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Abstract Data assimilation techniques are the state-of-the-art approaches in the
reconstruction of a spatio-temporal geophysical state such as the atmosphere or the
ocean. These methods rely on a numerical model that fills the spatial and temporal
gaps in the observational network. Unfortunately, limitations regarding the uncer-
tainty of the state estimate may arise when considering the restriction of the data
assimilation problems to a small subset of observations, as encountered for instance
in ocean surface reconstruction. These limitations motivated the exploration of
reconstruction techniques that do not rely on numerical models. In this context,
the increasing availability of geophysical observations and model simulations
motivates the exploitation of machine learning tools to tackle the reconstruction
of ocean surface variables. In this work, we formulate sea surface spatio-temporal
reconstruction problems as state space Bayesian smoothing problems with unknown
augmented linear dynamics. The solution of the smoothing problem, given by the
Kalman smoother, is written in a differentiable framework which allows, given some
training data, to optimize the parameters of the state space model.
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1 Introduction

Data assimilation in a broad sense can be considered as the inference of a hidden
state, based on several sources of information. When considering data assimilation
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in the context of oceanography, these schemes exploit, in addition to some given
observations, a dynamical model to perform simulations from given ocean states [1].
Unfortunately, realistic analytic parameterizations of the dynamical model, in the
context of sea surface variables reconstruction, lead to computationally demanding
representations [2]. Furthermore, when associated to a small subset of observations
(as encountered for instance when assimilating sea surface variables with a global
ocean model), these realistic models may result in modeling and inversion uncer-
tainties. On the other hand, the analytic derivation of computationally-efficient,
low-order models involves theoretical assumptions, which may not be fulfilled
by real observations. These limitations motivated the exploration of interpolation
techniques that do not require an explicit dynamical representation. Among other
methods, Optimal Interpolation (OI) became the state-of-the-art framework [3, 4].
This technique does not need an explicit formulation of the dynamical model and
rather relies on the modelization of the covariance of the spatio-temporal fields.
Despite the success of OI, this technique tends to smooth the fine scale structures
which motivates the development of new spatio-temporal interpolation schemes,
mainly based on machine learning representations [5–10].

From the perspective of the machine learning community, state-of-the-art recon-
struction techniques are usually formulated as inverse problems, where one searches
to maximize the reconstruction performance of an inversion model, given the
observed field as an input. Several methods were developed for this purpose
in the fields of signal denoising [11, 12] and image inpainting [13] where the
inversion model typically relies on a deep learning architecture. This end-to-end
learning strategy, differs from classical inversion techniques used in geosciences,
where the state-space representations (specifically the dynamical models) and the
inversion schemes are a priori unrelated. The recent exploration of machine learning
representations in the context of sea surface fields reconstruction was inspired by the
latter methodological viewpoint, where a data-driven dynamical model is optimized
based on the minimization of a forecasting cost. This data-driven prior is then
plugged into a data assimilation framework to perform reconstruction based on
classical (Kalman based, variational formulations) inversion schemes [7, 14, 8].

Recently, several works investigated end-to-end deep learning architectures in the
resolution of reconstruction issues in geosciences [15–17, 10]. However, this tools,
although relevant, were naturally explored in the context of image denoising and
inpainting applications due to the lack of methodological formulation. When con-
sidering geosciences applications, a huge effort was carried within the geosciences
community to derive reconstruction algorithms that, beyond being efficient with
respect to a given metric, are robust and rely on a solid methodological formulation.
From this point of view, we believe that end-to-end deep learning techniques should
build on such methodological knowledge to propose new reconstruction solutions
that can achieve both a decent performance score, and remain theoretically relevant
which helps the understanding and generalization of these algorithms. From this
point of view, we exploit ideas from machine learning and Bayesian filtering to
propose a framework that is able to provide a relevant reconstruction of a spatio-
temporal state. Specifically, we formulate a new state space model for ocean surface
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observations based on an augmented linear dynamical system. Assuming that the
model and observation errors are Gaussian, the solution of the filtering/smoothing
problem on this new state space model is given by the Kalman filter/smoother.
Inspired by deep learning architectures, the Kalman recursion is written in a
differentiable framework, which allows for the derivation of the parameters of the
new state-space model based on a reconstruction cost of the observations.

2 Method

Motivation Let us assume the following state-space model

ẋt = f (xt ) + ηt (1)

yt = Ht (xt ) + εt (2)

where t ∈ [0,+∞] is time. The variables xt ∈ R
s and yt ∈ R

n represent
the state variables and the observations respectively. f and Ht are the dynamical
and observation operators. ηt and εt are random processes accounting for the
uncertainties. They are defined as centered Gaussian processes with covariances
Qt and Rt respectively.

In the context of geosciences, and when considering the resolution of filtering and
smoothing problems using data assimilation, the dynamical and observation models
f and H, the model and observation error covariances Qt and Rt as well as the true
state xt of Eqs. (1) and (2) are either unavailable or too complicated to handle. In
this context, we show in this work how to exploit observations yt sampled from time
t1 to time tf to learn a Bayesian scheme that allows for reconstruction applications
given new observations (i.e., at time t > tf ).

Definition of a New State Space Model In this work, we consider an embedding
of the observations as proposed in [18]. Specifically, we project our observations
(or a reduced order version of our observations) into a higher dimensional space
where the dynamics of the observations are assumed to be linear. Formally, in order
to derive our new state-space model, we first start by writing an augmented state
ut such as ut

T = [(Myt )
T , zT

t ] with zt ∈ R
l is the unobserved component of the

augmented state ut and M ∈ R
r×n with r ≤ n a linear projection operator (that

can be used for instance in the context of reduced order modeling). The matrix M is
assumed to have r orthogonal lines so that the matrix M−1 = MT verifies MM−1 =
I. We used in this work an Empirical Orthogonal Functions (EOF) projection. This
constraints M to be a matrix of orthogonal eigenvectors of the covariance matrix of
the centered data. The augmented state ut ∈ R

dE , with dE = l + r , evolves in time
according to the following state-space model:

u̇t = Aσ ut + ηt (3)
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yt = M−1Gut + εt (4)

where the dynamical operator Aσ is a dE × dE matrix with coefficients σ . G
is a projection matrix that satisfies Myt = Gut . The eigenvalues of the matrix
Aσ encode the decaying and oscillating modes of the dynamics that are learned
from data. Furthermore, the matrix Aσ can be constrained to be skew-symmetric
(simply by imposing Aσ = 0.5(Bσ − BT

σ ) with Bσ a trainable matrix) so the
solution of (3) will be written as a weighted sum of dE/2 trainable oscillations,
where the corresponding frequencies been encoded in the imaginary parts of the
eigenvalues of Aσ . This formulation is highly suitable for Hamiltonian (conserva-
tive) dynamical systems since the energy of the system is conserved and allows
guaranteeing long term boundedness of the model. Furthermore, this formulation
differs fundamentally from classical Auto Regressive (AR) models written in the
space of the observations. Indeed, simple AR models only have a number of r < dE

eigenvalues, which limits their expressivity.
It is worth noting that this formulation closely relates to the Koopman operator

[19] where the augmented state ut can be seen as a finite dimensional approximation
of the infinite dimensional Hilbert space of measurements of the hidden state xt .
This model takes advantage of a linear formulation of the dynamics in a space
of observables, where the resulting model is perfectly linear for a category of
dynamical regimes (typically periodic and quasi-periodic ones), and can provide
a decent short-term approximation of chaotic regimes. It can also be seen as a
generalization of the Dynamic Mode Decomposition (DMD) method, in which
ut = Myt .

Model and Observations Error Covariances The model and observation errors
ηt and εt are assumed to follow Gaussian distributions with zero mean and
covariance matrices Qλ,t and Rφ,t , respectively. These covariance models can be
parameterized as neural networks with parameter vectors λ and φ.

Smoothing Scheme A Kalman smoother, based on the above state-space model,
is written in a differentiable framework. The idea is to derive an analytical solution
of the posterior distribution p(ut |yt1:tf ), based on the Kalman recursion. Formally,
given a regular time discretization t ∈ [t1, . . . , tN ] where N is a positive integer and
given the initial moments ua

t1
and Pa

t1
, the mean us and covariance Ps of the posterior

distribution p(ut |yt1:tf ) can be computed as follows:

uf

t+1 = Fua
t (5)

Pf

t+1 = FPa
t FT + Qλ,t (6)

Kt+1 = Pf

t+1HT [HPf

t+1(H)T + Rφ,t ]−1 (7)

ua
t+1 = uf

t+1 + Kt+1[yt+1 − Huf

t+1] (8)
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Pa
t+1 = Pf

t+1 − Kt+1HPf

t+1 (9)

Ks
t+1 = Pa

t+1FT (Pf

t+2)
−1 (10)

us
t+1 = ua

t+1 + Ks
t+1[us

t+1 − uf

t+1] (11)

Ps
t+1 = Pa

t+1 − Ks
t+1(P

f

t+1 − Ps
t+2)(K

s
t+1)

T (12)

where F = edtAσ with dt the prediction time step and H = M−1G. The smoothing
(Eqs. (10), (11) and (12)) is carried backward in time with Ps

tf
= Pa

tf
and us

tf
= ua

tf
.

Learning Scheme The tuning of the trainable parameters vector θ = [σ, λ, φ]T
is carried using the following loss function: θ̂ = arg min

θ
{γ1L1 + γ2L2} where

L1 = ∑tN
t=t0

‖yt − Hus
t ‖2 and L2 = 1

2 log(|HPf

t+1HT + Rφ,t |)
+ 1

2

∑t=tN
t=1 ||yt − Huf

t ||2
HPf

t+1HT +Rφ,t

and γ1 and γ2 are weighting parameters.

The first term L1 is simply the quadratic reconstruction error of the observation.
The minimization of this error helps to recover an initial guess of the trainable
parameters. The second term, L2 is the negative log likelihood of the observations.
This likelihood is derived from the likelihood of the innovation, i.e. p(y1:T ) =∏t=T

t=1 p(yt|yt−1) [20].

3 Numerical Experiments

3.1 Preliminary Analysis on SST Anomaly Data

As an illustration of the proposed framework, we consider scalar measurements
of the anomaly of the Sea Surface Temperature (SST) in the Mediterranean Sea
(8.6◦N and 43.8◦E). The data are computed based on of the annual 99th percentile
of Sea Surface Temperature (SST) from model data [21]. The time series consists
of daily measurements of the SST anomaly from 1987 to 2019. The training data is
composed of a sparse sampling of the original time series, as highlighted in Fig. 1a.
The proposed framework is tested with the following configuration: The augmented
state space model is built with M = I1, and z ∈ R

5. The model error covariance is
a constant matrix of size, dE × dE and the observation error covariance is a scalar
parameter that corresponds to the variance of the SST anomaly measurement error.
Finally, the training is carried with γ1 = 0 and γ2 = 1.

Figure 1b highlights the reconstruction performance of the smoothing Probability
Density Function (PDF) with respect to the true (unobserved) state. Interestingly,
and despite the fact that the observations used to train the parameters of the Kalman
filtering scheme were extremely sparse, the proposed framework is able to catch
the correct underlying frequencies. Furthermore, the coverage probability of the
PDF highlights the effectiveness of the estimated model and observations error
covariances.
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Fig. 1 Performance of the
proposed framework in the
reconstruction of the
smoothing PDF of SST
anomaly data. (a) Sparse
training data (b)
Reconstructed smoothing
PDF on the test set (We only
visualize the standard
deviation of the SST anomaly
measurements)

3.2 Shallow Water Equation (SWE) Case-Study

Dataset Description We consider the SWE without wind stress and bottom
friction. The momentum equations are taken to be linear, and the continuity equation
is solved in its nonlinear form. The direct numerical simulation is carried using a
finite difference method. The size of the domain is set to 1000 km × 1000 km with
a corresponding regular discretization of 80 × 80. The temporal step size was set
to satisfy the Courant–Friedrichs–Lewy condition (h = 40.41 s). The data were
subsampled to h = 40.41 × 10 and 500 time-steps were used as training data. The
models were validated on a series of length 100. As observations, we randomly
sample 1% of the pixels with a temporal coverage given in Fig. 2.

Parametrization of the Data-Driven Models The application of the above frame-
work in the spatio-temporal reconstruction of sea surface fields should be considered
with care to account for the underlying dimensionality. In this context, and following
several related works [14, 9], a patch based representations is considered in order
to reduce the computational complexity of the model. Specifically, this patch
based representations allows a block diagonal modelization of the covariance
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Fig. 2 Daily performance time series: we report the reconstruction performance of the sea surface
elevation and its gradient in (a) and (b) respectively

matrices, which significantly reduces the computational and memory complexity
of the model. This patch-based representation is fully embedded in the considered
architecture to make explicit both the extraction of the patches from a 2D field and
the reconstruction of a 2D field from the collection of patches. The latter involves a
reconstruction operator Fr which is learned from data.

This patch-level representation is carried with a fixed shape of 35 × 35 pixels
and a 10 pixels overlap between neighboring patches, resulting in a total of 16
overlapping patches. For each patch Pi , i = 1, . . . , 16 we learn an EOF basis
MPi

from the training data. We keep the first 20 EOF components, which amount
on average to 95% of the total variance. This patch-based decomposition is shared
among all the tested models. The end-to-end Kalman filter architecture (E2EKF) is
applied on a patch level with an augmented linear model operating on an embedding
of dimension dE = 60. The reconstructed patches are combined through the
reconstruction model Fr . This model is implemented as a residual, two blocks,
convolutional neural network. The first block of the network contains four layers
with 6 filters of size k × k (with k ranging from 3 to 17). The second block involves
5 layers, the first four containing 24 filters and a similar kernel size distribution as
the ones in the first block, the last layer is a linear convolution with a single filter.

The proposed technique is compared in this work to the following schemes:

– Data-driven plug-and-play Kalman filter (KF): In order to show the relevance
of the proposed end-to-end architecture, its plug-and-play counterpart is also
tested. This model exploits the same patch based augmented linear formulation as
the end-to-end one, however, the parameters of the dynamical model are trained
based on a forecasting criterion and plugged into a Kalman filtering scheme.
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Table 1 Surface elevation (η) interpolation experiment: reconstruction correlation coefficient and
root mean squared error (RMSE) over the elevation time series and their gradient. Bold values
denote smallest RMSE and highest percentage correlation

Entire map Missing data areas

RMSE Correlation RMSE Correlation

Model η(m) ∇η(m/◦) η ∇η η(m) ∇η(m/◦) η ∇η

Proposed, E2EKF 0.046 0.009 73.10% 41.89% 0.047 0.010 73.80% 41.90%

AnDA 0.058 0.011 52.74% 35.91% 0.060 0.011 52.82% 21.25%

KF 0.060 0.010 64.57% 21.21% 0.059 0.010 64.68% 36.06%

– Analog data assimilation (AnDA): We apply the analog data assimilation frame-
work [14, 7] with a locally linear dynamical kernel and an ensemble Kalman
filter scheme. Please refer to [14, 7] for a detailed description of this data-driven
approach, which relies on nearest-neighbor regression techniques.

Following [14], an EOF based post-processing step is applied to all the recon-
structions. Furthermore, in this experiment, we only report the reconstruction
performance of the mean component as a relevant benchmark of the uncertainty
of the above data-driven models would be out of the scope of this paper. Thus,
the model and observation error covariances are assumed to be known matrices
with appropriate dimensions, and the training of the proposed model is carried with
γ1 = 1 and γ2 = 0.

Reconstructing Performance of the Proposed Data-Driven Models A quanti-
tative analysis of the benchmark is given in Table 1 based on (i) a mean RMSE
criterion and (ii) a mean correlation coefficient criterion of the interpolated fields
as well as their gradients. The RMSE and correlation coefficient time series, as
well as the spatial coverage of the observations are also reported in Fig. 2. Overall,
the proposed end-to-end architecture leads to very significant improvements with
respect to the state-of-the-art AnDA technique, as well as to its plug-and-play
counterpart both in terms of RMSE and correlation coefficients. These results
emphasize the importance of the end-to-end methodology with respect to classical
plug-and-play techniques since, when considering data-assimilation applications,
and as shown by [16, 10], the reconstruction performance depends, in addition to the
quality of the dynamical prior, on the provided measurements and their sampling.
Classical plug-and-play techniques, in the opposite to end-to-end strategies, ignore
the latter source of information which explains the performance of our framework.

Qualitative Analysis of the Proposed Schemes the conclusions of the quantitative
analysis are also illustrated through the visual analysis of the reconstructed surface
elevation and its gradient in Fig. 3. Interestingly, this visual analysis reveals that the
AnDA technique tend to smooth out fine-scale patterns. By contrast, the Kalman
filter based schemes (in both its end-to-end and plug and play versions) achieve a
better reproduction of fine scale structures, illustrated for instance by the gradients
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Fig. 3 Interpolation example of the surface elevation field: first row, the reference surface
elevation, its gradient and the observation with missing data; second row, interpolation results
using respectively the plug-and-play Augmented Koopman Kalman filter, AnDA, and the proposed
E2EKF; third row, gradient of the reconstructed fields

of the field. The analysis of the spectral signatures in Fig. 4 leads to similar
conclusions since, when compared to the state-of-the-art AnDA technique, as well
as to its plug and play counterpart, the proposed end-to-end architecture leads
to significant improvements especially regarding the reproduction of the gradient
energy-level.

4 Conclusion

Spatio-temporal interpolation applications are important in the context of ocean
surface modeling. For this reason, deriving new data assimilation architectures that
can perfectly exploit the observations and the current advances in signal processing,
modeling and artificial intelligence is crucial. In this context, this work investigated
the ability of augmented linear state space models in solving smoothing issues of
ocean surface observations using the Kalman filter.
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Fig. 4 Spectral comparison of the tested models: the averaged power spectral densities and their
error with respect to the ground truth are given in (a) and (b) respectively

Beyond filtering and smoothing applications, we believe that the proposed
framework provides an initial playground for learning approximate linear state
space models of real observations. Given a sequence of sparse observations, the
proposed framework may be able to unfold large scale frequencies that are useful
for prediction. Interesting case studies include sea level rise and the increase of the
anomaly of the sea surface temperature.
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