 32,33885'	_	Observation	Cage ADCP 300	CSD-CAGE01	Triangulation 2	Temps aller-retour ping : 0,2311 0,2264 seconde
04/03/19	18:08:57	N 43° 8,77045'	E 5° 32,14688'	-	Observation	Cage ADCP 300	CSD-CAGE01	Triangulation 3	Temps aller-retour ping : 0,2226 0,2252 secondes Localisation après triangulation: N43°08,7780 - E005°32,2440

5.1.2 Mardi 5 mars 2019

05/03/19	07:37:21	N 43° 8,17976'	E 5° 30,78719'	-	Opération	PEERGYNT- Mouillage	CSD-PGT01	Mise a l'eau	
05/03/19	08:18:02	N 43° 8,2393'	E 5° 30,74225'	422	Opération	PEERGYNT- Mouillage	CSD-PGT01	Largue	Position BUC Posidonia: N43°08,2367 - E005°30,7570
05/03/19	09:40:30	N 43° 1,3224'	E 5° 25,40825'	1631	Opération	PEERGYNT- Mouillage	CSD-PGT02	Mise a l'eau	
05/03/19	10:19:55	N 43° 1,34573'	E 5° 25,29955'	1628	Opération	PEERGYNT- Mouillage	CSD-PGT02	Largue	Position BUC Posidonia N43°01,3409 - E005°25,3316
05/03/19	12:17:19	N 42° 56,09177'	E 5° 25,86552'	1933	Opération	ANIITRA-Mouillage	CSD-ANT01	Mise a l'eau	
05/03/19	13:17:10	N 42° 56,17542'	E 5° 25,62395'	1906	Opération	ANIITRA-Mouillage	CSD-ANT01	Largue	Position BUC Posidonia N42°56,1653 - E005°25,5704
05/03/19	13:56:50	N 42° 56,23721'	E 5° 25,57329'	1910	Opération	BATHYSONDE SBE25	CSD-CTD01	Début filage	CSD-CTD01 (Site du mouillage CSD- ANT-01)
05/03/19	14:38:30	N 42° 56,22595'	E 5° 25,53483'	1900	Opération	BATHYSONDE SBE25	CSD-CTD01	Fin de filage	
05/03/19	14:38:56	N 42° 56,22632'	E 5° 25,53616'	1901	Opération	BATHYSONDE NISKIN	CSD-CTD01-B1	Bouteille Niskin	Bouteille n°1 5 m altitude
05/03/19	14:39:47	N 42° 56,2287'	E 5° 25,53979'	1897	Opération	BATHYSONDE NISKIN	CSD-CTD01-B2	Bouteille Niskin	Bouteille n°2 10 m altitude
05/03/19	14:40:23	N 42° 56,23243'	E 5° 25,53915'	1881	Opération	BATHYSONDE NISKIN	CSD-CTD01-B3	Bouteille Niskin	Bouteille n°3 20 m altitude
05/03/19	14:41:23	N 42° 56,2356'	E 5° 25,53419'	1891	Opération	BATHYSONDE NISKIN	CSD-CTD01-B4	Bouteille Niskin	Bouteille n°4 30 m altitude
05/03/19	14:58:37	N 42° 56,22018'	E 5° 25,54915'	1907	Opération	BATHYSONDE NISKIN	CSD-CTD01-B5	Bouteille Niskin	Bouteille n°5 1200 m immersion (pression CTD)
05/03/19	15:16:31	N 42° 56,19949'	E 5° 25,46129'	1904	Opération	BATHYSONDE NISKIN	CSD-CTD01-B6	Bouteille Niskin	Bouteille n°6 400 m immersion (pression CTD)
05/03/19	15:20:26	N 42° 56,26529'	E 5° 25,47932'	1905	Opération	BATHYSONDE NISKIN	CSD-CTD01-B7	Bouteille Niskin	Bouteille n°7 240 m immersion (pression CTD)
05/03/19	15:24:19	N 42° 56,25187'	E 5° 25,56122'	1876	Opération	BATHYSONDE NISKIN	CSD-CTD01-B8	Bouteille Niskin	Bouteille N°8 100 m immersion (pression CTD)
05/03/19	16:09:30	N 43° 1,25781'	E 5° 25,37093'	1629	Opération	BATHYSONDE SBE25	CSD-CTD02	Début filage	CSD-CTD02 sur mouillage PeerGynt CSD-PGT2 et CSD-CTD07
05/03/19	16:48:23	N 43° 1,32743'	E 5° 25,30114'	1629	Opération	BATHYSONDE SBE25	CSD-CTD02	Fin de filage	

05/03/19	16:49:00	N 43° 1,3275'	E 5° 25,31666'	1629	Opération	BATHYSONDE NISKIN	CSD-CTD02-B1	Bouteille Niskin	Bouteille n° 15 m d'altitude
05/03/19	16:49:25	N 43° 1,32487'	E 5° 25,32598'	1629	Opération	BATHYSONDE NISKIN	CSD-CTD02-B2	Bouteille Niskin	Bouteille n°2 10 m d'altitude
05/03/19	16:50:31	N 43° 1,31256'	E 5° 25,34086'	1630	Opération	BATHYSONDE NISKIN	CSD-CTD02-B3	Bouteille Niskin	Bouteille n°3 20 m d'altitude
05/03/19	16:51:19	N 43° 1,30253'	E 5° 25,34525'	1630	Opération	BATHYSONDE NISKIN	CSD-CTD02-B4	Bouteille Niskin	Bouteille n°4 30 m d'altitude
05/03/19	17:02:04	N 43° 1,28768'	E 5° 25,34664'	1630	Opération	BATHYSONDE NISKIN	CSD-CTD02-B5	Bouteille Niskin	Bouteille n°5 1200 m d'immersion
05/03/19	17:20:04	N 43° 1,28855'	E 5° 25,33873'	1629	Opération	BATHYSONDE NISKIN	CSD-CTD02-B6	Bouteille Niskin	Bouteille n°6 400 m d'immersion
05/03/19	17:25:07	N 43° 1,27149'	E 5° 25,32925'	1630	Opération	BATHYSONDE NISKIN	CSD-CTD02-B7	Bouteille Niskin	Bouteille n°7 236 m d'immersion
05/03/19	17:27:44	N 43° 1,25986'	E 5° 25,33694'	1629	Opération	BATHYSONDE NISKIN	CSD-CTD02-B8	Bouteille Niskin	Bouteille n°8 100 m d'immersion
05/03/19	17:33:47	N 43° 1,26287'	E 5° 25,34771'	1629	Opération	BATHYSONDE SBE25	CSD-CTD02	Fin de filage	
5.1.3	Mercredi 6	mars 2019							
06/03/19	07:56:20	N 43° 7,97546'	E 5° 29,978'	531	Opération	BATHYSONDE SBE25	CSD-CTD03	Début filage	Localisation face à l'émissaire
06/03/19	08:12:14	N 43° 7,97998'	E 5° 30,00072'	531	Opération	BATHYSONDE SBE25	CSD-CTD03	Fin de filage	
06/03/19	08:12:41	N 43° 7,97707'	E 5° 30,00107'	530	Opération	BATHYSONDE NISKIN	CSD-CTD03-B1	Bouteille Niskin	Bouteille n°1 5 m altitude
06/03/19	08:13:21	N 43° 7,97512'	E 5° 30,00532'	530	Opération	BATHYSONDE NISKIN	CSD-CTD03-B2	Bouteille Niskin	Bouteille n°2 10 m altitude
06/03/19	08:13:43	N 43° 7,97725'	E 5° 30,00642'	528	Opération	BATHYSONDE NISKIN	CSD-CTD03-B3	Bouteille Niskin	Bouteille n°3 20 m altitude
06/03/19	08:14:06	N 43° 7,98269'	E 5° 30,00883'	524	Opération	BATHYSONDE NISKIN	CSD-CTD03-B4	Bouteille Niskin	Bouteille n°4 30 m altitude
06/03/19	08:14:47	N 43° 7,99121'	E 5° 30,01861'	521	Opération	BATHYSONDE NISKIN	CSD-CTD03-B5	Bouteille Niskin	Bouteille n°5 50 m altitude
06/03/19	08:16:48	N 43° 7,98944'	E 5° 30,02244'	522	Opération	BATHYSONDE NISKIN	CSD-CTD03-B6	Bouteille Niskin	Bouteille n°6 400 m immersion
06/03/19	08:27:55	N 43° 7,99545'	E 5° 30,00526'	_	Opération	BATHYSONDE SBE25	CSD-CTD03	Fin de filage	

06/03/19	08:56:31	N 43° 8,66649'	E 5° 32,00992'	89	Opération	BATHYSONDE SBE25	CSD-CTD04	Début filage	Localisation site CSD-CAGE01
06/03/19	09:00:16	N 43° 8,67258'	E 5° 32,03315'	88	Opération	BATHYSONDE NISKIN	CSD-CTD04-B1	Bouteille Niskin	Bouteille n°1 5 m altitude
06/03/19	09:00:38	N 43° 8,67444'	E 5° 32,03488'	88	Opération	BATHYSONDE NISKIN	CSD-CTD04-B2	Bouteille Niskin	Bouteille n°2 10 m altitude
06/03/19	09:01:10	N 43° 8,67632'	E 5° 32,03641'	88	Opération	BATHYSONDE NISKIN	CSD-CTD04-B3	Bouteille Niskin	Bouteile n°3 20 m altitude
06/03/19	09:01:43	N 43° 8,6742'	E 5° 32,04195'	88	Opération	BATHYSONDE NISKIN	CSD-CTD04-B4	Bouteille Niskin	Bouteille n°4 30 m altitude
06/03/19	09:02:19	N 43° 8,66956'	E 5° 32,05793'	87	Opération	BATHYSONDE NISKIN	CSD-CTD04-B5	Bouteille Niskin	Bouteille n°5 50 m altitude
06/03/19	09:03:58	N 43° 8,67212'	E 5° 32,07932'	87	Opération	BATHYSONDE SBE25	CSD-CTD04	Fin de filage	

5.1.4 Jeudi 7 mars 2019

07/03/19 Débarquement du matériel

5.2 CASSISED-2019-1, du 4 au 25 avril 2019, N/O L'Europe

5.2.1 Jeudi 4 avril 2019

04/04/19 Embarquement AUV AsterX avec sondeur de sédiment ECHOES 5000

5.2.2 Vendredi 5 avril 2019

05/04/19	07:43:16	N 42° 59,90998'	E 5° 24,88723'	-	Observation	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-		Arrivée sur site mise a l'eau AUV pou plongee CSD-AUV01 (charge utile sondeur de sédiment)
05/04/19	08:00:00	N 42° 59,94427'	E 5° 24,78116'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Mise a l'eau	
05/04/19	08:30:00	N 43° 0,00195'	E 5° 24,77456'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Debut de Plongee	
05/04/19	08:40:00	N 42° 59,99696'	E 5° 24,76239'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Incident	Probleme de communication aver SDS, l'AUV revient en surface
05/04/19	08:55:00	N 43° 0,0443'	E 5° 24,78817'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Debut de Plongee	SDS refonctionne aprËs relance

05/04/19	09:27:00	N 43° 0,00661'	E 5° 24,73102'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	AUV au fond	
05/04/19	10:07:00	N 43° 1,23361'	E 5° 24,883'	-	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Incident	Probleme avec SDS, l'AUV remonte. La lecture des fichier SEGY montre que l'acquisition est correcte malgre les messages d'erreur
05/04/19	10:38:00	N 43° 1,24871'	E 5° 25,11389'	-	Opération	AUV-Sondeur sédiment	de	Plongée 426-00	CASSISED-19-		AUV en surface
05/04/19	10:55:00	N 43° 1,16993'	E 5° 25,10159'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Debut de Plongee	AUV Descend
05/04/19	11:27:00	N 43° 1,1885'	E 5° 24,91964'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	AUV au fond	Debut acquisition
05/04/19	11:57:35	N 43° 2,27053'	E 5° 25,65954'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Incident	Procedure evitement
05/04/19	12:12:00	N 43° 2,26879'	E 5° 25,73338'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	AUV au fond	Reprise acquisition
05/04/19	12:16:00	N 43° 2,2334'	E 5° 25,77149'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Incident	Procédure remontée
05/04/19	12:35:00	N 43° 2,22638'	E 5° 25,89939'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Incident	L'AUV redescend
05/04/19	12:43:00	N 43° 2,22566'	E 5° 25,94187'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Incident	L'AUV remonte vers la surface car le fond est trop escarpé. L'acquisition reprendra sur le segment suivant sur des fonds plus plats.
05/04/19	13:12:37	N 43° 2,28373'	E 5° 26,04305'	-	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Incident	AUV en surface
05/04/19	13:41:27	N 43° 2,29735'	E 5° 26,21595'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	AUV au fond	Debut d'acquisition
05/04/19	14:15:00	N 43° 2,87111'	E 5° 27,3578'	_	Opération	AUV-Sondeur sédiment	de	Plongée 426-01	CASSISED-19-	Fin de Plongee	

5.2.3 Samedi 6 avril 2019

06/04/19 Navire à quai pour cause de mauvais temps

5.2.4 Dimanche 7 avril 2019

07/04/19	07:30:24	N 43° 2,46847'	E 5° 38,86324'	107	Opération	MASTODON- Mouillage		MASTODC	DN C	Mise a MASTODON	l'eau	
07/04/19	07:38:28	N 43° 2,25313'	E 5° 39,36344'	99	Opération	MASTODON- Mouillage		MASTODC	DN C	Largue- MASTODON		Largué 33 m après point théorique Position navire : N43° 2,46847' - E005° 38,86324' Profondeur : 99 m
07/04/19	08:43:07	N 43° 7,21226'	E 5° 30,86462'	167	Opération	MASTODON- Mouillage		MASTODO)N D	Mise a MASTODON	l'eau	
07/04/19	08:52:32	N 43° 7,38744'	E 5° 30,30721'	188	Opération	MASTODON- Mouillage		MASTODC	DN D	Largue- MASTODON		Largué 65 m après point théorique Position navire : N43° 7,38744' - E005° 30,30721' Profondeur : 188 m
07/04/19	09:18:41	N 43° 5,95922'	E 5° 26,32675'	119	Opération	MASTODON- Mouillage		MASTODC	DN B	Mise a MASTODON	l'eau	
07/04/19	09:27:01	N 43° 6,20518'	E 5° 26,85731'	123	Opération	MASTODON- Mouillage		MASTODC	DN B	Largue- MASTODON		Largué 40 m après point théorique Position navire : N43° 6,20518' - E005° 26,85731'
07/04/19	09:45:47	N 43° 8,78185'	E 5° 26,25876'	108	Opération	MASTODON- Mouillage		MASTODC	DN E	Mise a MASTODON	l'eau	
07/04/19	09:55:27	N 43° 8,48397'	E 5° 26,75005'	180	Opération	MASTODON- Mouillage		MASTODC	DN E	Largue- MASTODON		Largué 56 m après point théorique Position navire : N43° 8,48397' - E005° 26,75005'
07/04/19	10:00:00											Houle trop forte pour mise à l'eau de l'AUV, stand-by
07/04/19	13:00:00											Houle trop forte, retour vers Marseille
5.2.5 Lu	undi 8 avril 2	2019										
08/04/19	06:29:49	N 43° 6,87926'	E 5° 28,90769'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	Mise a l'eau		Plongee n°2
08/04/19	06:30:21	N 43° 6,88213'	E 5° 28,89203'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	Debut de Plo	ongee	
08/04/19	06:48:00	N 43° 6,83744'	E 5° 29,14982'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	AUV au debut de pro	fond- ofil	Plongee 2 debut de profil

08/04/19	07:53:17	N 43° 8,05958'	E 5° 30,86207'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	Incident- procédure d'évitement	L'AUV remonte légèrement
08/04/19	08:01:15	N 43° 8,18545'	E 5° 30,77449'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	Reprise de profil	Reprise de profil
08/04/19	08:07:00	N 43° 8,29969'	E 5° 30,64862'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	AUV au fond	
08/04/19	08:41:44	N 43° 8,23286'	E 5° 30,73595'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	Incident	Remontée AUV pour verification: alarme défaut charge utile (SDS)
08/04/19	08:57:00	N 43° 8,24461'	E 5° 30,5848'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	AUV descend	
08/04/19	09:07:00	N 43° 8,18784'	E 5° 30,58543'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	AUV au fond	Reprise du profil
08/04/19	11:58:01	N 43° 4,38445'	E 5° 28,01504'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	Incident- Remontée AUV pour verification: alarme défaut charge utile (SDS)	Message defaut charge utile (SDS), l'AUV remonte
08/04/19	12:18:33	N 43° 4,22545'	E 5° 27,88939'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	AUV en surface	
08/04/19	12:44:05	N 43° 4,06163'	E 5° 28,00793'	_	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	AUV au fond	Reprise du profil
08/04/19	13:18:14	N 43° 3,37832'	E 5° 27,64342'	-	Opération	AUV-Sondeur sédiment	de	Plongée 427-02	CASSISED-19-	Fin de Plongée	
5.2.6	Mardi 9 avri	l 2019									
09/04/19	Débarqueme	nt AUV AsterX (Sond	eur de sédiment ECI	HOES 5000),	embarquement A	AUV IdefX (Sondeur	multi	ifaisceaux I	EM2040)		

5.2.7 Mercredi 10 avril 2019

10/04/19	07:34:42	N 43° 8,30191'	E 5° 32,12238'	-	Observation	AUV-EM2040	Plongée IX-249-01	CASSISED-19-	Arrivée sur site	Arrivee sur site
10/04/19	08:07:00	N 43° 8,76095'	E 5° 31,9213'	_	Opération	AUV-EM2040	Plongée IX-249-01	CASSISED-19-	Mise a l'eau	Charge multifaisceaux EM2040
10/04/19	08:10:55	N 43° 8,84366'	E 5° 31,91383'	_	Opération	AUV-EM2040	Plongée IX-249-01	CASSISED-19-	Debut de descente	Debut de Plongee

10/04/10	08.22.18	N 42º 0 04660'	E 5º 21 90208'		Onóration		Plongée	CASSISED-19-	Incident-remontée	Pomontáo on surfaco
10/04/19	08.22.18	N 43 9,04009	LJ 31,09390	-	Operation	A0V-LIVI2040	IX-249-01		en surface	Remonitee en surface
10/04/10	00.25.00				Onfration	ALIV EN2040	Plongée	CASSISED-19-	ALIV av fand	Début de Diensee
10/04/19	08.25.00	N 43 9,00355	E 5 31,79490	-	Operation	AUV-EIVI2040	IX-249-01		AUV au Ionu	Debut de Plongee
40/04/40		N 428 7 74066	F F8 20 24022		0	ALIN (EN 120 40	Plongée	CASSISED-19-	ALIN (F ield allows (a
10/04/19	14:41:01	N 43° 7,74966	E 5° 30,21922	-	Operation	AUV-EMI2040	IX-249-01		AUV en surface	Fin de plongee

5.2.8 Jeudi 11 avril 2019

11/04/19 Navire à quai pour cause de mauvais temps

5.2.9 Vendredi 12 avril 2019

12/04/19	06:18:08	N 43° 7,77386'	E 5° 30,05233'	-	Opération	AUV-EM2040	Plongée CASSIS IX-250-02	SISED-19-	Vise a l'eau	Plongee n°4: charge faisceaux EM2040	utile	mulit-
12/04/19	06:34:37	N 43° 7,74118'	E 5° 30,11425'	_	Opération	AUV-EM2040	Plongée CASSIS IX-250-02	ISED-19-	Debut de Plongee			
12/04/19	06:44:51	N 43° 7,85201'	E 5° 30,38023'	-	Opération	AUV-EM2040	Plongée CASSIS IX-250-02	SISED-19-	AUV au fond			
12/04/19	13:50:00	N 43° 1,4372'	E 5° 25,25667'	_	Opération	AUV-EM2040	Plongée CASSIS IX-250-02	SISED-19-	Fin de Plongee			
12/04/19	14:10:00	N 43° 1,39159'	E 5° 24,73807'	_	Opération	AUV-EM2040	Plongée CASSIS IX-250-02	SISED-19-	AUV en surface			
12/04/19	14:30:00	N 43° 1,37958'	E 5° 24,81509'	-	Opération	AUV-EM2040	Plongée CASSIS IX-250-02	SISED-19-	AUV a Bord			

5.2.10 Samedi 13 avril 2019

13/04/19	06:12:25	N 43° 7,1698'	E 5° 28,89364'	Opération	AUV-EM2040	Plongée CASSISE IX-251-03	SED-19-	Mise a l'eau	Plongee n°5 : multifaisceaux EM2040
13/04/19	06:24:10	N 43° 7,11791'	E 5° 28,5554'	Opération	AUV-EM2040	Plongée CASSISE IX-251-03	SED-19-	Debut de Plongee	
13/04/19	06:38:13	N 43° 7,21718'	E 5° 29,01403'	Opération	AUV-EM2040	Plongée CASSISE IX-251-03	SED-19-	AUV au fond	
13/04/19	07:56:00	N 43° 3,94018'	E 5° 27,59342'	Opération	AUV-EM2040	Plongée CASSISE IX-251-03	SED-19-	Fin de Plongee	Mauvaise méteo, plongée stoppée
13/04/19	08:24:03	N 43° 3,77667'	E 5° 27,3647'	Opération	AUV-EM2040	Plongée CASSISE IX-251-03	SED-19-	AUV en surface	

5.2.11 Dimanche 14 avril 2019

14/04/19 Navire à quai pour cause de mauvais temps

5.2.12 Lundi 15 avril 2019

15/04/19 Débarquement AUV IdefX (Sondeur multifaisceaux EM2040)

5.2.13 Mardi 16 avril 2019

16/04/19 Embarquement carottier multi-tube Fantacore (4 tubes)

5.2.14 Mercredi 17 avril 2019

17/04/19	07:29:38	N 43° 7,86788'	E 5° 30,52051'	_	Opération	Carottier Kullenberg	EU19CSD-KS01	Mise a l'eau Kullenberg	
17/04/19	07:42:22	N 43° 7,87905'	E 5° 30,53839'	466	Opération	Carottier Kullenberg	EU19CSD-KS01	Declenchement Kullenberg	Carotte : EU19CSD-KS01 Position navire : N43° 7,87905' E005° 30,53839' Profondeur : 466 m Longueur : 3,51 m
17/04/19	07:55:58	N 43° 7,86206'	E 5° 30,53136'	-	Opération	Carottier Kullenberg	EU19CSD-KS01	A bord Kullenberg	
17/04/19	09:25:44	N 43° 7,90182'	E 5° 30,33778'	492	Opération	Carottier Kullenberg	EU19CSD-KS02	Declenchement Kullenberg	Carotte : EU19CSD-KS02 Position navire : N43° 7,90182' - E005° 30,33778' Profondeur : 492 m Longueur : 4,36 m
17/04/19	11:36:25	N 43° 7,92877'	E 5° 30,13304'	_	Opération	Carottier Kullenberg	EU19CSD-KS02	Mise a l'eau Kullenberg	
17/04/19	11:49:16	N 43° 7,92483'	E 5° 30,14995'	510	Opération	Carottier Kullenberg	EU19CSD-KS03	Declenchement Kullenberg	Carotte : EU19CSD-KS03 Position navire : N43° 7,92483' - E005° 30,14995' Profondeur : 510 m Longueur : 4,34 m
17/04/19	12:07:43	N 43° 7,82965'	E 5° 30,2036'	_	Opération	Carottier Kullenberg	EU19CSD-KS03	A bord Kullenberg	

17/04/19	14:14:08	N 43° 7,89'	E 5° 29,90543'		Opération	Carottier multi-tube FANTACORE	ED19CSD-MTB01	Mise a FANTACORE	l'eau	
17/04/19	14:28:31	N 43° 7,87282'	E 5° 29,9089'	537	Opération	Carottier multi-tube FANTACORE	ED19CSD-MTB01	Au FANTACORE	fond	2 carottes conservées : EU19CSD-MTB01-A (60 cm) EU19CSD-MTB01-B (60 cm) Position navire : N43° 7,87282' - E005° 29,9089' Profondeur : 537 m
5.2.15 J	eudi 18 avril	2019								
18/04/19	07:30:43	N 43° 1,44668'	E 5° 25,36354'	-	Opération	Carottier multi-tube FANTACORE	ED19CSD-MTB02	Mise a FANTACORE	l'eau	
18/04/19	08:12:28	N 43° 1,41206'	E 5° 25,30379'	1648	Opération	Carottier multi-tube FANTACORE	ED19CSD-MTB02	Au FANTACORE	fond	3 carottes conservées : EU19CSD-MTB02-A (36 cm) EU19CSD-MTB02-B (45 cm) EU19CSD-MTB02-C (45 cm) Position navire : N43° 1,41206' - E005° 25,30379' Profondeur : 1648 m
18/04/19	09:47:00	N 42° 55,59924'	E 5° 27,04715'	-	Observation					Archivage suspendu: pas de navigation.
18/04/19	11:13:33	N 42° 54,30841'	E 5° 27,43432'	1652	Opération	Carottier multi-tube FANTACORE	ED19CSD-MTB03	Au FANTACORE	fond	Tubes quasi vides : 1 sachet conservé EU19CSD-MTB03 (sachet) Position GAPS : N42° 24.3337' – E005°27.3915' Sonde : 1652 m
18/04/19	12:36:58	N 42° 54,39198'	E 5° 27,48083'	-	Opération	Carottier multi-tube FANTACORE	ED19CSD-MTB04	Mise a FANTACORE	l'eau	
18/04/19	13:08:25	N 42° 54,30725'	E 5° 27,43825'	1659	Opération	Carottier multi-tube FANTACORE	ED19CSD-MTB04	Au FANTACORE	fond	3 carottes conservées : EU19CSD-MTB04-A (33 cm) EU19CSD-MTB04-B (31 cm) EU19CSD-MTB04-C (30 cm) Position GAPS : N42° 54.3263' - E005°27.4220' Sonde : 1659 m

5.2.16 Vendredi 19 avril 2019

19/04/19 Navire à quai pour cause de mauvais temps

5.2.17 Samedi 20 avril 2019

20/04/19 Navire à quai pour cause de mauvais temps

5.2.18 Dimanche 21 avril 2019

21/04/19 Navire à quai pour cause de mauvais temps

5.2.19 Lundi 22 avril 2019

22/04/19 Mobilisation-démobilisation marins Génavir

5.2.20 Mardi 23 avril 2019

23/04/2019 Navire à quai pour cause de mauvais temps

5.2.21 Mercredi 24 avril 2019

24/04/2019 Navire à quai pour cause de mauvais temps

5.2.22 Jeudi 25 avril 2019

25/04/2019 Démobilisation : débarquement du personnel et du matériel

5.3 CASSISED-2019-3, du 25 au 29 août 2019, N/O L'Europe

5.3.1 Dimanche 25 août 2019

25/08/19 Embarquement du matériel

5.3.2 Lundi 26 août 2019

26/08/19	08:15:00	N 43° 4,67401'	E 5° 31,55646'	-	Observation	MASTODON- Mouillage	MASTODON C		Passage sur le site mais nous sommes trop tot pour le rendez-vous
26/08/19	08:45:00	N 43° 6,04027'	E 5° 27,27176'	_	Observation	MASTODON- Mouillage	MASTODON E		Arrivée site Mastodon E - rien en surface
26/08/19	09:15:00	N 43° 6,1057'	E 5° 26,89753'	_	Observation	MASTODON- Mouillage	MASTODON B		Arrivee site Mastodon B - Rien en surface
26/08/19	10:00:00	N 43° 7,49723'	E 5° 29,9051'	_	Observation	MASTODON- Mouillage	MASTODON D		Arrivee site mastodon D - rien en surface
26/08/19	11:05:59	N 43° 8,30573'	E 5° 30,82483'	_	Observation	PEERGYNT- Mouillage	CSD-PGT01		Arrivée sur site CSD-PGT01
26/08/19	11:11:42	N 43° 8,27276'	E 5° 30,90055'	_	Opération	PEERGYNT- Mouillage	CSD-PGT01	En surface	CSD-PGT01
26/08/19	11:36:19	N 43° 8,20908'	E 5° 30,92398'	_	Opération	PEERGYNT- Mouillage	CSD-PGT01	A bord	Il y a du sédiment rougeâtre sur le flotteur (ADCP) et sur le piège à sédiment. Le câble entre le piège et le largueur est très rouge
26/08/19	11:47:22	N 43° 8,36346'	E 5° 30,9808'	_	Observation				On fait route vers le site du mouillage CSD-CAGE01
26/08/19	12:52:29	N 43° 8,70197'	E 5° 32,03546'	-	Observation	ADCP 300 kHz Cage	CSD-CAGE01		InterrogationsCSD-CAGE01infructueuses pendant30-45 minutes.On abandonne et on fait route sur lessites Mastodon
26/08/19	13:14:34	N 43° 7,46015'	E 5° 29,97295'	_	Observation	MASTODON- Mouillage	MASTODON D		Recherche Mastodon D infructueuse
26/08/19	13:38:08	N 43° 8,30672'	E 5° 26,87677'	_	Observation	MASTODON- Mouillage	MASTODON E		Recherche Mastodon E infructueuse
26/08/19	14:05:46	N 43° 6,39872'	E 5° 26,95789'	_	Observation	MASTODON- Mouillage	MASTODON B		Recherche Mastodon B infructueuse
26/08/19	14:34:24	N 43° 8,23288'	E 5° 30,75546'	423	Opération	BATHYSONDE SBE25	EU19CSD-CTD05	Début filage	CSD-CTD05 même site que PeerGynt PGT-CSD01
26/08/19	14:45:28	N 43° 8,23097'	E 5° 30,79447'	_	Observation	BATHYSONDE NISKIN	EU19CSD-CTD05-B1		Bouteille n°1 à 5 m d'altitude
26/08/19	14:46:58	N 43° 8,22487'	E 5° 30,79546'	_	Observation	BATHYSONDE NISKIN	EU19CSD-CTD05-B2		Bouteille n°2 à 30 md'altitude

26/08/19	14:59:06	N 43° 8,22553'	E 5° 30,85693'	_	Observation	BATHYSONDE SBE28	EU19CSD-CTD05		CTD à bord
26/08/19	15:00:24	N 43° 8,27766'	E 5° 30,86219'	_	Observation	ADCP 300 kHz Cage	CSD-CAGE01		On retourne sur le site CSD-CAGE01 pour tenter une interrogation
26/08/19	15:22:07	N 43° 8,8357'	E 5° 32,30655'	-	Observation	ADCP 300 kHz Cage	CSD-CAGE01		Site CSD-CAGE01 interrogation infructueuse
26/08/19	15:23:22	N 43° 8,86356'	E 5° 32,30421'	_	Observation				En route vers site CSD-CTD04 du leg 1
26/08/19	15:36:18	N 43° 8,6999'	E 5° 32,00498'	90	Opération	BATHYSONDE SBE25	EU19CSD-CTD06	Début filage	Même site que CSD-CTD04 du leg1 à proximité site CSD-CAGE01
26/08/19	15:39:56	N 43° 8,7055'	E 5° 32,0192'	_	Observation	BATHYSONDE NISKIN	EU19CSD-CTD06-B1		Bouteille n°1 vers 20 m d'altitude (l'altimètre fluctue) à vérifier
26/08/19	15:41:16	N 43° 8,71277'	E 5° 32,02573'	-	Observation	BATHYSONDE NISKIN	EU19CSD-CTD06-B1		Bouteille n°2 à 37 m d'altitude
26/08/19	15:45:02	N 43° 8,73744'	E 5° 32,03066'	-	Opération	BATHYSONDE SBE25	EU19CSD-CTD06	Fin de filage	
26/08/19	15:47:03	N 43° 8,69551'	E 5° 32,08757'	85	Observation	MASTODON- Mouillage	MASTODON C		En route vers site Mastodon C
26/08/19	17:38:44	N 43° 2,29069'	E 5° 39,19858'	100	Observation	MASTODON- Mouillage	MASTODON C		Le mouillage est en surface. La récupération se fera demain matin
5.3.3 N	1ardi 27 aoi	ût 2019							
27/08/19	05:10:39	N 43° 2,1386'	E 5° 37,9156'	-	Opération	MASTODON- Mouillage	MASTODON C	A bord	Ligne cassee ‡ la remontée. Uniquement 5 thermomètres de récupérées
27/08/19	05:20:00	-	-	_	Observation				Route vers site CSD-PGT02 (PeerGynt)
27/08/19	06:24:30	N 43° 1,4258'	E 5° 25,20624'	1430	Opération	PEERGYNT- Mouillage	CSD-PGT02	Largué	Le mouillage remonte
27/08/19	06:52:52	N 43° 1,3733'	E 5° 25,24576'	1401	Opération	PEERGYNT- Mouillage	CSD-PGT02	En surface	CSD-PGT02 en surface
27/08/19	07:17:08	N 43° 1,39993'	E 5° 24,91414'	1429	Opération	PEERGYNT- Mouillage	CSD-PGT02	A bord	
27/08/19	07:59:12	N 43° 1,26331'	E 5° 25,307'	1497	Opération	BATHYSONDE SBE25	EU19CSD-CTD07	Début filage	Site CSD-PGT02 (PeerGynt 2) et CSD- CTD02
27/08/19	08:42:04	N 43° 1,37527'	E 5° 25,35281'	1348	Opération	BATHYSONDE NISKIN	EU19CSD-CTD07-B1	Bouteille Niskin	Bouteille n°1 à 5 m d'altitude

27/08/19	08:44:47	N 43° 1,38237'	E 5° 25,34518'	1345	Opération	BATHYSONDE NISKIN	EU19CSD-CTD07-B2	Bouteille Niskin	Bouteille n°2 à 30 m d'altitude
27/08/19	09:25:00	N 43° 1,48388'	E 5° 24,92668'	1390	Opération	BATHYSONDE SBE25	EU19CSD-CTD07	Fin de filage	CTD a bord
27/08/19	09:25:00	N 43° 1,48388'	E 5° 24,92668'	_	Observation				En route vers mouillage Aniitra CSD- ANT01
27/08/19	11:08:57	N 42° 56,38138'	E 5° 24,66768'	-	Opération	ANIITRA-Mouillage	CSD-ANT01	Largue	Mouillage Aniitra CSD-ANT01 largué
27/08/19	11:49:36	N 42° 56,2478'	E 5° 25,38691'	_	Opération	ANIITRA-Mouillage	CSD-ANT01	En surface	
27/08/19	12:24:33	N 42° 56,54386'	E 5° 24,87713'	-	Opération	ANIITRA-Mouillage	CSD-ANT01	A bord	
27/08/19	12:25:00	N 42° 56,60864'	E 5° 24,88387'	_	Observation				On fait route vers sites Mastodon B, D et E
27/08/19	13:32:29	N 43° 6,27679'	E 5° 26,82822'	_	Observation	MASTODON- Mouillage	MASTODON B		Mastodon B, recherche infructueuse
27/08/19	13:52:27	N 43° 8,42842'	E 5° 26,8234'	_	Observation	MASTODON- Mouillage	MASTODON E		Mastodon E, recherche infructueuse
27/08/19	14:15:51	N 43° 7,25604'	E 5° 30,58607'	_	Observation	MASTODON- Mouillage	MASTODON D		Mastodon D, recherche infructueuse
5.3.4 N	Aercredi 28	août 2019							
28/08/19	07:26:41	N 43° 7,95208'	E 5° 26,83625'	_	Observation	MASTODON- Mouillage	MASTODON E		Mastodon E, recherche infructueuse
28/08/19	07:40:45	N 43° 6,116'	E 5° 26,81466'	-	Observation	MASTODON- Mouillage	MASTODON B		Mastodon B, recherche infructueuse
28/08/19	08:04:58	N 43° 7,46115'	E 5° 30,69839'	_	Observation	MASTODON- Mouillage	MASTODON D		Mastodon D, recherche infructueuse
28/08/19	08:06:13	N 43° 7,56921'	E 5° 30,90337'		Observation	ADCP 300 kHz Cage	CSD-CAGE01		Route vers mouillage CSD-CAGE01 (ADCP 300 kHz) pour essais communication et larguage. 4 points à 250 m de distance prévus
28/08/19	08:25:35	N 43° 8,61325'	E 5° 32,20525'	83	Observation	ADCP 300 kHz Cage	CSD-CAGE01	Interrogation largueur	Mouillage CSD-CAG01, interrogation et largage infructueux
28/08/19	08:32:33	N 43° 8,77746'	E 5° 32,04368'	87	Observation	ADCP 300 kHz Cage	CSD-CAGE01	Interrogation largueur	Mouillage CSD-CAGE01, interrogation et largage infructueux

28/08/19	08:40:50	N 43° 8,89678'	E 5° 32,26016'	82	Observation	ADCP 300 kHz Cage	CSD-CAGE01	Interrogation largueur	Mouillage CDS-CAGE01, interrogation et largage infructueux
28/08/19	08:51:08	N 43° 8,78486'	E 5° 32,43295'	72	Observation	ADCP 300 kHz Cage	CSD-CAGE01	Interrogation largueur	Mouillage CSD-CAGE01, interrogation et largage infructueux
28/08/19	09:38:55	N 43° 7,97601'	E 5° 29,99647'	540	Opération	BATHYSONDE SBE25	EU19CSD-CTD08	Début filage	Sur site CSD-CTD03, à proximité de l'émissaire
28/08/19	09:53:38	N 43° 7,96225'	E 5° 29,98755'	_	Opération	BATHYSONDE NISKIN	EU19CSD-CTD08-B1	Bouteille Niskin	Bouteille à 5 m d'altitude
28/08/19	09:55:32	N 43° 7,95928'	E 5° 29,98967'	_	Opération	BATHYSONDE NISKIN	EU19CSD-CTD08-B2	Bouteille Niskin	Bouteille à 31 m d'altitude
28/08/19	10:12:48	N 43° 7,82426'	E 5° 29,9023'	-	Observation	BATHYSONDE SBE25	EU19CSD-CTD08		CSD-CTD08 a bord
28/08/19	11:54:47	N 42° 56,1658'	E 5° 25,54484'	1912	Opération	BATHYSONDE SBE25	EU19CSD-CTD09	Début filage	Sur Site Aniitra CSD-ANT01 et CSD-CTD01
28/08/19	12:41:24	N 42° 56,1685'	E 5° 25,54106'	_	Opération	BATHYSONDE NISKIN	EU19CSD-CTD09-B1	Bouteille Niskin	bouteille à 5 m d'altitude
28/08/19	12:42:58	N 42° 56,16779'	E 5° 25,54599'	-	Opération	BATHYSONDE NISKIN	EU19CSD-CTD09-B2	Bouteille Niskin	Bouteille à 30 m d'altitude
28/08/19	13:31:13	N 42° 56,16436'	E 5° 25,50935'	_	Observation	BATHYSONDE SBE25	EU19CSD-CTD09		CSD-CTD09 a bord
28/08/19	13:35:00	N 42° 56,23585'	E 5° 25,91756'	_	Observation				Le bateau fait routes vers La Seyne - Fin de campagne

5.3.5 Jeudi 29 août 2019

29/08/19 Débarquement du matériel

29/08/19 Embarquemebnt du Multi-tube Fantacore (4 tubes) sur le N/O Téthys II

5.4 CASSISED-2019-4, du 30 août au 1er septembre 2019, N/O Téthys II

5.4.1 Vendredi 30 août 2019

30/08/19 05:30:00

Observation

30/08/19 09:05:00

Départ de La Seyne-sur-Mer

Mise a l'eau FANTACORE

30/08/19	09:22:00	N 43° 0,597'	E 5° 23,470'	1239	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB05	Au fond FANTACORE	3 carottes conservées : TT19CSD-MTB05-A (60 cm) TT19CSD-MTB05-B (60 cm) TT19CSD-MTB05-C (60 cm) Position navire : N43° 0,597' - E 005° 23,470 Profondeur : 1239 m - Ligne filée : 1250 m
30/08/19	09:48:00	-	-	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB05	A bord FANTACORE	Route vers le point suivant
30/08/19	11:25:00	-	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB06	Mise a l'eau FANTACORE	
30/08/19	11:46:00	N 43° 0,5461'	E 5° 24,5242'	1461	Observation				Le navire se recale sur le point (ligne filée 1200 m). Reprise de filage tout en se déplaçant
30/08/19	12:06:00	N 43° 0,461'	E 5° 24,601'	1535	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB06	Au fond FANTACORE	
30/08/19	12:30:00	-	-	_		Carottier multi-tube FANTACORE	TT19CSD-MTB06	A bord FANTACORE	Tubes vides, non déclenché. Problème de fonctionnement du largueur ? Ligne filée : 1546. On recommence
30/08/19	12:45:00	_	-	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB06	Mise a l'eau FANTACORE	Même site
30/08/19	13:22:00	N 43° 0,392'	E 5° 24,712'	_	Opération	Carottier multi-tube FANTACORE	Carottier multi-tube FANTACORE	Au fond FANTACORE	
30/08/19	13:50:00	-	-	_	Opération	Carottier multi-tube FANTACORE	Carottier multi-tube FANTACORE	A bord FANTACORE	Tubes vides. Sondeur 12 kHz coupé pour éviter interférences avec le largueur acoustique. Ligne filée : 1546 m. On recommence
30/08/19	14:13:00	-	-	_	Opération	Carottier multi-tube FANTACORE	Carottier multi-tube FANTACORE	Mise a l'eau FANTACORE	Même site

30/08/19	14:52:00	N 43° 0,461'	E 5° 24,727'	1540	Opération	Carottier multi-tube FANTACORE	Carottier FANTACORE	multi-tube	Au fond FANTACORE	TT19CSD-MTB06-A (34 cm) TT19CSD-MTB06-B (13 cm) Position navire : N43° 0,461' - E5° 24,727' Profondeur : 1540 m - Ligne filée :
30/08/19	15:20:00				Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	306	A bord FANTACORE	2 trappes non fermées; 2 trappes partiellement fermées
30/08/19	16:02:00	-	-	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	307	Mise a l'eau FANTACORE	Nouveau site
30/08/19	16:45:00	N 43° 0,384'	E 5° 25,117'	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	307	Au fond FANTACORE	Ligne filée : 1710 m
30/08/19	17:21:00	-	-	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	307	A bord FANTACORE	Largueur pas déclenché. Peut-être blocage à cause de la pénétration du carottier dans le sédiment ?
30/08/19	18:24:00	-	-	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	307	Mise a l'eau FANTACORE	Nouvel essai sur le même site avec moins de lest (14 kg)
30/08/19	19:22:00	N 43° 0,266'	E 5° 25,152'	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	307	Au fond FANTACORE	Ligne filée : 1712 m
30/08/19	19:50:00	_	-	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	307	A bord FANTACORE	Tubes vides. Largueur déclenché mais apparement pas de pénétration.
5.4.2 S	amedi 31 ac	oût 2019								
31/08/19	05:25:00	-	-	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	307	Mise a l'eau FANTACORE	Nouveau site avec totalité du lest
31/08/19	06:16:00	N 42° 51,059'	E 5° 27,866'	2107	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	307	Au fond FANTACORE	3 carottes conservées : TT19CSD-MTB07-A (18 cm) TT19CSD-MTB07-B (18 cm) TT19CSD-MTB07-C (18 cm) Position navire : N42° 51,059' - E5° 27,866' Profondeur : 2107 m - Ligne filée : 2060 m
31/08/19	06:51:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTE	307	A bord FANTACORE	Fonctionnement ok
31/08/19	07:30:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MT	308	Mise a l'eau FANTACORE	Nouveau site

31/08/19	07:57:00	N 42° 52,509'	E 5° 30,847'	1895	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB08	Au fond FANTACORE	TT19CSD-MTB08-A (28 cm) TT19CSD-MTB08-B (28 cm) TT19CSD-MTB08-C (28 cm) Position navire : N42° 52,509' - E5° 30,847' Profondeur : 1895 m - Ligne filée : 1910 m
31/08/19	08:30:00	-	_	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB08	A bord FANTACORE	Fonctionnement ok
31/08/19	09:00:00	-	_	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB09	Mise a l'eau FANTACORE	Nouveau site
31/08/19	09:45:00	N 42° 54,056'	E 5° 32,563'	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB09	Au fond FANTACORE	Ligne filée : 2047 m
31/08/19	10:17:00	-	-	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB09	A bord FANTACORE	Pas déclenché mais boue grise sur les pieds et boue rouge sur la structure. Le carottier a probablement été tracté sur le fond
31/08/19	11:04:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB09	Mise a l'eau FANTACORE	Nouveau site
31/08/19	11:38:00	N 42° 52,051'	E 5° 37,668'	2112	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB09	Au fond FANTACORE	3 carottes conservées : TT19CSD-MTB09-A TT19CSD-MTB09-B TT19CSD-MTB09-C Position navire : N42° 52,051' - E5° 37,668' Profondeur : 2112 m - Ligne filée : 2106 m
31/08/19	12:11:00	_	-	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB09	A bord FANTACORE	Fonctionnement ok
31/08/19	11:04:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB09	Mise a l'eau FANTACORE	Nouveau site

31/08/19	11:38:00	N 42° 52,051'	E 5° 37,668'	2112	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB09	Au fond FANTACORE	TT19CSD-MTB09-A TT19CSD-MTB09-B TT19CSD-MTB09-C Position navire : N42° 52,051' - E5° 37,668' Profondeur : 2112 m - Ligne filée : 2106 m
31/08/19	12:11:00	_	_	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB09	A bord FANTACORE	Fonctionnement ok
31/08/19	13:10:00	_	_	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB10	Mise a l'eau FANTACORE	Nouveau site
31/08/19	13:40:00	N 42° 53,148'	E 5° 29,805'	1838	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB10	Au fond FANTACORE	2 carottes conservées : TT19CSD-MTB10-A (42 cm) TT19CSD-MTB10-B (43 cm) Position navire : N42° 53,148' - E5° 29,805' Profondeur : 1838 m - Ligne filée : 1812 m
31/08/19	14:15:00	-	-	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB10	A bord FANTACORE	Fonctionnement ok
31/08/19	15:02:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB11	Mise a l'eau FANTACORE	Nouveau site
31/08/19	15:37:00	N 42° 53,749'	E 5° 28,897'	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB11	Au fond FANTACORE	Ligne filée : 1810 m
31/08/19	16:08:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB11	A bord FANTACORE	Pas déclenché. Boue grise sur les pieds. La vidéo montre que le carottier a été tracté sur le fond
31/08/19	16:36:00	-	-	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB11	Mise a l'eau FANTACORE	Même site
31/08/19	17:02:00	N 42° 53,905'	E 5° 28,802'	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB11	Au fond FANTACORE	Ligne filée : 1798 m
31/08/19	17:30:00	-	-	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB11	A bord FANTACORE	Pénétré mais pas déclenché. La vidéo montre beaucoup de turbulence sur le fond, le carottier s'est bien posé. Pas d'explication.
31/08/19	18:38:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB11	Mise a l'eau FANTACORE	Nouveau site

31/08/19	19:01:00	N 42° 55,509'	E 5° 24,533'	1493	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB11	Au fond FANTACORE	TT19CSD-MTB11-A (20 cm) TT19CSD-MTB11-B (23 cm) Position navire : N42° 55,509' - E5° 24,533' Profondeur : 1493 m - Ligne filée : 1481 m
31/08/19	14:15:00	-	-	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB11	A bord FANTACORE	Fonctionnement ok
5.4.3 D	imanche 1e	er septembre 2	2019						
01/09/19	05:20:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB12	Mise a l'eau FANTACORE	Nouveau site
01/09/19	05:40:00	N 42° 56,648'	E 5° 22,477'	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB12	Au fond FANTACORE	Ligne filée : 1261 m
01/09/19	06:00:00	-	_	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB12	A bord FANTACORE	Déclenché mais pas pénétré. La vidéo montre que le carottier est instable (tracté sur le fond)
01/09/19	07:03:00	-	-	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB12	Mise a l'eau FANTACORE	Nouveau site
01/09/19	07:29:00	N 42° 54,634'	E 5° 26,036'	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB12	Au fond FANTACORE	Ligne filée : 1615 m
01/09/19	07:50:00	-	_	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB12	A bord FANTACORE	Tubes vides. Boue sur 2 pieds. La vidéo montre que le carottier a été tracté sur le fond.
01/09/19	08:46:00	-	_	-	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB12	Mise a l'eau FANTACORE	Même site. Au posé le filage sera accéléré pour conserver du mou dans le cable.
01/09/19	09:09:00	N 42° 54,651'	E 5° 25,832'	1617	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB12	Au fond FANTACORE	2 carottes conservées : TT19CSD-MTB12-A (23 cm) TT19CSD-MTB12-B (23 cm) Position navire : N42° 54,651' - E5° 25,832' Profondeur : 1617 m - Ligne filée : 1605 m
01/09/19	09:35:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB12	A bord FANTACORE	Fonctionnement ok
01/09/19	10:09:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB13	Mise a l'eau FANTACORE	Nouveau site

01/09/19	10:38:00	N 42° 53,623'	E 5° 24,991'	1927	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB13	Au fond FANTACORE	TT19CSD-MTB13-A TT19CSD-MTB13-B Position navire : N42° 53,623' - E5° 24,991' Profondeur : 1927 m - Ligne filée : 1946 m
01/09/19	11:10:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB13	A bord FANTACORE	Fonctionnement ok
01/09/19	12:10:00	_	_	_	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB14	Mise a l'eau FANTACORE	Nouveau site, essais sans largueur acoustique
01/09/19	12:43:00	N 42° 49,522'	E 5° 31,487'	2116	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB14	Au fond FANTACORE	Ligne filée : 2141 m
01/09/19	12:55:00	N 42° 49,486'	E 5° 31,558'	2105	Opération	Carottier multi-tube FANTACORE	TT19CSD-MTB14	A bord FANTACORE	Le carottier s'est décroché du cable après environ 1000 m de virage. Le carottier est perdu.

FIN DE MISSION

6 Résultats préliminaires

6.1 Morphologie et nature des fonds

La morphologie du canyon connue à partir de la grille bathymétrique à 10 m de résolution (Fabri, 2015; Simeoni, 2010) montrait la présence d'un chenal dans la prolongation de l'émissaire, suggérant une empreinte morphologique forte des rejets dans la tête du canyon. La nouvelle grille bathymétrique obtenue avec l'AUV permet d'obtenir une résolution de 2 m, soit 25 fois plus de sonde. Cette nouvelle grille, combinée aux grilles de même résolution acquises lors de la campagnes Bathycor2 (Fabri, 2016) offre une couverture bathymétrique complète haute résolution de la tête du canyon de Cassidaigne.

Cette nouvelle couverture bathymétrique confirme la présence d'un chenal dans la prolongation de l'émissaire. On y distingue également un deuxième chenal, à l'ouest, plus ancien car incisé par l'autre chenal à l'est. Le chenal à l'ouest s'est formé dans la prolongation de l'émissaire dit de « La Barasse » fermé depuis l'arrêt de production de l'usine de La Barasse en 1988. Les deux émissaires ont fonctionné simultanément. Les deux chenaux sont distants de 50m et fusionnent après une distance de 320 m, à une profondeur de 482 m (Figure 57 ; Figure 58 ; Figure 59).

Le chenal fait entre 5 et 20 de profondeur pour une largeur comprise entre 30 et 90 m.

Figure 57 : morphologie de la tête du canyon de Cassidaigne avec indication des caractéristiques morphologiques du chenal. Les lignes rouges et bleues indiquent respectivement les postions des profils longitudinaux des chenaux de La Barasse et de Gardanne. Les lignes noires et les numéros indiquent la position des profils bathymétriques perpendiculaires aux chenaux.

Figure 58 : Carte de détail de la morphologie des chenaux de La Barasse et de Gardanne.

Figure 59 : (gauche) profils bathymétriques longitudinaux des chenaux de La Barasse (rouge) et de Gardanne (bleu), les points noirs et les numéros indiquent la position des coupes perpendiculaires ; (droite) profils bathymétriques perpendiculaires aux chenaux.

Dans la partie profonde du canyon aucune structure pouvant être spécifiquement associées au dépôt des boues rouges n'a pu être identifiées. Cependant, la morphologie particulièrement lisse du fond du canyon peut être liée à ces dépôts sans pour autant oblitérer les morphologies importantes fossiles développées pendant le dernier bas niveau marin (Figure 60).

Figure 60 : Morphologie du fond du canyon (profondeur 1525 m). Le chenal incisé et les chenaux de drainages adjacents sont interprétés comme fossiles et hérités du dernier bas niveau marin.

La carte de réflectivité acoustique dans la tête du canyon montre des contrastes très forts avec une réflectivité forte sur les flancs et faible sur le fond. Quelques zones de très fortes réflectivités sur les flancs correspondent très probablement à des affleurements rocheux. Le chenal creusé dans la prolongation de l'émissaire montre une réflectivité forte qui est très probablement liées à la compostions des boues rouges, très différente de celle du sédiment naturel (Figure 61).

Les profils sondeur de sédiment n'ont pas permis d'identifier clairement le dépôt des boues rouges. Ce dépôt est probablement généralement moins épais que la résolution verticale du sondeur de sédiment.

Figure 61 : Carte de réflectivité acoustique de la tête du canyon montrant des contrastes forts et particulièrement de fortes réflectivités dans la prolongation de l'émissaire

Les carottes de sédiment n'ont pas encore été ouvertes. Les observations à la récupération et sur les vidéos associées montrent que les boues sont abondantes et épaisses dans le canyon, de la tête jusqu'à 2000 m de profondeur. La présence de boues rouges sur le sommet de la ride sédimentaire montre que le débordement a pu se faire vers l'ouest sur une altitude de plus de 300 m.

6.2 Colonne d'eau

L'identification et la quantification d'événements hydro-dynamiques nécessitent le traitement et le dépouillement des données de courantomètre, turbidimètres, pièges à particules et bouteilles d'eau. Néanmoins, les premières constatations sur la colonne d'eau montrent un épisode d'accumulation de particules très fort entre le 5 et 12 mars au débouché de la tête du canyon (1628 m) et dans le chenal sous-marin (1906 m), mais pas dans la tête du canyon. L'inspection visuelle des prélèvements d'eau effectués avec les bouteilles Niskin n'a pas montré de contenu particulaire visible.

6.3 Observations sur le fond

L'utilisation d'une caméra sur le carottier multi-tube a permis d'observer que les boues rouges sont présentes sur tous les sites visités. Les photos montrent généralement une remise en suspension teintée de rouge, voire un enfouissement lié à des fonds très meubles (Figure 62).

Figure 62 : Image du fond lors d'un carottage par multi-tube ; (haut) arrivée du carottier sur le fond, (milieu) caméra enfouie dans le sédiment ; (bas) extraction du carottier, à noter la teinte rouge du nuage turbide généré.

De manière inattendue, les vidéos acquises pendant les carottages ont permis de visualiser les courants de fond et d'en estimer la vitesse. Sur les clichés pris ont voit clairement que le nuage turbide généré par le carottier en se posant est évacué rapidement par le courant. A l'aide des

images de vidéo on peut calculer que le nuage se déplace à une vitesse comprise entre 17,2 et 20,6 cm/s (Figure 63).

Figure 63 : Images vidéo (FantaCam) sur le site de carottage TT19CSD-MTB008, 1895 m de profondeur, montrant le courant qui balaye le sédiment mis en suspension par l'atterrissage du carottier. En utilisant le carottier comme échelle il est possible d'estimer la vitesse du courant autour de 17-20 cm/s.

7 Liste des références bibliographiques

- Albérola, C. and Millot, C., 2003. Circulation in the French mediterranean coastal zone near Marseilles: the influence of wind and the Northern Current. Continental Shelf Research, 23(6): 587-610. https://doi.org/10.1016/S0278-4343(03)00002-5
- Bourcier, M., 1969. Ecoulement des boues rouges dans le canyon de la Cassidaigne (décembre 1968). Tethis, 1(3): 779-782.
- Dauvin, J.-C., 2003. Rapport annuel du comité scientifique de suivi résidus de traitement de bauxite (Bauxaline) AP Gardane.
- Dauvin, J.-C., 2010. Towards an impact assessment of bauxite red mud waste on the knowledge of the structure and functions of bathyal ecosystems: The example of the Cassidaigne canyon (north-western Mediterranean Sea). Marine Pollution Bulletin, 60(2): 197-206. https://doi.org/10.1016/j.marpolbul.2009.09.026
- Fabri, M.-C., 2016. BATHYCOR2 cruise, RV L'Europe. https://doi.org/10.17600/16011300
- Fabri, M.C., 2015. MNT du canyon de Cassidaigne (ESSROV 2010, résolution 10m). Ifremer centre de Méditerranée, https://doi.org/10.12770/af034154-33da-480f-aa78-817eac6563b7
- Fabri, M.C., Bargain, A., Pairaud, I., Pedel, L. and Taupier-Letage, I., 2017. Cold-water coral ecosystems in Cassidaigne Canyon: An assessment of their environmental living conditions. Deep Sea Research Part II: Topical Studies in Oceanography, 137: 436-453. https://doi.org/10.1016/j.dsr2.2016.06.006
- Fezzani, R. and Berger, L., 2018. Analysis of calibrated seafloor backscatter for habitat classification methodology and case study of 158 spots in the Bay of Biscay and Celtic Sea. Marine Geophysical Research, 39(1): 169-181. https://doi.org/10.1007/s11001-018-9342-y ; open access version: https://archimer.fr/doc/00423/53465/
- Fontanier, C., Biscara, L., Mamo, B. and Delord, E., 2015. Deep-sea benthic foraminifera in an area around the Cassidaigne Canyon (NW Mediterranean) affected by bauxite discharges. Marine Biodiversity, 45(3): 371-382. 10.1007/s12526-014-0281-9
- Marshall, J. and Schott, F., 1999. Open-ocean convection: Observations, theory, and models. Reviews of Geophysics, 37(1): 1-64. 10.1029/98rg02739
- Millot, C., 1990. The Gulf of Lions' hydrodynamics. Continental Shelf Research, 10(9): 885-894. https://doi.org/10.1016/0278-4343(90)90065-T
- Millot, C., 1999. Circulation in the Western Mediterranean Sea. Journal of Marine Systems, 20(1-4): 423-442. https://doi.org/10.1016/S0924-7963(98)00078-5
- Pairaud, I., 2017. UPCAST cruise, RV Téthys II. https://doi.org/10.17600/17009500
- Pairaud, I., Fraunie, P. and Fuchs, R., 2018. TURBIDENT 2018 cruise, RV L'Europe. https://doi.org/10.17600/18000435
- Palanques, A., Durrieu de Madron, X., Puig, P., Fabres, J., Guillen, J., Calafat, A., Canals, M., Heussner, S. and Bonnin, J., 2006. Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons. The role of storms and dense water cascading. Marine Geology, 234(1-4): 43-61. https://doi.org/10.1016/j.margeo.2006.09.002
- Palanques, A., Puig, P., Latasa, M. and Scharek, R., 2009. Deep sediment transport induced by storms and dense shelf-water cascading in the northwestern Mediterranean basin. Deep Sea Research Part I: Oceanographic Research Papers, 56(3): 425-434. https://doi.org/10.1016/j.dsr.2008.11.002
- Schaeffer, A., Garreau, P., Molcard, A., Fraunié, P. and Seity, Y., 2011. Influence of high-resolution wind forcing on hydrodynamic modeling of the Gulf of Lions. Ocean Dynamics, 61(11): 1823-1844. 10.1007/s10236-011-0442-3
- Simeoni, P., 2010. ESSROV 2010 cruise, RV Pourquoi pas ? https://doi.org/10.17600/10030090

Ulses, C., Estournel, C., Bonnin, J., Durrieu de Madron, X. and Marsaleix, P., 2008. Impact of storms and dense water cascading on shelf-slope exchanges in the Gulf of Lion (NW Mediterranean). Journal of Geophysical Research: Oceans, 113(C2): n/a-n/a. 10.1029/2006jc003795

Fiches de mise à l'eau des lignes de mouillages Aniitra et PeerGynt

Déploiement CSD_ANT 01

Date de déploiement 05/03/19 Profondeur 1906 m		Lat BUC Long BUC	42° 56,1 5° 25,5704 E	653 N			
Equipements localisation							
	Aniitra	ARGOS 126839	GONIO 72	Flash oui			
Largueurs lest	S/N	588	750				
	Largage	4A34	4664				
	Diagnostic	4A33	4663				
ADCP	75 kHz						
	N/S 8191						
Orientation sur ANIITRA	Beam 3 vers l'avant						
Whorshore Long Ranger	Moored						
depth range/max range	320						
vertical resolution (depth cell sise)	4						
number of measurement (hour)	6						
transducteur depth	1700	2000-300 m					
salinity	35						
magnetic variation	0						
temperature (-C)	5 175						
ensemble interval	00.10.00 00	10 min					
Ping Interval	00:00:02.50	2.5s					
Pings Per Ensemble	60	_,					
Number of Depth Cells	79						
start	06/03/19 00:00						
Wide or Narrow Band	Wide						
bottom track	non						
Battery Pack Usage name	10,3 CSD3						
<u>Piège à</u> particules	Modèle						
partioulos	PPS 4/3 n° 0024	24 flacons de 250 ml					
Mataurraibea	N/O	Denth					
woteur piege	N/5						
Start le 07/03/19 00:00:00		5000 m					
Rotation tous les 7 jours							

270 m entre ADCP et piège. 20 m entre piège et largueur. 10m de chaine sur lest

Chien fixé sur la structure avec des collring.

BUC fixée directement sur un anneau avec manille.

Petite garcette entre l'anneau (contre le croc) de la BUC et le haut du chien pour arracher les collring

La garcette n'était plus sur le largueur à la remontée de la BUC, le chien ne s'est pas forcément bien détaché

Programmation de l'ADCP avec BBTalk et Plan ADCP car plantage avec WinSC sur le PC de Mick

Déploiement CSD_PGT 01

Date de déploiement 05/03/19 Profondeur 440 m		Lat BUC Long BUC	43° 08,2 5° 30,7570 E	2367 N				
Equipements localisation								
<u></u>	PEARGYNT 1	ARGOS 93413	GONIO 72	Flash oui				
<u>Largueur lest</u>	S/N Largage Diagnostic	851 1695 1655						
Orientation	N/S 24484 vers le bas							
Whorshore Sentinel depth range/max range vertical resolution (depth cell sise) number of depth cell number of measurement (hour) transducteur depth salinity magnetic variation temperature (°C) duration (days) ensemble interval Ping int start Broad or Narrow Band bottom track ping per ensemble name	Moored 110 4 27 1 323 35 0 5 175 00:10:00 00:00:01 06/03/19 00:00 broad non 60 CSD1							
Piège à particules	Modèle PPS 4/3 n° 0027	24 flacons o	de 500 ml					
Moteur piège Rotation tous les 7 jours	N/S	Depth 5000 m	_					
Start le 07/03/19 00:00:00								
Turbidimètre	Référence	STBD 6000						
	N/S Programmation	39001 10 min						
70 m entre ADCP et piège. 20 m entre piège et largueur. 10m de chaine sur lest								

Programmation de l'ADCP avec BBTalk et Plan ADCP car plantage avec WinSC sur le PC de Mick

Déploiement CSD_PGT 02

Date de déploiement 05/03/19 Profondeur 1628 m		Lat BUC Long BUC	43° 01,3 5° 25,3316 E	3409 N
Equipements localisation	PEARGYNT 2	ARGOS 126840	GONIO 72	Flash oui
Largueur lest	S/N Largage Diagnostic	096 0486 0455		
ADCP	300 kHz			
Orientation	N/S 24483 vers le bas			
Whorshore Sentinel depth range/max range vertical resolution (depth cell sise) number of depth cell number of measurement (hour) transducteur depth salinity magnetic variation temperature (°C) duration (days) ensemble interval start Broad or Narrow Band bottom track ping per ensemble name	Moored 110 4 27 3 1550 35 -16 3 175 00:20:00 06/03/19 00:00 broad non 36 CSD2			
<u>Piège à particules</u>	Modèle PPS 4/3 n°0017	24 flacons o	le 500 ml	
Moteur piège	N/S	Depth		
Rotation tous les 7 jours Start le 07/03/19 00:00:00		5000 m		
Turbidimètre	Référence	STBD 6000		
	N/S	39002		
	Programmation	10 min		
70 m entre ADCP et piège. 20 m entre piège et largueur. 10m de chaine sur lest				

Programmation de l'ADCP avec BBTalk et Plan ADCP car plantage avec WinSC sur le PC de Mick

Fiche de mise à l'eau du mouillage Cage ADCP 300 kHz

Préparation ADCP 300 Khz

N° ID ADCP	13744 (300kHz)	
Option de l'ADCP (OL, PA, PS0) (BT, Nemo)		
Changement pack batteries	Х	
Charge batterie		
Changement carte mémoire	Non, carte en place vidée	
Espace mémoire libre	1Go	
Calibration compas (AX)	Х	
Résultat Recalibration (AF,b)	<1°	
Vérification heure ADCP = heure TU	Х	

Préparation Largueur Cage

N° ID Largeur	A-867-6B
Changement pack batteries	Х
Charge batteries	
Fréquence Emission du largueur	12 Khz
Fréquence Réception du largueur	10 Khz
Code release (commande largage valise)	Release D, Enable B
Test Ping	OK
Test commande de largage	OK : Rx 12kHz, Tx10kHz D
Réception confirmation de largage ? (5pings/s)	Oui, 5 pings = largué

Préparation cage Flotec AL-200

	Flotteur 5390-1	
N ID Cage	lest 5696 ou 5690	
Vérification état général / fixation	Х	
Vérification / remplacement anodes	Х	
Elastiques	Х	
Longueur de bout installée	300m dynalight 6mm	
Installation sangles (facilite la récup)	Installation d'un anneau	
Entretien cardan de l'ADCP	Х	
Armement largeur	X (4/03/2019)	
Photo de la cage gréée si possible	Х	

Déploiement **Position Bathymétrie** Date 88.4m Prévue 5/03/2019 N 43° 8,716' / E 5° 32,161' 4/03/2019 17h34 N 43.145505 / E 5.536855 Position de largage 83.8m ΤU N 43°8.7303'/ E 5°32.2113' Vérification position Triangulation N 43°8.778 / E 5°32.2440

NB: Vérification de position après largage par triangulation, plus vérif bathymétrie sondeur

Fichier de configuration

Command	Description	Default setting
CR1	Retrieve param (0 :User, 1 : Factory)	
CF11101	Flow control	11111
EAO	Heading Alignment	0
EBO	Heading Bias	0
ED880	Transducter Depth (nnnn dm) (écrasée par command EZ)	0
ES38	Salinity	35
EX11111	Coordinate transfo (Xform :type,Tilts,3Bm,Map)	11111
EZ111101	Sensor source (C,D,H,P,R,S,T)	1111101
WA50	False target treshold maximum (0-255 counts)	50
WBO	Mode 1 bandwith control (0 :Wide, 1 :Narrow)	0
WD111100000	Data out (Vel,Cor,Amp Pg,St,P0 P1,P2,P3)	111 100 000
WF176	Blank after transmit	176
WN26	Number of depth cell (1 to 128)	30
WP50	Ping per ensemble (0 to 16384)	00045
WS400	Depth cell size (20 to 800 for 300 kHz)	0400
WV175	Ambiguity Velocity (2 to 480 cm/s radial)	175
TE00:15:00.00	Time per ensemble (hh :mm :ss.ss) (increased automatically if (WP*TP)>TE)	01:00:00.00
TP00:18.00	Time between ping (mm :ss.ss)	01:20.00
TF19/03/04 16:30:00	Time of first ping (yy/mm/dd, hh :mm :ss)	
СК	Keep parameters as user defaut	
CS	Start pinging	
TGccyy/mm/dd,hh:mm:ss	Time of first ping (wake up to start data collection)	
TSyy/mm/dd,hh:mm:ss TTyy/mm/dd,hh:mm:ss	Set internal real time clock	
CW	Trigger timeout (0 to 99999ms)	250
;Instrument =	Workhorse Monitor	
;Frequency =	307200	
;Water Profile =	YES	
;Bottom Track =	NO	
;High Res. Modes =	NO	
·Shallow Bottom Mode=	NO	
; Wave Gauge =	NO	
;Lowered ADCP =	YES	
;Ice Track =	NO	
;Surface Track =	NO	
;Beam angle =	20	
;Temperature =	15.00	
;Deployment hours =	4560.00	
;Battery packs =		
; Automatic TP =	1ES 2048	
, Memory Size [MB] =	2040	
; saved screen =	5	
, ;Consequences generate	d by PlanADCP version 2.06:	
;First cell range =	6.17 m	


```
;Last cell range = 106.17 m
;Max range = 85.99 m
;Standard deviation = 0.50 cm/s
;Ensemble size = 674 bytes
;Storage required = 11.72 MB (12293760 bytes)
;Power usage = 420.35 Wh
;Battery usage = 0.9
;
; WARNINGS AND CAUTIONS:
; Advanced settings have been changed.
```


Fiches de mise à l'eau des Mastodons

Graphes des données cinématiques des carottages Kullenberg

Estimation of the layers in the core CASSI

Données cinématiques sur le carottage EU19CSD-KS01

Estimation of the layers in the core CASSISED 2P

Données cinématiques sur le carottage EU19CSD-KS02

Estimation of the layers in the core CASSISED 3P

Données cinématiques sur le carottage EU19CSD-KS03

Profils sondeur de sédiment (SDS) Echoes 5000 acquis avec l'AUV

lfremer

lfremer

Profil 3a CSD-SDS-AUV0002_02773_02918 Profil 3b CSD-SDS-AUV0003_00100_00550

Profil 4a CSD-SDS-AUV0003_00555_01311 Profil 4b CSD-SDS-AUV0003_01311_01645 Profil 4c CSD-SDS-AUV0003_01645_01931

Section Profil 04a CSD-SDS-AUV0003_00555_01311.seg shot [555:1311]

fil 04c CSD-SDS-AUV0003_01645_01931.seg

Profil 5a CSD-SDS-AUV0003_01951_02254.seg Profil 5b CSD-SDS-AUV0003_03220_03707.seg

lfremer

Profil 7 CSD-SDS-AUV0004_00508_01172

lfremer

lfremer

Profil 10a CSD-SDS-AUV0008_00001_00402 Profil 10b CSD-SDS-AUV0007_12539_12852

0b CSD-SDS-AUV0007_12539_12852_cornav.seg

shot

Profil 11a CSD-SDS-AUV0007_12414_12539.seg Profil 11b CSD-SDS-AUV0007_11363_12414.seg

Profil 12a CSD-SDS-AUV0007_11242_11331.seg Profil 12b CSD-SDS-AUV0007_10081_11242.seg

Profil 13 CSD-SDS-AUV0007_08807_09982

Profil 14 CSD-SDS-AUV0007_07770_08758

Profil 15 CSD-SDS-AUV0007_06483_07770

Profil 16 CSD-SDS-AUV0007_05506_06484

Profil 17 CSD-SDS-AUV0007_05088_05505

Profil 18 CSD-SDS-AUV0007_04764_05067

Profil 19 CSD-SDS-AUV0007_04042_04765

Profil 20 CSD-SDS-AUV0007_02735_04017

Profil 21 CSD-SDS-AUV0007_01120_02710

Profil 22 CSD-SDS-AUV0007_00462_01094

Profil 23a CSD-SDS-AUV0007_00303_00456 Profil 23b CSD-SDS-AUV0007_00001_00303

Profil 24 CSD-SDS-AUV0006_07425_07799

rofil 24 CSD-SDS-AUV0006_07425_07799_cornav.seg shot

Profil 25 CSD-SDS-AUV0006_06352_07193

Profil 26a CSD-SDS-AUV0006_06243_06333 Profil 26b CSD-SDS-AUV0006_05585_06197

Section Profil 26b CSD-SDS-AUV0006_05585_06197_cornav.seg shot [5585:619S-AUV0006_06243_06:

Profil 27a CSD-SDS-AUV0006_05294_05569 Profil 27b CSD-SDS-AUV0006_03957_04751

Section Profil 27b CSD-SDS-AUV0006_03957_04751_cornav.seg shot [3957:4751]

Profil 28 CSD-SDS-AUV0006_02752_03930

Profil 29 CSD-SDS-AUV0006_01442_02753

Profil 30 CSD-SDS-AUV0006_01032_01442

n Profil 30 CSD-SDS-AUV0006_01032_01442_cornav.seg shot [1

Profil 31 CSD-SDS-AUV0006_00187_01031

Profil 32 CSD-SDS-AUV0006_00012_00187

