Sardines at a junction: seascape genomics reveals ecological and oceanographic drivers of variation in the NW Mediterranean Sea
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Materials & Methods

Sampling
Sardines were collected from 12 different locations across the Western and Central Mediterranean Sea, and the adjacent Atlantic waters (Figure 1). Sampling was conducted during scientific surveys (Mediterranean International bottom Trawl Survey, MEDITS and MEDiteranean International Acoustic Survey, MEDIAS) or commercial hauls in the period November 2017 – June 2018. During sampling, muscle or fin clip was collected, with a mean muscle sample volume of 0.5 cm3. Samples were placed in 96% ethanol and stored at -20°C. A total of 398 fish (166 females, 220 males, and 6 immatures and 6 n/a) were collected across the 12 sampling sites. Collected samples showed differences in respect to fish total length and weight, especially from two neighboring GSA sampling sites (see Figure 1, Table S1). Although the inclusion of very few immatures in the analyses might be held responsible for such an effect this is less probable given the low number of such samples (6) with differences in sardines along the North-South gradient likely to be related to contrasting body conditions, rather than differences in age classes as indicated by other studies.

DNA extraction, library construction and sequencing
Genomic DNA was extracted from tissue samples by grinding the tissue on a Tissuelyser LT (Qiagen) under liquid nitrogen until a fine powder was obtained. This powder was used as input for the E.Z.N.A. Mollusc DNA kit (Omega Biotek) strictly following the instructions from manufacturers. The isolated DNA was quantified using the Qubit dsDNA BR assay (Thermo Fisher Scientific).
Libraries were prepared following a low-cost double-digest restriction site-associated DNA sequencing approach (Low-cost ddRAD), based on the protocol described by Kess et al. (2015). The high molecular weight DNA was digested using two six-cutter enzymes, PstI (CTGCA|G) and BglII (A|GATCT). Samples were enriched in adapter-ligated fragments by PCR with primers containing different index sequences as to add unique index combinations to each sample for post-sequencing demultiplexing. Libraries were quantified with Qubit dsDNA HS Assay (Thermo Fisher Scientific), pooled in equimolar amounts and run in an E-gel system (Thermo Fisher Scientific) to recover a 500-bp band, which was used for high-throughput sequencing on an Illumina HiSeq X.

ddRAD loci building and genotyping
The raw FASTQ files were quality-checked in FastQC 0.11.3. Sequenced reads were analyzed using STACKS v.2.4 pipeline (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013), to quality control the reads, identify the genomic loci sequenced, genotype each individual, and conduct basic population genetic analyses. For the quality control, reads were processed with process_radtags.pl which removes reads with low quality and reads including Illumina adapters. The remaining high-quality reads of each sample were aligned against the sardine genome (Louro et al., 2019) available in (https://www.ncbi.nlm.nih.gov/assembly/GCA_900499035.1) using bwa (Li & Durbin, 2009). The produced alignment (bam) files were sorted with samtools v 1.9 (Li et al., 2009) and used as input in the STACKS component gstacks to build loci, call variant sites and identify the genotype of each sample per locus. Finally, strict filtering of the SNP dataset was conducted through the STACKS module populations by keeping only loci that were sequenced in > 80% of the individuals within each of the 12 geographical sites, with > 0.1 minor allele frequency. For each ddRAD locus, only a single randomly selected SNP was kept for downstream analyses.

[bookmark: _gjdgxs]Population genetic analyses
Population genetic structure was assessed by both Bayesian and multivariate ordination methods. First a model-based clustering was performed with STRUCTURE 2.3.4 (Pritchard, Stephens, & Donnelly, 2000) under the correlated allele frequency model allowing admixture, without location prior, and with a burn-in period of 100,000 followed by 400,000 iterations. Runs were conducted varying the number of clusters (K) from 1 to 8 with 10 replicate runs at each value of K. The inference of K was evaluated with two methods a) the ΔK approach (Evanno, Regnaut, & Goudet, 2005) and b) the posterior probabilities of each K as suggested by the developers in the software’s documentation. The ten independent runs of the ‘best’ K were averaged in order to identify sets of highly similar runs, and separate distinct groups of runs that represent distinct modes in the space of possible solutions (if any). This resulted in generating a consensus solution for each distinct mode, allowing for label switching and testing of convergence. Both analyses (choosing of K and averaging) were performed with CLUMPAK server (Kopelman, Mayzel, Jakobsson, Rosenberg, & Mayrose, 2015). In cases where K > 1, samples allocated to clusters with high membership coefficient (i.e. q ≥ 0.9) were further analyzed with STRUCTURE for each cluster and with the same settings as above, in an attempt to examine, based on non-admixed individuals, whether further sub-structuring occurs.
Second, a Discriminant Analysis of Principal Components (DAPC) was performed with Adegenet v. 2.1.1 package (Jombart, 2008), in the R environment (R Core Team, 2020) as means to infer population subdivision of the samples under study, with an independent of population genetics model method. Prior to running a Discriminant Analysis (DA), the number of principal components achieving highest mean success was identified using a stratified cross validation with the function xvalDapx of the package adegenet (Jombart, Devillard, & Balloux, 2010). The DA was then run on the retained principal components using the dapc function. Finally, after selecting the best number of eigenvalues for the DA analysis, the DAPC results (DAPC scatterplots) were visualized graphically with the scatter function of the package ade4 (Dray & Dufour, 2007).
To determine the number of expected genetic clusters (K) present in the dataset, without any a priori population definition, the find.clusters function included in adegenet was used to run successive numbers of K-means clusters of the individuals, across a range of K = 1–8. We identified the best supported number of clusters through comparison of the Bayesian Information Criterion (BIC) for the different values of K.
Genetic diversity between the 12 sampling localities and the identified clusters was then compared in terms of observed (Ho) and expected heterozygosity (He), as means of genetic differentiation and levels of gene flow using STACKS population program. Furthermore, levels of differentiation among localities and clusters were assessed by the fixation index FST evaluated with the software Hierfstat R package (Goudet, 2005), statistical significance was assessed with 10,000 permutations and P values were adjusted for multiple testing through false discovery rate (FDR) correction (Benjamini & Hochberg, 1995) using the ‘p.adjust’ function in R v.3.6.0 (R Core Team, 2020).



[bookmark: _30j0zll]Seascape genomic analyses and outlier detection
The datasets
Four types of genomic datasets were analyzed as to detect whether the different levels of population structure and the observed contrast in physical condition are driven by distinct environmental drivers. The first one included all studied samples (“all samples” i.e. a dataset that displayed population structure, see Results), and the rest only subsets of the studied samples. In a more detail, the second and third datasets corresponded to sardines population clusters discovered in the studied area i.e. “Atlantic” [ATL] and “Mediterranean” [MED] clusters, respectively (see Results). Finally, the fourth dataset was a subset of samples from northern and southern sampling sites of the Western Mediterranean Sea (“northern vs southern sites” i.e. GSA07a, GSA07b, GSA06a versus GSA06c) that displayed remarkable differences in their physical condition i.e. fish length and weight. This difference had a North/South gradient with larger and heavier sardines found in the southernmost areas of the Western Mediterranean (Table S1, Figure 1). Although those differences might be attributed to the sampling strategy itself (both time and gear employed for sampling and the inclusion of 6 immature samples at the northern sites), they are consistent with recent studies reporting a similar trend in maximum size and body condition of sardines in the area (Albo-Puigserver et al., 2021; Bachiller et al., 2020; Brosset et al., 2017).

Outlier detection with gINLAnd
Significant genotype–environment associations were inferred with gINLAnd (Guillot, Vitalis, Rouzic, & Gautier, 2014), which implements a spatially explicit generalized linear mixed model to evaluate the correlation between allele frequencies and environmental variables using linear or logistic regression. GINLAnd is a univariate method that detects SNPs displaying outstanding correlation with some environmental variables while controlling for the potential confounding effect of genetic autocorrelation resulting from shared population history. To minimize the occurrence of false positives, loci with a log10 Bayes factor (logBF) of ≥ 3 were interpreted as having an outstanding statistical dependence with a certain environmental variable and therefore likely to belong to a genomic region under selection.
[bookmark: _Hlk99555697]Environmental variables were selected considering evolutionary history, climate variability or change and fishing activity as the dominant processes affecting small pelagic fish. Given that the impacts of climate change are a rather complex issue that refers to more than one parameter (e.g. an increase in temperature), we tested whether there are any environmental variables related to topography, hydrodynamics, biochemical and biological components at different layers (i.e. surface, water column, bottom), different types of exploitation tools and food availability acting as selective agents in sardines of the North-Western Mediterranean. Variables were selected as to include all previously reported variables and their trends with significant impact on sardines such as temperature (Garrido et al., 2017; Gordó-Vilaseca, Pennino, Albo-Puigserver, Wolff, & Coll, 2021; Solari et al., 2010 and references therein), salinity (García-García, Ruiz-Villarreal, & Bernal, 2016; Santos et al., 2018) and hydrodynamics ( for a review see Caballero-Huertas, Frigola-Tepe, Coll, Muñoz, & Viñas, 2022), as well as variables related to the biology of the species whose impact has never been assessed before. The latter include topography related variables associated to sardine’s spawning and feeding behaviour, human pressure through fishing effort, nutrients as a proxy to food availability and quality but also to habitat conditions. Finally, regionalizations based on climatological and/or biological components of the Mediterranean ecosystems were also used as they delimit provinces within which physical conditions, chemical properties, and biological communities are reasonably homogeneous. These were conducted under an exploratory framework as to pinpoint significant factors shaping sardine’s genomic patterns, that have previously been neglected with subsequent implications on future directions of global change. Environmental variables employed, comprise direct observations (i.e. satellite data) as well as model derived products. The relevant raw and derived abiotic and biotic variables from five different sources were incorporated in the analysis (Table 1 and Table S2), permitting tests of genotype–environment correlation and the detection of putative loci under selection (outlier loci). The five sources included: a) MARSPEC (Sbrocco & Barber, 2013) where 18 geophysical and climatic data layers over the period 1955-2010 were employed, b) eight regionalization layers of the Mediterranean based on physical conditions, chemical properties (Berline, Rammou, Doglioli, Molcard, & Petrenko, 2014; Reygondeau et al., 2017) and biological communities (Mayot, D’Ortenzio, D’Alcalà, Lavigne, & Claustre, 2016; Reygondeau et al., 2015; Rossi, Ser-Giacomi, Lõpez, & Hernández-García, 2014) as well as their smoothed congruence layer (Ayata et al., 2018), 18 climatic, biological and geophysical environmental layers from various sources compiled in c) Global Marine Environment Datasets (GMED, Basher, Bowden, & Costello, 2018) and d) EMODnet (www.emodnet-seabedhabitats.eu, see Table S2 for more details) and e) nine products informing on spatio-temporal trends in sea temperature as a proxy to optimal environmental conditions for sardine biomass and spawning (based on Ramírez et al., 2018, 2021), and fishing pressure. Fishing pressure is based on the most spatially-explicit information available regarding fishing vessels distribution for the whole study area (Global Fishing Watch data, http://globalfishingwatch.org/ accessed on August 2018, Kroodsma et al., 2018, see Table S2). For the last dataset, i.e., dataset of northern vs southern sites, four extra environmental variables were used to better decipher the observed differences in individuals’ length and body mass: a) a site-specific (Western Mediterranean Sea), equally-weighted combination of the climate impact on sardine biomass and spawning (clim_impact†, taken from Ramírez et al. 2021); b) its combination with fishing pressure by trawlers and purse-seiners (the main fishing gears targeting sardines in the Western Mediterranean Sea; i.e., cum_impact†), c) fishing pressure by trawlers and purse-seiners (fishing_purse_trawl†), and d) fishing pressure by purse-seiners alone (the fishing gear contributing the most to sardine catches in the Western Mediterranean Sea; i.e., fishing_purse†). Further details of the analyzed layers are provided in Table S2. Raster values from all layers at the sampling sites were collected with the Point Sampling Tool plugin of QGIS v. 3.4.15 (QGIS.org, 2021, QGIS Geographic Information System, QGIS Association http://www.qgis.org). In few cases where raster values were not available for a specific site, closest neighboring pixel values were taken instead.
The association patterns of outlier loci detected with gINLAnd across environmental variables were further examined with superheat R package (Barter & Yu, 2018). This package enabled the visualization of patterns of shared associations with the use of paired dendrograms and heatmaps.

Outlier detection with PCAdapt
Outlier detection was also conducted by a Principal Component Analysis (PCA) based approach on individual genotype data. Using the pcadapt R package (Luu, 2017), Mahalanobis distances for each SNP in respect to K principal components were calculated. The most appropriate number of clusters i.e. K, was selected following Cattell’s rule when inspecting the scree plot (Jackson, 1993) that displayed the percentage of variance explained by each principal component (PC) in decreasing order. Q-values were used to account for false discovery rate, and SNPs were considered as outliers at significance level of α ≤ 0.05 following a Bonferroni adjustment.

Outlier detection with RDA
Redundancy analysis (RDA) implemented in the R package VEGAN was employed as a multivariate method to detect environmental variables relevant for sardines as well as outlier loci (Oksanen et al., 2012). This multivariate approach works over a range of demographic scenarios, levels of selection, sampling designs and sample sizes, and in the presence of IBD (Forester, Lasky, Wagner, & Urban, 2018; reviewed in Grummer et al., 2019). The RDA was conducted in datasets with different levels of population structure given the not well known performance of RDA in systems with increased levels of population structure or metapopulation dynamics (Forester et al., 2018). We were able to perform RDA on only two of the four datasets i.e. “all samples” and MED due to the low number of sites in the remaining two datasets that resulted in collinearity of all the environmental variables. Environmental covariates were selected as to minimize collinearity among them using Variance Inflation Factors (VIF < 10). Missing data levels were low (maximum 3.06%). Due to RDAs’ requirement of complete data frames, missing values were imputed by replacing them with the most common genotype across individuals. Significant constrained axes were identified using 999 permutations of the response data and a p-value threshold of 0.05. We identified candidate adaptive loci as SNPs loading ±3 SD from the mean loading of these significant RDA axes. We then identified the covariate most strongly correlated with each candidate SNP (i.e., highest correlation coefficient), to group candidates by potential driving environmental variables.

Neutral and putatively adaptive genomic variation
To minimize the detection of false positives, SNPs that were selected by all methods (gINLAnd, PCAdapt, RDA), were considered as outliers. Furthermore and given that outliers detected usually do not overlap among the different approaches (e.g. Forester et al., 2018), the highest number of overlapping SNPs among pairs of methods was also considered indicative of the signal in our data and provided a better insight into the acquired results. Similarly, a putative neutral SNPs set included only SNPs that were not highlighted as outliers by any of the methods employed. This yielded two different sets of loci, i.e., putatively under selection (SNPs selected by gINLAnd and pcadapt) and putatively neutral. The two sets of loci were analyzed with STRUCTURE 2.3.4 (Pritchard et al., 2000), using the same settings as above, in order to define whether different signals of population structure could be revealed.

Outlier loci functional annotation
The two groups of outlier loci (i.e. by all methods and by the two methods with the highest number of overlapping loci) were further analyzed as to identify which of these loci were located within known genic regions (i.e., from the start up to the end of the genes including introns), and for those found in intergenic regions, which is the closest gene. To perform this step, we downloaded the genome annotation files (gff) from the sardine genome portal (https://bioinformatics.psb.ugent.be/gdb/Spil/) and compared the outlier marker locations with the genes start and end positions using the function ‘closest’ from bedtools (Quinlan & Hall, 2010). Then, the protein sequences of the genes recovered were used in a blastp similarity search (e-value threshold 10-8) against swissprot database. To identify potential biological functions involved in the studied populations response to environmental variables, a functional annotation analysis followed. Gene Ontology (GO) terms were retrieved per gene and were summarized using the tool WEGO v2.00 (https://wego.genomics.cn/, Ye et al., 2018).
All computationally intensive analyses of the study were conducted at IMBBC HPC facility (Zafeiropoulos et al., 2021).

Results

ddRAD sequencing and data analysis
We sequenced one billion paired reads from 398 sardine individuals with an average of 2.5 million reads/individual ranging from 713,308 up to 4,359,594. Mapping rate per individual ranged from 565,056 up to 3,638,348, resulting in a comparable performance across samples and a total of 755,128,044 properly mapped reads. From the mapped reads, a catalogue with 275,864 loci was built covering 69 Mb out of the total 950 Mb of the reference genome. After applying all filters to the SNP dataset and selecting one SNP per locus, 4,609 SNPs were retained and used for downstream analyses (provided as an additional VCF file).

Assessing the population genetic structure
According to STRUCTURE clustering analysis, the optimal number of clusters that best fit the data was K = 2 (with all 10 replicates providing identical clustering solutions). Samples with membership coefficients (q-values) ≥ 0.9 were assigned to either cluster with high confidence while samples with intermediate values were considered as admixed i.e. having a mixed ancestry from the two clusters (Figure 2A). The first cluster, named “ATL” hereafter, included samples from only two sites, the GoC and GSA01, while the second cluster included samples from all sampling sites except GoC, thus named “MED” hereafter. Individuals of mixed ancestry were observed in all sampling sites with the highest numbers in sites GSA06a, GSA06b, GSA06c, GSA07a and GSA07b (Figure 2B). In the ATL cluster, 43 SNPs were monomorphic. The fixed alleles of each of the 43 SNPs in the ATL cluster were also present in the MED cluster in high frequency ranging from 0.7547 to 0.8966. No monomorphic SNPs were observed in the MED cluster. No further sub-structuring (within clusters) was detected.
The DAPC analysis indicated the occurrence of two clusters, grouping sardine individuals into two well-differentiated and partially overlapping genetic clusters (Figure 3). Based on the cross-validation estimation, 100 PCs were retained while the discriminant function had an eigenvalue of 2441.312 and explained all the variance in the data.
The allocation of samples to two clusters was consistent between the two employed methods (i.e., STRUCTURE and DAPC). In the DAPC analysis all samples were fully allocated (posterior membership probability, pp. ≥ 0.9) to either cluster (DAPC_ATL or DAPC_MED) except one sample from GSA06a (sample id: 6a_20, allocated to DAPC_ATL with pp. 0.72). The allocation of samples to the two groups in DAPC analysis was identical to that of STRUCTURE with DAPC detecting less admixed individuals. 
In order to detect adaptations of the two differentiated gene pools, as a strict measure of defining as pure clusters as possible, seascape genomic analyses were conducted based on STRUCTURE’s allocation to clusters i.e., on the ATL and MED clusters, without taking into consideration the admixed samples.
Similar levels of observed and expected heterozygosity estimates over all loci were found across sampling sites (Ho = 0.266–0.307 and He = 0.266–0.296). The FST values among sites varied between 0 and 0.0485 (Table S3) with the highest values observed in comparisons involving GoC site (0.0106-0.0485, all statistically significant) as well as GSA01 site comparisons (0.0105-0.0182, all statistically significant) with the rest of the sites. Furthermore, the FST value of the GoC site appeared to be closer to the GSA01 site (FST = 0.0106, statistically significant). The rest of the Mediterranean sampling sites (i.e., all Mediterranean sites except GSA01) had very low but significant FST values ranging from 0.0016 to 0.0043, while only among a few sites FST was zero (i.e., involving comparisons among GSA05, GSA06a, GSA06b, GSA06c, GSA07a, GSA07b, GSA09, GSA10, GSA19). Following FDR correction, all (56) except one pairwise comparisons remained significant (i.e. GSA07a vs GSA09, FDR = 1 / (1 + 56) = 0.017). Finally, the observed and expected heterozygosity estimates over all loci for the two clusters detected by STRUCTURE were Ho 0.279 and He 0.304 for the ATL cluster and Ho 0.282 and He 0.316 for the MED cluster. The FST value between the two clusters was 0.0703, statistically significant (p=0.0001) and the highest estimated.

Seascape genomic analyses
The overlapping outliers among all three methods were five, with RDA analysis conducted in only two out of the four datasets. The highest number of overlapping outlier loci was that between gINLAnd and PCAdapt that reached 196 and included the five loci that overlapped among all employed methods. Most of the loci common loci among gINLAnd and PCAdapt were highlighted in the dataset containing all samples (n=186) and only few of them in the ATL and MED datasets (n=3 in each dataset) and the “northern vs southern” dataset (n=4). GINLAnd and RDA shared 6 loci while PCAdapt and RDA had 28 loci in common (Figure S1). Across datasets with all levels of population structure (i.e., “all samples” dataset that displayed population structure and ATL and MED datasets at the lower level of population structure), there were no outlier loci in common when gINLAnd was used. On the contrary, when PCAdapt was used, a core of 33 loci was shared among the three datasets. The two datasets analysed with RDA shared 14 loci (Figure S1).
In the “all samples” dataset, gINLAnd detected 262 outlier loci with logBF > 3, indicative of strong evidence of selection (Kass & Raftery, 1995). These outlier loci were associated to 39 environmental variables with none of them related to topography or fishing effort. Of those outliers, 53 had logBF values above 10 in at least two and up to 30 environmental variables. Three main groups of loci were revealed by clustering analysis, two of which exhibited shared patterns of association across multiple environmental variables, while the last one that contained the largest number of loci exhibited shared patterns across fewer variables (Figure 4) and lacked variables related to salinity. The highest number of loci were invoked by three variables i.e., surface current (surcurrent), nitrate and long-term linear regression of the mean annual SST (sst_m_sl; see Table S4). Environmental variables were also clustered in three main groups (Figure 4). For the same dataset, PCAdapt detected 462 outlier loci, with 186 of those also detected by gINLAnd (common outliers). The RDA model for the “all samples” dataset was significant (p=0.001), performed with 9 environmental variables (sst_tr19, Currents, surcurrent, nitrate, sst_max_sl, sst_tr12, FrontiersS, fishing_ef, biogeo03) all being statistically significant while explaining only 3.35% of the observed genomic variance (adjusted R2: 0.011). Nitrate (20.6) and sst_tr19 (20.6) explained most of the variation, while the remaining parameters explained similar percentages of variation (13.2-18). There were four significant RDA axes, which returned 125 unique candidate loci that loaded ±3 SD from the mean loading on each axis: 92 SNPs detected on RDA axis 1, 14 on RDA axis 2, 3 on RDA axis 3 and 16 on RDA axis 4. The detected SNPs displayed shared patterns of association across multiple environmental variables. Individual genotypes from the ATL and GSA01 sites are positively related to nitrate, plan curvature and Photosynthetically Active Radiation (parmean) respectively. Furthermore, a distinction of northern (GSA07a, GSA07b, GSA06a) versus southern sites (GDS06c) is evident with a positive relationship with the number of days with SST < 12oC (sst_tr12) and with the maximum annual SST (sst_max_sl) respectively (Figure 8A, B). Six loci were shared among RDA and gINLAnd while nine among RDA and PCAdapt (Figure S1).
Analyzing the MED dataset with gINLAnd yielded 68 outliers with logBF > 3 (and up to 6.5) in 18 environmental variables. The highlighted variables included all categories except the ones related to topography and fishing effort. Three main groups of loci were revealed with one including a single locus while the other two were almost evenly populated by similar number of loci (Figure 5). Shared patterns of association across variables involved only few loci while four environmental variables invoked the majority of the loci in four distinct clusters respectively (Figure 5). Those were bo_pH, surcurrent, sst_max_sl and tot_impact. For the same dataset, PCAdapt detected 209 loci of which 8 where common with gINLAnd’s loci. For the MED dataset, RDA was significant (p=0.002) performed using 11 environmental variables (sst_tr19, Currents, surcurrent, nitrate, sst_max_sl, sst_tr12, salinity, BioReg, FrontiersS, fishing_ef, biogeo03) with four of them being statistically significant (sst_tr19, nitrate, sst_tr12 and salinity, explaining similar levels of variation 31.5-32.4) while explaining only 6.64% of the observed genomic variance (adjusted R2: 0.0024). Individual genotypes from GSA07b were positively related to the number of days with SST > 19oC threshold (sst_tr19). Genotypes from GSA11 were positively related with the number of days with SST < 12oC (sst_tr12), while genotypes from GSA10 were negatively related to nitrate. Finally on the third RDA axis a positive relationship of GSA05 and GSA19 haplotypes with salinity was observed (Figure 8C, D). The single significant RDA axis in the ordination of the MED dataset, returned 23 unique candidate loci that loaded ±3 SD from the mean loading on axis. The detected SNPs displayed shared patterns of association across multiple environmental variables. The outlier loci detected by the RDA in the two datasets revealed overlapping as well as unique loci with 14 in common among the two datasets and 111 and 9 unique in “all samples” and MED datasets respectively.
Given that RDAs were conducted on a different set of environmental variables than the one used in gINLAnd, a direct comparison of the relevant environmental variables for the biology and evolution of sardines as well as the outlier loci detected by the two methods is not possible. Furthermore, the environmental variables highlighted as significant by the two approaches were highly consistent. Only one locus was shared among RDA and gINLAnd or PCAdapt (Figure S1).
In the ATL dataset, gINLAnd detected 37 outlier loci with logBF > 3 (and up to 5.66) in 24 environmental variables. In this dataset gINLAnd highlighted variables related to topography co-variating with SNP data. Hierarchical clustering analysis revealed two groups of loci with one exhibiting shared patterns of association across the majority of environmental variables including the ones related to topography (Figure 6). The variable with the highest number of co-variate SNPs was biogeo03, while with the exception of parmean that correlated with one SNP, all the other variables correlated with a high number of SNPs ranging from nine to 23. Environmental variables were clustered in two main groups (Figure 6). PCAdapt analysis detected 957 loci for the same dataset, of which 5 were common with gINLAnd’s list of outlier loci.
The “northern vs southern” dataset yielded 45 outlier loci with logBF > 3 according to gINLAnd analysis (and up to 6.34), in seven environmental variables. One variable i.e., sst_max_sl displayed correlation with most of the highlighted SNPs (23 SNPs). The next most important variables in terms of the number of highlighted loci were i) cum_impact† with 11 loci, and ii) sst_tr19 and tot_impact, each with seven loci (Figure 7). The above-mentioned variables were the ones that grouped the loci in two main clusters, two of which were further subdivided. One SNP was found to co-variate with clim_impact†. PCAdapt for the same dataset detected 218 outliers of which 3 were common with gINLAnds’ outliers.
Overall, from all examined datasets and all employed methods (i.e., gINLAnd, RDA and PCAdapt), 1607 SNPs were highlighted as potential outliers. Almost all environmental variables used in this study correlated with at least one SNP and up to 156 (see Table S4). Four variables that did not correlate with any of the SNPs in any of the datasets were: bathymetry, biogeo01, biogeo13, and Berline’s regionalization. Only variable sst_tr19 was correlated with SNPs of all four datasets.
Regarding gINLAnd results, eight variables correlated with SNPs in all datasets except the one comparing northern vs southern sites. Those variables are related to currents (Currents, surcurrent), and nutrients (nitrate, bphosphate, bo2utilize, bo2dissolv, parmean, bo_pH). The variables shared among the dataset that contained all samples and MED dataset were mostly related to temperature (tot_impact, sst_tr26, sst_max_sl, sst_tr12, sst_min_sl), as well as salinity (salinity), Reygondeaus’ epipelagic biogeochemical regions and FrontiersS. Water column temperature (btemp) was a shared environmental variable among MED and ATL dataset though none of the correlated SNPs were in common.
Some variables were exclusively highlighted in particular datasets when gINLAnd was used. For the dataset including all samples those were mostly related to temperature (sst_m_slwi, sst_m_sl, biogeo17, biogeo16, biogeo15, biogeo14), biology (PLD_60, Mesopelag and Bathypelag, EcoReg), climatology (Raw_CluCli, ClusterCli), salinity (biogeo10, biogeo08), primary productivity (primpod) and nutrients (calcite). When RDA was conducted with all samples, two environmental variables, not indicated for the same dataset by gINLAnd, were highlighted i.e. fishing effort (fishing_ef) and plan curvature (biogeo03). For the MED dataset RDA environmental variables overlapped with those indicated by gINLAnd. ATL dataset exclusively contained topography related variables (biogeo02, biogeo03 but see also RDA with “all samples” dataset, biogeo06, biogeo05, biogeo07, biogeo04) as well as two variables related to salinity (biogeo12, biogeo11). Finally, the dataset comparing northern vs southern sites exclusively correlated with SSS of the freshest month (biogeo09).
Population structure analyses on only gINLAnd and PCAdapt common outliers (n=196, also including the 5 common SNPs by all methods) estimated K = 2 clusters and allocated the samples to the MED and ATL clusters as with the complete loci dataset. On the contrary, when using only the neutral set of loci i.e. 3,002 loci (deducting 1,607 outliers from the total 4,609 loci), no signal of population structure was detected.

Functional Annotation
Out of the five outlier loci in common through all approaches, four were found in scaffolds with genes in their vicinity. Those were: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), G protein-activated inward rectifier potassium channel 2 (GIRK-2), Myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC-2) and Transmembrane protein 178B. Functional annotation analyses of the 196 outlier loci highlighted in any of the datasets by gINLAnd and PCAdapt approaches revealed that 156 are located within scaffolds that contain predicted genes. Few of them (i.e. 12) were found within genic regions while for the rest the closest gene was identified (top blast hit per gene is given in Table S5). Ten loci were located within the same gene with the rest being quite distant (Table S5). GO terms were retrieved for 140 of these genes (Figure S2).
The most frequent terms on the ‘Biological Process’ category were ‘cellular process’, ’metabolic process’, ‘biological regulation’, ‘regulation of biological process’ and ’signaling’.
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Table S1. Sampling details (GSA Geographical Sub-Areas of the Mediterranean where samples were collected from; M male; F female; i immature; na= not available)
	GSA
	Location
	Location code
	Latitude
	Longitude
	Mean depth (m)
	Number of samples
	Mean length (mm)
	Mean weight (g)
	Sex
	Sampling date
	Sampling module

	1
	Malaga
	GSA01
	36.322800°
	-4.304600°
	50
	23
	182.94
	48.28
	6F;17M
	22/02/2018
	MEDITS 

	5
	Mallorca
	GSA05
	39.484394°
	2.616792°
	44
	35
	144.74
	21.49
	22F;13M
	09/02/2018
	MEDITS

	6
	Rosas
	GSA06a
	42.197311°
	3.171022°
	32
	35
	130.97
	16.93
	6F;29M
	14/02/2018
	MEDITS

	6
	Tarragona
	GSA06b
	41.055556°
	1.345833°
	88
	34
	129.37
	16.61
	14F;20M
	23/02/2018
	MEDITS

	6
	Torrevieja
	GSA06c
	38.014400°
	-0.243100°
	62
	33
	158.91
	30.51
	8F;25M
	06/02/2018
	MEDITS

	7
	Gulf Lions1
	GSA07a
	43.306944°
	3.636111°
	30
	35
	111.46
	11.09
	13F;15M;3i;4na
	17/06/2018
	MEDITS

	7
	Gulf Lions2
	GSA07b
	42.498786°
	3.392842°
	111
	34
	118.94
	13.78
	14F;15M;3i;2na
	30/06/2018
	MEDIAS

	9
	Elba
	GSA09
	42.890283°
	10.428333°
	70
	35
	130.57
	17.38
	11F;24M
	11/04/2018
	MEDITS

	10
	Torre Annunziata
	GSA10
	40.668800°
	14.392500°
	90
	34
	133.43
	17.85
	8F;26M
	17/04/2018
	Biological Sampling module, Data Collection Framework

	11
	Buggerru
	GSA11
	39.42100°
	8.369667°
	45
	34
	132.46
	15.74
	12F;22M
	22/11/2017
	MEDITS

	19
	Cirò Marina
	GSA19
	39.402700°
	17.146200°
	30
	31
	164.00
	37.26
	21F;10M
	25/01/2018
	Biological Sampling module, Data Collection Framework

	ATL
	Gulf of Cadiz
	GoC
	36.548500°
	-6.567900°
	70
	35
	166.06
	38.29
	31F;4M
	16/05/2018
	MEDITS




Table S2. Relevant raw and derived abiotic and biotic variables (i.e., physical, chemical and biological variables) that were employed in the tests of genotype–environmental correlation and their implications on the habitat and biology of the species, though not exclusive.
† those are the extra variables used in particular for the “northern vs southern sites” dataset, not applied in the analyses of the other three datasets due to their spatial coverage. * (Gordó-Vilaseca et al., 2021)

	Source
(download link)
	Variable_Name
	Description
	Biological Implications

	MARSPEC (http://marspec.weebly.com/modern-data.html)
At 0.5 arcminutes spatial resolution
	bathymetry
	Depth of the seafloor (m)
	seascape, upwelling, spawning, feeding

	
	biogeo01
	East/West Aspect (radians)
	seascape, upwelling, spawning, feeding

	
	biogeo02
	North/South Aspect (radians)
	seascape, upwelling, spawning, feeding

	
	biogeo03
	Plan Curvature
	seascape, upwelling, spawning, feeding

	
	biogeo04
	Profile Curvature
	seascape, upwelling, spawning, feeding

	
	biogeo05
	Distance to Shore (km)
	seascape, upwelling, spawning, feeding

	
	biogeo06
	Bathymetric Slope (degrees)
	seascape, upwelling, spawning, feeding

	
	biogeo07
	Concavity (degrees)
	seascape, upwelling, spawning, feeding

	
	biogeo08
	Mean Annual Sea Surface Salinity, SSS (psu)
	spawning, feeding

	
	biogeo09
	SSS of the freshest month (psu)
	spawning, feeding

	
	biogeo10
	SSS of the saltiest month (psu)
	spawning, feeding

	
	biogeo11
	Annual range in SSS (psu)
	spawning, feeding

	
	biogeo12
	Annual variance in SSS (psu)
	spawning, feeding

	
	biogeo13
	Mean Annual Sea Surface Temperature, SST (°C)
	spawning, feeding

	
	biogeo14
	SST of the coldest month (°C)
	spawning, feeding

	
	biogeo15
	SST of the warmest month (°C)
	spawning, feeding

	
	biogeo16
	Annual range in SST (°C)
	spawning, feeding

	
	biogeo17
	Annual variance in SST (°C)
	spawning, feeding

	
	
	
	

	
	
	
	

	Ramirez et al. 2018, 2021
At 15 arcminutes spatial resolution
	sst_tr26
	number of days with SST >26 ºC (maximum preferred threshold of temperature, based on AquaMaps)
	thermal range, habitat preference, spawning

	
	sst_tr19
	number of days with SST >19 oC (maximum threshold for sardine spawning, based on Palomera et al. 2007)
	spawning

	
	sst_tr12
	number of days with SST <12 oC (minimum preferred threshold of temperature, based on AquaMaps)
	spawning

	
	tot_impact
	Equally weighted combination of sst_tr26 and sst_tr19
	spawning

	
	sst_min_sl
	slopes of the pixel-basis, long-term (1982-2019) linear regression for the minimum annual SST
	spawning

	
	sst_m_slwi
	slopes of the pixel-basis, long-term (1982-2019) linear regression for the mean annual SST during winter (January 1st to March 31th)
	spawning

	
	sst_m_sl
	slopes of the pixel-basis, long-term (1982-2019) linear regression for the mean annual SST
	spawning

	
	sst_max_sl
	slopes of the pixel-basis, long-term (1982-2019) linear regression for the maximum annual SST
	spawning

	
	fishing_ef
	distribution of fishing vessels (considering all fishing gear); based on Global Fishing Watch data over the 2012-2016 period (http://globalfishingwatch.org/)
	human pressure

	
	fishing_purse_trawl†
	Site-specific (Western Mediterranean Sea), spatially-explicit proxy to fishing effort for trawlers and purse-seiners, the main fishing gears targeting sardines; based on Global Fishing Watch data over the 2012-2016 period (http://globalfishingwatch.org/)
	human pressure

	
	fishing_purse†
	Site-specific (Western Mediterranean Sea), spatially-explicit proxy to fishing effort for purse-seiners, the fishing gear contributing the most to sardine catches in the Western Mediterranean; based on Global Fishing Watch data over the 2012-2016 period (http://globalfishingwatch.org/)
	human pressure

	
	clim_impact†
	Site-specific (Western Mediterranean Sea), equally-weighted combination of climate impact on sardine biomass -trends in mean annual SST- and spawning -sst_tr19-. See details in Ramírez et al. 2021
	spawning, feeding

	
	cum_impact†
	Equally-weighted combination of clim_impact* and fishing_purse_traw*l
	spawning, feeding, human pressure

	Rossi et al. 2014 (through https://mermexregio.obs-vlfr.fr)
	PLD_60
	designation of distinct hydrodynamical provinces and connectivity through larval dispersal (tracking passive Lagrangian particles, drifting duration 60 days)
	recruitment, connectivity

	Reygondeau et al. 2017 (through https://mermexregio.obs-vlfr.fr)
	Mesopelag
	biogeochemical mesopelagic regions (based on climatologies of 16 hydrological and biogeochemical variables)
	hydrological and biochemical related behavior, feeding, spawning

	Reygondeau et al. 2017 (through https://mermexregio.obs-vlfr.fr)
	Bathypelag
	biogeochemical bathypelagic regions (based on climatologies of 16 hydrological and biogeochemical variables)
	hydrological and biochemical related behavior, feeding, spawning

	Reygondeau et al. 2014 (through https://mermexregio.obs-vlfr.fr)
	EcoReg
	ecoregionalisation, considering the biological components of the Mediterranean ecosystems (ENM of 800 marine species distributed across all trophic levels)
	ecological dynamics with co-distributed species, proxy to species interactions

	Reygondeau t al. 2017 (through https://mermexregio.obs-vlfr.fr)
	BioReg
	biogeochemical epipelagic regions (based on climatologies of 16 hydrological and biogeochemical variables)
	hydrological and biochemical related behavior, feeding, spawning

	Mayot et al. 2016 (through https://mermexregio.obs-vlfr.fr)
	ClusterCli
	phenology and interannual variability of surface chlorophyll concentration
	feeding proxy

	Berline et al. 2014 (through https://mermexregio.obs-vlfr.fr)
	Berline
	regionalization solely based on connectivity due to ocean currents (particles advection simulation for a year, drifting duration 30 days)
	connectivity, spawning, feeding

	Mayot et al. 2016 (through https://mermexregio.obs-vlfr.fr)
	Raw_CluCli
	raw phenology and interannual variability of surface chlorophyll concentration
	feeding proxy

	Ayata et al. 2018 (https://mermexregio.obs-vlfr.fr)
	FrontiersS
	synthesis congruence smoothed (high congruence=many frontiers, low congruence = no or few frontiers)
	barriers effect

	GMED (http://gmed.auckland.ac.nz/download.html)
At 5 arcminutes spatial resolution
	windspeed
	wind speed
	spawning, feeding

	
	surcurrent
	surface current
	spawning, feeding

	
	sst_mayoct
	summer temperature
	feeding, conditions prior to spawning period *

	
	salinity
	salinity
	spawning, feeding

	
	primprod
	primary productivity
	spawning, feeding

	
	parmean
	PAR mean (Photosynthetically Active Radiation)
	spawning, feeding

	
	o2saturate
	saturated oxygen
	spawning, feeding, behaviour

	
	nitrate
	nitrate
	feeding, niche quality

	
	calcite
	calcite
	feeding, niche quality

	
	btemp
	water column temperature
	spawning, feeding, behaviour

	
	bsilicate
	bottom silicate
	spawning, feeding

	
	bphosphate
	bottom phosphate
	spawning, feeding

	
	bo2utilize
	bottom utilized oxygen
	spawning, feeding, niche quality

	
	bo2dissolv
	bottom dissolved oxygen
	spawning, feeding, niche quality

	
	bnitrate
	bottom nitrate
	spawning, feeding, niche quality

	
	bedtemp
	Seabed temperature
	spawning, feeding, niche quality

	
	bo_ph
	pH
	spawning, feeding, niche quality

	[bookmark: _2et92p0]EMODNET (http://gis.ices.dk/geonetwork/srv/eng/catalog.search#/metadata/f1e484ac-6049-4711-9517-5062556455ca)
	Currents
	Kinetic energy due to currents at the seabed in the Mediterranean Sea, mean of annual 90th percentile values between 2016 and 2018
	spawning, feeding, connectivity, behaviour





[bookmark: _1fob9te]Table S3: Pairwise FST values among sampling locations (upper triagonal) and their statistical significance (lower triagonal), based on 10,000 permutations and P values adjustment for multiple testing through false discovery rate (FDR) correction (Benjamini & Hochberg, 1995). Non-significant values are in italics. GSA: Geographical Sub-Areas of the Mediterranean where samples were collected from.

	Pvalues\FST
	ATL
	GSA_01
	GSA_05
	GSA_06a
	GSA_06b
	GSA_06c
	GSA_07a
	GSA_07b
	GSA_09
	GSA_10
	GSA_11
	GSA_19

	ATL
	-
	0.0106
	0.0464
	0.0385
	0.0399
	0.0361
	0.0370
	0.0373
	0.0470
	0.0484
	0.0485
	0.0471

	GSA_01
	0.0003
	-
	0.0174
	0.0117
	0.0129
	0.0105
	0.0122
	0.0129
	0.0170
	0.0177
	0.0182
	0.0180

	GSA_05
	0.0003
	0.0003
	-
	0.0022
	0.0005
	0.0014
	0.0025
	0.0025
	0.0015
	0.0016
	0.0016
	0.0005

	GSA_06a
	0.0003
	0.0003
	0.0005
	-
	0.0010
	0.0002
	0.0018
	-0.0001
	0.0026
	0.0027
	0.0022
	0.0032

	GSA_06b
	0.0003
	0.0003
	0.1948
	0.0393
	-
	0.0003
	0.0016
	0.0006
	0.0017
	0.0014
	0.0016
	0.0011

	GSA_06c
	0.0003
	0.0003
	0.0150
	0.3054
	0.2471
	-
	0.0018
	0.0014
	0.0023
	0.0025
	0.0011
	0.0017

	GSA_07a
	0.0003
	0.0003
	0.0006
	0.0063
	0.0079
	0.0073
	-
	0.0011
	0.0009
	0.0009
	0.0044
	0.0032

	GSA_07b
	0.0003
	0.0003
	0.0003
	0.5708
	0.1412
	0.0150
	0.0320
	-
	0.0023
	0.0025
	0.0032
	0.0030

	GSA_09
	0.0003
	0.0003
	0.0067
	0.0008
	0.0039
	0.0006
	0.0523
	0.0008
	-
	0.0002
	0.0019
	0.0012

	GSA_10
	0.0003
	0.0003
	0.0079
	0.0015
	0.0132
	0.0012
	0.0625
	0.0008
	0.3389
	-
	0.0023
	0.0015

	GSA_11
	0.0003
	0.0003
	0.0038
	0.0011
	0.0055
	0.0312
	0.0003
	0.0003
	0.0015
	0.0011
	-
	0.0025

	GSA_19
	0.0003
	0.0003
	0.1914
	0.0003
	0.0338
	0.0093
	0.0003
	0.0005
	0.0237
	0.0150
	0.0006
	-





Table S4: Environmental variables (assigned to general categories) that according to gINLAnd results co-varied with SNPs in each dataset (logBF ≥ 3). Numbers correspond to the number of SNPs that were found to co-variate with each variable. The names of the environmental variables follow those in Table S2. † those are the extra variables used in particular for the “northern vs southern sites” dataset and were not applied in the analyses of the other three datasets due to spatial coverage. EnVar: environmental variables, all= “all samples” dataset, MED = MED cluster, ATL = ATL cluster, NvsS=Northern vs Southern sites dataset, Count of datasets= the number of datasets where each environmental variable was highlighted as co-variating with a particular number of SNPs. Bottom rows display the number of SNPs highlighted as outliers in each analysed dataset with all software employed in this study.

	Category
	Number of outliers in gINLAnd analyses
	Count of datasets

	
	EnVar
	all
	MED
	ATL
	NvsS
	

	temperature
	sst_tr19
	47
	1
	9
	7
	4

	climatology
	surcurrent
	156
	8
	21
	
	3

	climatology
	parmean
	55
	1
	1
	
	3

	climatology
	currents
	7
	1
	21
	
	3

	nutrients
	nitrate
	112
	1
	21
	
	3

	nutrients
	bphosphate
	94
	4
	10
	
	3

	nutrients
	bo2utilize
	46
	1
	21
	
	3

	nutrients
	bo2dissolv
	80
	1
	21
	
	3

	chemicals
	bo_ph
	90
	24
	15
	
	3

	temperature
	tot_impact
	35
	8
	
	7
	3

	temperature
	sst_tr26
	77
	3
	
	2
	3

	temperature
	sst_max_sl
	17
	19
	
	23
	3

	frontiers
	frontierss
	20
	3
	
	
	2

	salinity
	salinity
	81
	1
	
	
	2

	temperature
	sst_tr12
	1
	1
	
	
	2

	temperature
	sst_min_sl
	60
	2
	
	
	2

	biology
	bioreg
	28
	2
	
	
	2

	chemicals
	o2saturate
	54
	
	11
	
	2

	climatology
	windspeed
	57
	
	21
	
	2

	nutrients
	bsilicate
	22
	
	21
	
	2

	nutrients
	bnitrate
	23
	
	15
	
	2

	temperature
	sst_mayoct
	76
	
	19
	
	2

	temperature
	bedtemp
	75
	
	21
	
	2

	temperature
	btemp
	
	1
	21
	
	2

	biology
	pld_60
	1
	
	
	
	1

	climatology
	raw_clucli
	6
	
	
	
	1

	nutrients
	calcite
	6
	
	
	
	1

	biology
	mesopelag
	47
	
	
	
	1

	salinity
	biogeo10
	75
	
	
	
	1

	salinity
	biogeo08
	78
	
	
	
	1

	biology
	bathypelag
	10
	
	
	
	1

	temperature
	sst_m_slwi
	25
	
	
	
	1

	temperature
	sst_m_sl
	145
	
	
	
	1

	temperature
	biogeo17
	26
	
	
	
	1

	temperature
	biogeo16
	52
	
	
	
	1

	temperature
	biogeo15
	14
	
	
	
	1

	temperature
	biogeo14
	2
	
	
	
	1

	biology
	ecoreg
	39
	
	
	
	1

	chemicals
	primprod
	2
	
	
	
	1

	climatology
	clustercli
	67
	
	
	
	1

	salinity
	biogeo12
	
	
	18
	
	1

	salinity
	biogeo11
	
	
	23
	
	1

	topography
	biogeo02
	
	
	20
	
	1

	topography
	biogeo03
	
	
	34
	
	1

	topography
	biogeo06
	
	
	23
	
	1

	topography
	biogeo05
	
	
	23
	
	1

	topography
	biogeo07
	
	
	23
	
	1

	topography
	biogeo04
	
	
	23
	
	1

	salinity
	biogeo09
	
	
	
	1
	1

	combined
	cum_impact*
	
	
	
	1
	1

	combined
	clim_impact*
	
	
	
	1
	1

	Total number of loci
	gINLAnd
	242
	68
	37
	45
	

	
	PCAdapt
	462
	209
	957
	218
	

	
	RDA
	125
	23
	-
	-
	



[bookmark: _Hlk110609649]Table S5: Genes in the vicinity of the outlier loci. For each outlier locus, the closest located gene has been identified and characterized in terms of its GO terms as described in sardines geneset, and in terms of the best BLAST hit against swissprot.


Figure S1: Venn diagram illustrating the shared number of outliers A. among the employed tools (blue: gINLAnd, red: PCAdapt, green RDA) at the different datasets and B. among the different datasets when each tool was employed (blue: all_dataset, red: MED dataset, green: ATL dataset and yellow: NvsS dataset). C. shared number of outliers among the different tools employed across all datasets (blue: gINLAnd, red: PCAdapt, green: RDA). Venn diagrams were created online with the tool provided at https://bioinformatics.psb.ugent.be/cgi-bin/liste/Venn/calculate_venn.htpl


Figure S2: Gene Ontology summary of the GO terms characterizing the genes that include outlier loci discovered in the seascape genomics analysis.
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