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Abstract :   
 
Estimating the diffuse attenuation coefficient of the Photosynthetically Available Radiation (KPAR) allows 
to monitor primary production, dissolved organic matters, coastal suspended sediments and water 
transparency. The latter aim, especially for military purposes, may be efficiently achieved with the use of 
underwater gliders. The present study aims at estimating the KPAR in the the Bay of Biscay (North-East 
Atlantic), during a sea campaign which took place in February 2021, in fairly transparent waters mainly 
containing non-living suspended material. The sea survey involved a SEAEXPLORER glider equiped with 
an ocean color radiometer. The glider measurements were in agreement with those from shipboard CTD-
PAR casts (with a mean relative difference of about 11%). VIIRS L2 and MODIS L4 satellite products 
were validated with the glider data. Accordingly, a bias correction has been proposed for the ocean color 
satellite KPAR algorithm. 
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A
I. INTRODUCTION

Coastal areas are key in the transport and storage of
suspended matters from watersheds to the ocean, it is
therefore important to quantify the associated concentrations
and fluxes. These suspended matters include sediment
particles, living algae, organic matters, nutrients and
contaminants, which influence and control the functioning of
coastal ecosystems [1].
Routine measurements of concentrations and fluxes are most
commonly acquired by fixed moorings, such as buoys or
benthic landers. In addition, the concentration of surface

suspended matters and dissolved materials can be estimated
at large spatial scales by the deployment of space-based
or airborne sensors measuring their optical characteristic
signatures. This is commonly referred to as ”water color”.
However satellite imagery is limited: few images are usable
during intense meteorological events, like storms, due to
a significant presence of clouds, while in addition fluxes
are most significant during these episodes. Moreover, the
satellite’s revisiting period over a same area is of the order
of one image per day. On the contrary, underwater gliders
benefit from a higher rate of acquisition and, as autonomous
platforms, can observe a dedicated oceanic area during
storms.
The MELANGE1 project aims at automating the acquisition
and processing of data acquired by the SEAEXPLORER
gliders (ALSEAMAR-ALCEN company, France), so as to
measure simultaneously and in quasi real-time both the
current and turbidity; and thus to obtain the particulate fluxes
[1].
In this article, the ocean color parameter chosen to perform
an initial validation on the use of the SEAEXPLORER glider
is the diffuse attenuation coefficient of the Photosynthetically
Available Radiation (KPAR). Measuring KPAR values makes
possible the monitoring of primary production, fluxes of
suspended sediments and dissolved organic matter from the
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coast to the open sea, or simply to evaluate the transparency
of the water for military purposes.
Firstly, the present study aims at comparing the KPAR data
issued from the glider with those from a bio-optical CTD
probe deployed simultaneously from the research vessel
”Thalassa”, which was sailing nearby (within less than
10 NM from the glider). Subsequently, all measurements
from the glider are compared to the optical parameters
obtained from the satellite water color imagery. Then, some
”matchups” (coincidental comparisons in space and time
between satellite and glider) are found. Consequently the
quality of the satellite products is discussed in relation to in
situ data, whose spatial and temporal scales of observation
are finer than those of the dedicated satellites.

II. MATERIALS AND METHODS

A. Field validation campaign

A SEAEXPLORER glider was deployed during a field
campaign that took place on the continental shelf north of the
Bay of Biscay. The campaign took place in winter conditions,
from February 14, 2021, at 07:30 (UTC) to February 18, 2021,
at 13:00 (UTC). The study area was located 40 NM from
the French coast, and covered a rectangular area of 12 NM
by 13 NM (Fig.1), with an average ocean depth of 115 ±
4 m. This area is located around a SHOM key point: ”La
Grande Vasière” (mid-shelf mud belt). It has been monitored
regularly since 2007 by the SHOM because it is a well-known
bottom trawling area. Trawlers disturb the biotope at the water-
sediment interface and resuspend sediments. This resuspension
causes an anthropogenic increase in bottom turbidity, leading
to a decrease in light conditions for benthic organisms [2].

B. Glider and CTD probe deployment strategy

Ocean gliders are a complementary mean to perform un-
derwater surveys and oceanographic data collection missions,
compared to ships or moorings. Sailing autonomously in the
water for weeks or even months, and traveling hundreds of
miles even in stormy weather, gliders collect various data
(physical, chemical, biological, acoustic, etc.) along the water
column [3]. Various sensors and probes can be assigned to
them. These data are then sent via satellite telemetry to a
ground station [3]. Gliders move through the water column by
changing their buoyancy through a ballast system, diving along
with an oblique angle and describing up-and-down trajectories
called ”yos”, i.e. by repeating a basic yo pattern, they move
along a saw-tooth trajectory.
During the campaign, the glider was equipped with a GPCTD
(Glider-Pumped Conductivity, Pressure, Temperature, from
Seabird) probe; an AD2CP (glider dedicated Acoustic Doppler
Current Profiler, from Nortek) for acoustic backscatter and
current measurements; an irradiance sensor (Seabird OCR-
504) at three wavelengths (380, 490 and 532 nm) plus a fourth
channel reserved for integrated measurement over the full
visible range, the PAR (Fig.2); a triplet (Wetlabs FLBBCD)
for measuring optical backscatter at 700 nm (called hereafter

Fig. 1. MELANGE campaign area location, with the bathymetry of the Bay
of Biscay (SHOM, 2015).

Fig. 2. Sea-Bird PAR sensor model OCR-504, onboard ALSEAMAR glider
model SEAEXPLORER. The sensor is attached to the glider in such a way
that it is optimally oriented during glider’s ascents.

turbidity), fluorescence of chlorophyll-a (Chla), and CDOM
(Coloured Dissolved Organic Matter); and a dissolved oxygen
sensor.

Glider PAR measurements were acquired by its Seabird
OCR-504 sensor, from the ocean surface to the seafloor (≈
120 meters). Data from night, sunset and sunrise-times were
not taken into account for the study, as the optimal sun
height above the horizon for the acquisition of an apparent
optical property (AOP) like KPAR should be higher than 20◦

[4]. Moreover, only data acquired during glider ascents were
processed. Indeed, the glider ascends and descends in the water
column with a given pitch angle, and the Seabird OCR-504
sensor, attached to the glider, is tilted at an angle so as to
capture all the light energy from the upper half-plane during
ascents only. On the other hand, during the descent, the sensor
is thus oriented at a very oblique angle, which biases the
irradiance and associated PAR measurements (Fig.2). Raw
data were acquired at the rate of 1 Hz. These data were post-
processed at the ALSEAMAR company. This process mainly
consists in a moving average so as to get final data every 5
seconds. This increases the signal-to-noise ratio while keeping
a suitable spatiotemporal resolution for our purpose. Indeed,



knowing that the glider ascends with a mean vertical speed of
around 0.2 m/s, we then get a PAR value for every meter of
depth, which is enough to profile the decrease of PAR values
with depth in the fairly clear waters of our area of study (a few
Secchi disk observations gave values around 7 m). The KPAR
was computed as the slope coefficient deduced from a linear
regression applied from the surface to the maximum measured
depth, according to the following formula:

-ln(PAR) = KPAR × z (1)

Where -ln(PAR) is the Napierian logarithm of PAR (or CPAR
for the shipborne CTD probe data) and z is the depth.
The raw data showed that, from a given irradiance level, the
linear decrease in irradiance values as a function of depth
was no longer respected, and data formed a plateau, at a
depth of about 50 meters; it gave the minimum detection
threshold of the sensor. Beyond this threshold, the data were
not taken into account. To validate measurements acquired by
the glider, a CTD probe equipped with bio-optical sensors
was deployed from the R/V ”Thalassa”, during the first and
last day of the cruise. Equipped bio-optical sensors were
an optical backscatter sensor at 700 nm for turbidity, Chla
and CDOM fluorometers, an optical transmissometer, a laser
particle size analyzer, and a PAR quantameter (LI-COR Bio-
spherical QSP2300). On the ship, a probe equipped with a
SPAR (surface PAR) sensor was fixed above the upper deck.
This is a LI-COR Biospherical QSR2200 Surface PAR sensor,
which has a uniform sensitivity over the entire PAR waveband
for accurate outdoor measurements. This sensor is used in this
study as a reference and allows to correct PAR data from
variations of cloudiness, and thus to obtain a corrected PAR,
called CPAR, such as:

PAR

SPAR
=

PARZ

PAR0
= CPAR (2)

Where PARZ is the PAR at a depth z and PAR0 is the PAR
at 0 meter of depth (ocean surface).
Using a SPAR probe could cause an additional problem: the
shadow of the mast. Thankfully, SPAR profiles did not appar-
ently show any shading from the ship’s mast during the field
campaign. Furthermore, SPAR profiles did not show significant
variations due to cloud cover dynamics during the CTD casts
acquisition (data not shown). This implies that there were
probably no problems related to cloud cover variations during
glider ascents.
As for the glider, a linear regression of CPAR data in rela-
tionship to depth was plotted. Moreover, CPAR data acquired
when the irradiance was low or non-existent were not taken
into account. Data beyond the 50 meters depth threshold were
discarded for the same reasons as mentioned above.
A relative difference was calculated to get an idea of the
variability between the two data sets, using the glider point
closest to the shipborne CTD cast point, for the same day

TABLE I
SATELLITE DATA CONSIDERED IN THE STUDY. THE RESOLUTION CHOSEN

IS THE HIGHEST AND MOST ACCURATE AVAILABLE IN EACH DATASET.
OUTPUTS OF THE [10] ALGORITHM WERE MADE PUBLICLY AVAILABLE BY

F. GOHIN ON HIS OWN IFREMER FTP. THE DINEOF INTERPOLATION
CORRESPONDS TO DATA INTERPOLATING EMPIRICAL ORTHOGONAL

FUNCTIONS ([6];[7]; [19];[20]))

Product Sensor Satellite Algorithm Interpolation

L2 [21] MODIS AQUA Empirical NA
L2 [22] VIIRS NPP-SUOMI [10] NA

L3 daily OLCI S3A/3B Semi-analytical NA
[23] [24]

L4 [25] MODIS AQUA Empirical OI
L4 [8] MODIS AQUA [10] DINEOF

of acquisition (in this case, for February 14th and 18th). The
relative difference is computed according to:

δαr =

∣∣∣∣Kparglider −Kparbathysonde

Kparbathysonde
× 100

∣∣∣∣ (3)

C. Satellite products

Satellite products of the ocean color used in this study are
presented in Table I. They include Level-2 (L2) and Level-4
(L4) data. L2 products correspond to cloudy images of ocean
surface bio-geophysical parameters deduced from optical al-
gorithms (either empirical or semi-analytical). L4 products
are cloud-free images, where values in cloudy areas are
completed using interpolation methods. Here two interpolation
methods were considered: Optimal Interpolation (OI) and Data
Interpolating Empirical Orthogonal Functions (DINEOF). The
OI, or kriging method [5], is a geostatistical method of linear
estimation of data and guarantees a minimum variance. It
performs a spatiotemporal interpolation conditioned by the
spatiotemporal covariance of the data. For more information
on the OI used here, refer e.g. to the study of [6]. The DINEOF
interpolation method reconstructs missing information from an
incomplete data set following a principal component analysis,
using Empirical Orthogonal Functions (EOF), applied to a first
guess of interpolated values. This is an iterative method, which
yields the temporal and spatial shape of data (patterns) in an
optimal frame. In summary, EOFs allow for the synthesis of
information to facilitate analysis [7]. The DINEOF interpola-
tion used here has been performed by our team, and comes
from the study of [8], where the interpolation was applied on
L2 MODIS products from 2003 to 2011 (for learning) and
applied to the year 2021 (for restitution).

For each available matchup, i.e. when an in situ data is lo-
cated exactly in a satellite image pixel, the relative error (δαr)
between both satellite and in situ data, and the time difference
(∆H) between the satellite and glider acquisition’s timetables
were computed. A window of ± 3 hours was assigned around
the time of satellite passage over the MELANGE zone, to
avoid large temporal gaps [9].



D. Algorithm of Gohin et al. (2005) [10]

The study by [10] focused on the analysis of satellite-
derived parameters for biological modeling in coastal waters
of the Bay of Biscay. One particular aim was to estimate the
relationship between the diffuse light attenuation coefficient
and concentrations of Chla and Non Algal Particles (or NAP).
They used the SeaWiFS satellite product database, using a
look-up table described in [11], from 1998 to 2003. It includes
surface measurements of NAP, Chla concentrations, and irra-
diance profiles, from which the KPAR is derived. In this study,
statistical properties were used, based on in situ and colocated
satellite-derived data, in order to express KPAR by a power
law combination of Chla and NAP concentrations. Variograms
between satellite data and in situ Chla, NAP concentrations
and KPAR data were studied. The variograms showed quite a
strong correlation of KPAR with NAP but a lower correlation
with chla, due to inter-relationship between all these three
parameters. Results allowed to propose a relationship, based
on NAP and Chla, to estimate KPAR on the Bay of Biscay
continental shelf. However, due to a low number of KPAR
data, the KPAR variogram appeared to have a poor structure,
and this led to quite large errors in this following correlation
power law:

KPAR = 0.1 + 0.0625[NAP ] + 0.05[Chla]0.80 (4)

This first type of equation originates from the study of [12]
for the determination of inherent optical properties based on
underwater illumination measurements in the Irish Sea.
However, after a change in the database by Francis Gohin,
[13] showed that using a coefficient of 0.06 in the first term
of the equation was more appropriate than the coefficient
of 0.1, especially for clear waters with relatively low KPAR
coefficients (≤ 0.1 m−1). The equation (4) thus became :

KPAR = 0.06 + 0.05[NAP ] + 0.05[Chla]0.75 (5)

In the context of the MELANGE project, a first comparison
of in situ glider data and satellite KPAR data (derived from
equation (5)) was carried out and showed that the second
version of the [10] algorithm was not adapted to the water
masses studied. Indeed, the KPAR study showed significant
disagreements between data from field observations and data
derived from satellite measurements. Calculated relative errors
were 93% between in situ KPAR data and L2 product data and
86% with L4 product data using optimal interpolation.
Research has been carried out in order to bring a new
correction to the algorithm of [10], in order to adapt the
KPAR formula to studied waters, because coefficients lower
than 0.06 m−1 could be observed during the campaign. The
work of [10] is based on water types relatively concentrated
in suspended matter and Chla, resulting in a high diffuse
light attenuation coefficient. However, the type of water stud-
ied during the MELANGE campaign presents quite a low
turbidity which induces lower attenuation coefficients. Our
bibliographic research has therefore been focused on optical
studies dedicated to clear waters. In particular, [14] reported

Fig. 3. Log(CPAR) data from the CTD probe as a function of depth for the 2
days of acquisition: February 14 (up) and 18 (down), 2021. In order to adjust
the graphical representation, the blue line corresponds to an example of linear
regression, applied on the daily mean, which is represented by the red dotted
line. The black dotted lines correspond to the different profiles during the day.

in 2016 on the study of the ultraviolet absorption spectrum
(between 250 and 550 nm) of pure water and found an
absorption coefficient of pure water at 490 nm of 0.0146
m−1 with a standard error value of 0.00054. Based on this
study, assuming a negligible backscatter diffusion value for
pure water [15], and following Gordon’s approximation of the
diffuse attenuation [16], the [10] formula has been corrected
using a new intercept:

KPAR = 0.015 + 0.05[NAP ] + 0.05[Chla]0.75 (6)

Also, for information, studies from Morel and Maritorena [17]
found a value of about 0.017 for the Kd490 of pure water, and
the minimum value of KPAR measured by Biogeochemical-
Argo (BGC-Argo) floats in [18] (see their Table 1) appeared
to be 0.025.
In the following, the algorithm (6) will be called the corrected
algorithm.

III. RESULTS AND DISCUSSION

A. Glider versus CTD probe

The logarithm of CPAR values acquired by the CTD probe
was plotted as a function of depth. All profiles obtained are
presented in Fig.3 superimposed with the daily average profile
in red and its linear regression blue line for clarity. In the
same way, the logarithm of PAR values acquired by the glider
was plotted and displayed in Fig.4. At first sight, slopes of
the main profiles obtained with either the glider or the CTD
probe appear to follow similar trends. Moreover results showed
a completely linear decay of the logarithm of CPAR, with
a low variability in the data during the campaign. In other
words, no variation of KPAR with depth was observed, up
to the minimum irradiance threshold. Results obtained with
the glider are similar: a linear decrease of the logarithm of
PAR with depth. After performing linear regressions, the CTD
probe profiles gave an average KPAR of 0.14 ± 0.02 m−1,
and the glider 0.12 ± 0.02 m−1 (for the whole campaign).
The resulting relative difference (computed as explained in
the end of Section II-B) was nearly 13% for February 14th



Fig. 4. Log(PAR) data of the glider as a function of depth over the 5 days
of the MELANGE campaign (reading order). In order to adjust the graphical
representation, the blue line corresponds to an example of linear regression,
applied on the daily mean, which is represented by the red dotted line. The
black dotted lines correspond to the different profiles during the day.

and 8% for February 18th, giving an average difference of
11%, and an average correlation coefficient equal to 0.63.
The two datasets are then in excellent agreement with a low
relative error, despite a correlation coefficient of 0.63. This low
correlation may explain additional spatiotemporal variability
of the KPAR data in the considered study area.
Results obtained allow discussing about the type of water mass
encountered. First of all, the water masses present vertically
homogeneous profiles (as recorded by the CTD probe: data
not shown) and with intermediate turbidity levels (water fil-
trations performed onboard gave values of suspended partic-
ulate matter concentrations ranging between 1 and 10 mg/L).
Thus, water masses cannot be classified as extremely clear,
knowing also that in the case of pure water the light is first
absorbed in subsurface in the red wavelengths, then in the blue
wavelengths at deeper levels, which leads to a decrease of
KPAR with depth [26]. Here KPAR appears to be constant with
depth. This can be first explained by a certain level of turbidity,
and also by the fact that the turbidity appeared to be mainly
induced by non-living material (water filtrations performed on-
board gave values of chla concentrations ranging between 0.2
and 0.4 mg/m3). Also in these winter conditions (mean wind
intensity recorded onboard gave a value of 12 m/s with peaks
up to 23 m/s, and a wave mean significant height of about
4 m) the water profile appeared well mixed with a bottom
nepheloid layer corresponding to sediment resuspension (data
not shown).

B. Glider versus satellites

Regarding possible matchups with L2 satellite products,
unfortunately images from both MODIS and OLCI sensors
could not be exploited because the high cloud cover happening
during the five days of the sea survey prevented from any
collocated comparison. Only VIIRS L2 products could be
exploited during two days of the survey. Results obtained are
presented hereafter. Regarding matchups with L4 cloud-free
products, they are presented in the following.

1) L2 products from VIIRS: Matchups between the VIIRS
sensor L2 product KPAR data and the glider KPAR data were
reached on February 16 and 18, 2021 (Figure 5). Results
obtained with the corrected algorithm of equation (6) showed
that the L2 product KPAR data range from 0.149 to 0.240 m−1,
with an average of 0.184 ± 0.032 m−1 (Figure 6); while KPAR
values with the former algorithm of equation (5) ranged from
0.18 to 0.3 m−1, with an average of 0.22 ± 0.03 m−1. Thus,
when using the updated formula, L2 corrected products give
for KPAR a closer mean of values as the one issued from the
glider, which measures a KPAR average of 0.122 ± 0.007 m−1.
As a consequence, the resulting relative error found is 54%,
compared to 93% with the previous algorithm.
Despite the significant proportion of missing data due to the
presence of the thick cloud cover, L2 products are the most
interesting: in fact, they correspond to the derived geophysical
variables, at the same resolution as the level 1 (L1) satellite
data. They correspond to a single L1 image where only
atmospheric corrections and algorithms have been applied.
Therefore, they have not undergone much processing and have
not been averaged or interpolated (unlike the following L4
satellite products).

2) L4 products from MODIS, Optimal Interpolation (OI):
Matchups obtained with the L4 products based on OI, and
using the corrected algorithm of equation (6) are presented
from Fig.7 to 11. They show a better agreement with the
glider data compared to results obtained with the previous
algorithm of equation (5). KPAR values ranged from 0.153
to 0.212 m−1, with an average of 0.18 ± 0.02 m−1 (Fig.12)
while KPAR values using the previous algorithm of equation
(5) were between 0.20 and 0.26 m−1, with an average of 0.23
± 0.02 m−1. The L4 product data obtained by OI also give a
closer mean of values with the glider, whose average is 0.122
± 0.007 m−1, when the corrected algorithm is applied. The
relative error between datasets is 49% compared to 86% with
the previous algorithm.

Such average relative errors of 86% or 93% obtained with
the previous algorithm of equation (5) for L2 VIIRS and
L4 MODIS OI products, indicated that the Secchi depth (a
metric estimate of the water transparency) would have shown
values twice lower, and therefore would have been largely
underestimated. It is significant in strategic areas, such as
military submarine passage areas.

3) L4 products from MODIS, DINEOF Interpolation:
Matchups results, presented from Fig.13 to 17, show KPAR
values between 0.081 and 0.111 m−1, with an average of 0.1
± 0.008 m−1 (Fig.18) while KPAR values with the previous
algorithm were between 0.12 and 0.14 m−1, with an average
of 0.13 ± 0.004 m−1. Then the corrected algorithm gives
KPAR values slightly underestimated compared to the in situ
glider data but still very close. The relative error shows a
new average relative error of 18%, compared to 14% with
the previous algorithm. The DINEOF method can be biased,
like all interpolation methods, therefore this slight increase in
relative error may be due to additional interpolation errors.



Fig. 5. Map of KPAR (m−1) VIIRS L2 data from February 16 (top, blue
dots) and 18 (bottom, pink dots) 2021, in the glider deployment area. Black
dots correspond to the total trajectory (cycles up only) performed by the glider
during the whole campaign.

Fig. 6. Matchups between KPAR (m−1) data of L2 VIIRS products and
KPAR (m−1) data of glider, for the February 16th and 18th. Brown points
correspond to data where the acquisition exceeds the window of ± 3 hours
(data not considered in the computed relative error).

Fig. 7. Map of KPAR (m−1) data from L4 products (with OI), in the glider
deployment area. Bright dots correspond to glider cycles up on 02/14/21 and
black dots correspond to the total cycles up performed by the glider during
the whole campaign

Fig. 8. Same as fig. 7 except for day 02/15/2021

Fig. 9. Same as fig. 7 except for day 02/16/2021

In fact, by construction, the DINEOF interpolation smooths
field data while removing short spatial wavelengths, as they
preserve the first eigenvectors which, in practice, keep the
longest spatial wavelengths. As a result, it also removes and
smooths a certain variability that may exist at short spatial
scales and thus induces lower KPAR values. However, despite
the increase of 4% in relative error, compared to the average
relative error obtained with the previous algorithm, KPAR
values remain acceptable.
Moreover, in the Fig.12, a greater variability of KPAR was



Fig. 10. Same as fig. 7 except for day 02/17/2021

Fig. 11. Same as fig. 7 except for day 02/18/2021

Fig. 12. Matchups between KPAR (m−1) data from L4 products (with OI)
and those from the glider, for the five days of the campaign. Brown points
correspond to data where the acquisition exceeds the window of ± 3 hours
(data not considered in the computed relative error).

observed in glider data than in satellite data. This can come
from two different processes. First, the spatial resolution of
measurements issued from the glider is finer (with typically a
horizontal distance of around 300 m between two yos) than
the size of one ground satellite image pixel (around 1 km). So
the glider is able to see finer spatial scales that satellite, and
then it can possibly see the additional associated variability
(not seen by the satellite). Secondly, the glider records all its
parameters every second and can then observe the tidal high
temporal frequency balance, that is able to affect the turbidity

Fig. 13. Map of KPAR (m−1) data from L4 products (with DINEOF
Interpolation) in the glider deployment area. Bright dots correspond to glider
cycles up on 02/14/2021 and black dots correspond to the total cycles up
performed by the glider during the whole campaign.

Fig. 14. Same as fig. 13 except for day 02/15/2021

Fig. 15. Same as fig. 13 except for day 02/16/2021

signal as well, while the satellite only acquire one image per
day. In consequence, the variability of this tidal signal can
appear in practice as soon as the absolute value of ∆H is
superior to 1 hour.

C. Empirical versus semi-analytical algorithms

The empirical algorithm [10] is widely used in scientific
studies, particularly for Chla and NAP. The study [27] aimed
to evaluate the overall performance of spatial and in situ mon-
itoring to observe the dynamics of Chla, turbidity (NAP), and
TSM (Total Suspended Matter) throughout the year 2017 in
different coastal waters, including in the Bay of Biscay. Results
confirmed a good overall agreement between satellite-derived



Fig. 16. Same as fig. 13 except for day 02/17/2021

Fig. 17. Same as fig. 13 except for day 02/18/2021

Fig. 18. Matchups between KPAR (m−1) data of L4 products (with DINEOF
Interpolation) and KPAR (m−1) data of glider, for the five days of the
campaign. Brown points correspond to data where the acquisition exceeds the
window of ± 3 hours (data not considered in the computed relative error).

Chla observations and in situ observations. Same results are
observed for turbidity (NAP): a good overall agreement was
observed between the satellite and in situ time series of TSM
and turbidity. So this empirical algorithm proved to be robust
enough in recovering Chla and NAP concentrations over a
wide range of water types. This empirical algorithm [10]
is accurate because it is calibrated directly for the studied
areas, unlike semi-analytical algorithms. Moreover, it seems
adapted to waters with significant turbidity. Nevertheless, the
associated formula (4) to compute KPAR from the recovered
Chla and NAP values appears to be unsuitable for clear waters.
According to the study by [24], simple empirical techniques,

such as empirical algorithms, have limited applicability due
to inaccuracies when waters studied are clear. Furthermore,
this algorithm does not take into account KPAR values below
0.06 m−1, while lower values exist when the water has
the lowest turbidity values. Semi-analytical models, similar
to the algorithm developed by the PML are based on the
spectral signature of the main bio-physical components, in
terms of absorption and scattering in water, including those
of pure water. Therefore, semi-analytical algorithms could be
more accurate when applied to reflectances in extremely clear
waters. Unfortunately, the MELANGE campaign was unable
to obtain matchups between the in situ glider data and the daily
L3 OLCI product data generated by the PML algorithm. It
would be relevant and interesting to reprocess the L2 MODIS
product database with a semi-analytical algorithm, like the
PML’s one, which could be more suitable for clear waters, and
which represents an important issue for the Navy, especially
in submarine visual detection threshold.

IV. CONCLUSION

With irradiance sensors onboard, ocean gliders can mea-
sure light diffuse attenuation coefficients when they dive up
or down and perform light attenuation sensing with depth,
provided that the cloud cover does not vary (with a bias) during
each dive. Doing so, they have an advantage in comparison
with research vessels deploying irradiance sensors on CTD
probe, which can be affected by the hull shadow (or their
surface irradiance sensors affected by the mast shadow). This
study allowed a comparison of KPAR values obtained with a
glider, a research vessel, and acquired by different satellite
sensors, over the continental shelf of the Bay of Biscay, during
a winter period. Both glider and ship measurements appeared
to be consistent, while a satellite L2 product based on the
VIIRS sensor gave different values. This discrepancy appeared
to be caused by the empirical algorithm used to process KPAR
satellite values. A correction of this algorithm, to adapt it
to clear waters (that were observed in the area) has been
proposed and greatly improved the results. Matchups with
L4 satellite products based on MODIS sensor acquisitions
gave obviously more data for comparison but did not allow
definitive conclusions due to the inherent errors from the two
different interpolations applied (OI and DINEOF, that made
these L4 products). A complementary study using a semi-
analytical algorithm would be interesting to realize, because
these algorithms may be more suitable for estimating KPAR
in clear waters. Also, further studies could involve spectral
diffuse attenuation comparisons as well, because the SEAEX-
PLORER glider was able to measure not only KPAR but also
Kd380, Kd490 and Kd532 as well during this campaign of
the MELANGE project.
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