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Abstract :

Corals harbour a myriad of microorganisms, many of which play a beneficial role for their host. To date,
many of these microbes have not been identified, and information is also lacking on their origin, in
particular their potential presence in the surrounding seawater or sediment. In this study, we used 16S
rRNA gene sequencing to investigate the bacterial communities associated with three genera of
scleractinian coral (Acropora, Lobophyllia and Porites) of the coast of Phu Quoc Island in Vietham. We
surveyed the bacterial communities on the mucous layer of these corals, as well as in the water column
and the surface sediment in their vicinity, which we considered as five biotopes: Acropora, Lobophyllia,
Porites, water column, and sediment. Overall, we identified 29 phyla, 50 classes, 114 orders, 254 families,
and 402 genera across all samples. Proteobacteria were dominant in most of the biotopes, while
Desulfobacterota and Bacteroidota were mainly found in the sediment. Bacteriome analysis based on
amplicon sequence variants (ASVs) suggested that five genera (Algicola, Algicola bacteriolytica,
Alteromonas, Catenococcus, and Vibrio) were the core bacteria in the three coral biotopes, but there were
no shared ASVs across all five biotopes investigated. Additionally, linear discriminant analysis revealed
that 23 biomarkers differed significantly across the five biotopes, with coral biotopes having the highest
diversity of bacterial taxa (15 biomarkers), followed by seawater (4 biomarkers) and sediment biotopes (4
biomarkers). These findings highlight that the composition of the coral bacteriome is significantly different
from that of nearby seawater and sediment samples, and that the composition may be specific to the coral
host.
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1. Introduction

Coral reefs, one of the most biologically diverse marine ecosystems, are complex ecological
communities made up of a variety of coral species and their surrounding environment (Zhang
et al., 2021). Studies have shown that coral reefs play a vital role, providing habitats for a
wide variety of organisms (Elliff and Silva, 2017), as well as protecting the coastline from
storm waves and erosion (Mhuantong et al., 2019). However, coral is vulnerable to
environmental changes caused by human activity: for example, increasing temperatures due
to global warming can make corals more susceptible to disease and lead to a reduction in
coral biodiversity (Mhuantong et al., 2019; Rosenberg et al., 2007). Disruption or imbalance
in the composition of the microbial community can also cause disease in corals (MacKnight
et al., 2021; Ritchie, 2006). Given the increasing environmental stress on coral, it is urgent to
study the functional role and contribution of the components of the coral reef ecosystem to

better understand how they interact with each other and how they are changing.

Corals have a complex symbiotic relationship with diverse living organisms, including
viruses, archaea, bacteria, symbiotic dinoflagellates (zooxanthellae), and fungi, which
together form the coral holobiont (Bourne et al., 2009; Rohwer et al., 2002; Rosenberg et al.,
2007). Of these, the bacterial community is a particularly critical component. Bacteria are
involved in most of the physiological functions of corals, including food digestion, nutrient
absorption, immune system development, and pathogen defence (Rohwer et al., 2002; Shnit-

Orland et al., 2010). Microbes can be found in a variety of microniches in the coral holobiont,
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including the coral’s surface mucous layer, tissue, and skeleton (Li et al., 2014; Rosenberg et
al., 2007). To distinguish these microniches from non-host biotopes such as sediment and

seawater, they are generally referred to as “host biotopes”.

The development of molecular tools, next-generation sequencing (NGS), and metagenomic
technology is increasing our understanding of the interactions between microbes and their
hosts. These tools have allowed the study of coral-associated bacterial diversity and
composition in many parts of the world, including Southeast Asia (Mhuantong et al., 2019;
Pootakham et al., 2017), the Pacific Ocean (Yang et al., 2020), Western Australia
(Bernasconi et al., 2019), the Red Sea (Osman et al., 2020), the South China Sea (Qi et al.,
2022; Zhang et al., 2015), and the Indian Ocean (Wambua et al., 2021). A few of these
studies have demonstrated that coral bacterial communities differ from those in sediment
(Dong et al., 2022) and seawater surrounding the coral (Zhang et al., 2015), and that specific

bacterial taxa may be found in some corals.

The coral ecosystem in Vietnam is highly diverse, with at least 366 coral species belonging to
70 genera identified to date (Latypov, 2005, 2011). Studies on the coral microbiome in this
region have mainly concentrated on microbial diversity and composition (Bettarel et al.,
2018; Mien et al., 2019; Pham et al., 2015) or the bacterial community’s antimicrobial
activities (Mien et al., 2020), while less attention has been paid to the microbes in nearby
sediment and seawater, although the myriad of microbial communities in coral, seawater, and
sediment differ. For the purpose of this study, we assume that coral species contain microbial
communities that differ from those in seawater and sediment. Through examining specific
bacterial amplicon sequence variants (ASVs) in the different compartments, the study aimed
to identify the core bacteriomes, the dominant bacterial ASVs, and bacterial taxa that were

shared across samples. As Phu Quoc Island has a diverse range of coral ecosystems (Tin et
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al., 2014), the results allow valuable insights into the bacterial communities in corals and

their surroundings, which could be a useful springboard for further studies.

2. Materials and Methods

2.1. Sampling site and methods

The samples (sediment, seawater, and scleractinian coral) were taken off the coast of
Vietnam’s Phu Quoc Island (9°55'20.6"N, 104°01'16.4"E), located in the lower Gulf of
Thailand, in May 2020. During one sampling occasion (via scuba diving), a total of 19
samples were collected, 9 from individual corals (3 from each of the 3 coral types), 5 from
the sediment, and 5 from the water column at a depth of 5 to 10 m. We considered these in
our analyses as five separate biotopes: Acropora muricata, Lobophyllia, Porites, water

column, and sediment.

For the coral samples, we selected only healthy coral branches, which were obtained from
three scleractinian coral species: Acropora muricata (AF, n = 3) species, Lobophyllia (LB, n
= 3), and Porites (PO, n=3) genera. Mucus collection was carried out as described in previous
studies (Bettarel et al., 2018; Naumann et al., 2010), by taking coral nubbins out of the water,
rinsing them with autoclaved and 0.2pm filtrated seawater, and exposing them to the air for 3
minutes. To avoid contamination or dilution by seawater, the mucus production of the coral
sample for the first 30 seconds was eliminated. After this, the mucus samples were collected
with sterile syringes, transferred to sterile cryotubes, immediately fixed with 30% glycerol

solution at a ratio of 1:1, and stored at -20°C until analysis.

The seawater and sediment samples were collected at a distance of less than 2 m from the
corals, and then transferred into sterilized 15-mL Falcon tubes. They were then stored at -

20°C until analysis in the lab.
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2.2. Bacterial DNA extraction and 16S rRNA gene sequencing

The total DNA was isolated separately from the coral mucus, the sediment (1 g), and the
seawater (from material captured in the membrane filter) samples using the Easy-DNA™
gDNA Purification Kit (Invitrogen, Thermo Fisher Scientific, USA) following the
manufacturer’s instructions. The purification and quantity of extracted bacterial DNA were
assessed by a NanoDrop 2000c spectrophotometer (Thermo Scientific, USA), and DNA
quality was checked by running on 1% agarose gel electrophoresis. The DNA was then
diluted to 10 ng pl"! with TE buffer and stored at -20°C until analysis.

To amplify the bacterial 16S rRNA gene from coral mucus, seawater, and sediment samples,
a region of approximately 470 bp covering the V4—V5 hypervariable regions of the ribosomal
DNA was targeted using the wuniversal bacterial primer sets SISF-Y (5'-
GTGYCAGCMGCCGCGGTAA-3") and 926R (5-CCGYCAATTYMTTTRAGTTT-3)
(Parada et al., 2016). The polymerase chain reaction (PCR) amplifications were carried out in
an Eppendorf 6331 Nexus Gradient MasterCycler Thermal Cycler (Hampton, New
Hampshire, USA) as follows: 94°C for 1 min at the denaturation step, followed by 30 cycles
of 94°C for 30 sec, then 55°C for 30 sec, 72°C for 1 min, and the final extension of 72°C for
5 min. All amplicons were checked for size and quality by agarose gel electrophoresis before
using the Illumina MiSeq platform to perform sequencing of the /65 ¥rRNA gene. To assess
whether bacterial DNA used for analysis was contaminated during the DNA extraction and
polymerase chain reaction (PCR) stages, we used distilled water as the negative control in the
PCR, as it contained all reaction components except for the template DNA.

2.3. Raw data processing and statistical analyses

The result of amplicon sequencing generated 846,011 raw reads from the 19 samples; the
DADA? pipeline was used for data processing. This included filtering and trimming low—

quality sequences, denoising, removing chimeras, constructing the ASV table, and assigning
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taxonomy, as detailed in the protocol described by Callahan et al. (2016). Barcodes, primers,
low—quality sequences (QC < 20), and sequences shorter than 200 bp or longer than 500 bp
were removed. After screening and denoising, a total of 334,503 sequences remained, with a
median of 18,526 and a mean of 17,605 sequences per sample (min = 5,810; max = 32,557).
These were then clustered into ASVs based on a 97% similarity to the V4—V5 region of the

16S rRNA gene in the SILVA version 138.1 database (https://www.arb-silva.de/) (Quast et

al., 2013). To further clean datasets, singletons, unassigned taxa, and taxa classified as
chloroplast and mitochondria were also removed, resulting in 334,417 sequences
(corresponding to 3,497 distant ASVs) that were retained for the alpha diversity analysis. The
Good’s coverage index was calculated as (1 — [ASV singletons/ASVs total])* 100. For
observed ASVs, this index was greater than 95.64%, indicating that the sample size was

sufficient to capture the majority of bacterial diversity (Table 1).

To compare the diversity in the samples, alpha diversity indices such as observed ASVs,
Chaol richness, and the Shannon index were calculated with a cut-off value of 5,799 reads
per sample, which was the smallest number of reads per sample obtained (Fig S1). Alpha
diversity indices were then estimated for overall differences using the non—parametric
Kruskal-Wallis test with the function kruskal.test within R software (Ogle et al., 2022), while
Dunn’s test was conducted following the Kruskal-Wallis test for multiple pairwise
comparisons between the biotopes. A log (x+1) transformation was used to normalize the
distribution of the data before performing the beta diversity analysis. Differences in bacterial
community composition between the five biotopes were visualized with principal coordinate
analysis (PCoA) using the plot_ordination function with the Bray—Curtis dissimilarity method
and clustered using the ggclust function in R. Variation between biotopes was tested for

significance with the adonis2 function in R (with the number of permutations set at 9999). All
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statistical analysis was performed by R software (R Core Team, 2020) and the R package

vegan 2.6-2 (Oksanen et al., 2022).

The comparative examination of relative abundance primarily focused on the dominant phyla
(mean relative abundance > 1%) and genera (mean relative abundance > 2%). As the majority
of datasets did not follow an assumption of normality distribution, a comparison of relative
abundance between biotopes was undertaken using the Kruskal-Wallis test. The p-value was
adjusted for multiple comparisons using the Benjamini and Hochberg procedure and then
represented as a g-value. A g-value of <0.05 was considered statistically significant. To
determine if there were statistically significant differences in the bacterial communities of
coral, sediment, and seawater, STAMP software (v2.1.3) with Welch’s t-test (corrected p <

0.05) was used (Parks et al., 2014).

Linear discriminant analysis effect size (LEfSe) was used to detect the most differentially
abundant taxa across all the biotopes, and the abundance box plot was visualized using the
diff analysis and ggdiffbox functions in R (MicrobiotaProcess package) (Xu and Yu, 2022).
The linear discriminant analysis (LDA) score threshold of the bacterial taxa was set to 4.5 for
all the samples. The p-value in the LDA was corrected for multiple hypothesis testing using
the Benjamini and Hochberg false discovery rate (FDR) correction (White et al., 2009). The

resulting p-value, FDR, and LDA scores are shown in Table S2.

The core ASVs in coral microbiomes were determined using several percentage cut-offs
ranging from 30% to 100% (Hernandez-Agreda et al., 2017). In this study, the presence of an
ASV in at least 70% of samples was chosen as a conservative representation of the core
bacteriome. To identify both the unique and shared ASVs in the biotopes in our study, an
UpSet diagram was generated using the microbiomeutilities and ComplexHeatmap packages

in R.
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3. Results

3.1. Diversity of bacterial communities

In our analysis of the diversity of the coral microbiome as well as in the seawater and
sediment were investigated using 16S rRNA gene sequences. Alpha diversity for each sample
was estimated through diversity indexes such as observed ASVs, Chaol richness, and
Shannon, which indicated a wide range of values. In general, the number of observed ASVs
was found to be highest in Lobophyllia samples (LB1, LB2), followed by sediment samples
(SES, SE3), and then seawater samples (WA2, WAS5) (Table 1). The Chaol indices ranged
from 201.0 for Acropora muricata (AF2) to 717.5 for Lobophyllia (LB1), while the Shannon
index had the smallest value (3.77) for Porites (PO1) and the largest (5.70) for sediment
(SE1) samples. A similar trend was seen in mean bacterial richness (Table 1), which was
highest in Lobophyllia samples (585.7 £ 84.0 for observed ASVs and 615.5 = 95.1 for
Chaol) and lowest in seawater samples (200.2 + 4.0 for observed ASVs and 207.4 £ 4.6 for
Chaol). The Shannon index showed the lowest mean in Porites samples (3.8 = 0.1) and the

highest in sediment samples (5.6 + 0.1).

Beta diversity was visualized using PCoA, which enabled a comparison of bacterial
communities between samples. The results of the analysis indicated a distribution of bacteria
divided into three groups based on their community structure. Coral-associated bacterial
communities were on the positive side of PC1 and PC2, sediment samples were on the
negative side of PC1 and PC2, while seawater samples were on the negative side of PC1 and
the positive side of PC2. The coral samples also tended to be grouped closely together

compared to the seawater and sediment biotopes (Fig. 1a). This was further supported by
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hierarchical clustering with coral samples belonging to the same group, distinguishing them

from seawater and sediment samples (Fig. 1b).

PERMANOVA (ADONIS, F = 22.39, R* = 0.86, p = 1E-04) indicated significant differences

in bacterial composition between the samples taken from the five biotopes.

3.2. Bacterial community composition

The bacterial community composition associated with the different samples was analyzed
using high-throughput sequencing technology. Based on the SILVA 16S rRNA gene
database, a total of 3,497 bacterial ASVs were identified from 19 samples, with a similarity
cut-off value of 97%. Of the 3,497 ASVs, the sediment biotope had the highest number of
ASVs (1,364), followed by the Lobophyllia (1,315), Porites (465), and Acropora muricata
(427) biotopes, whereas the lowest number of ASVs was observed in the seawater biotope
(377). Only five ASVs appeared in all biotopes (Fig. S2). The 3,497 bacterial ASVs were
then taxonomically classified into 29 phyla, 50 classes, 114 orders, 254 families, and 402

genera.

At the phylum level, while 29 phyla were detected, Proteobacteria and Bacteroidota
accounted for more than 60% of the sequences (Fig. 2a). On the whole, Proteobacteria was
the predominant phylum in most of the samples, with a relative abundance ranging from
29.2% in a sediment sample (SE2) to 76.8% in a Lobophyllia sample (LB1).
Desulfobacterota (21.7-27.8%) was the most abundant phylum in the sediment samples,
whereas it was a minor taxon in coral samples, accounting for less than 7.1% of relative
abundance (Fig. 2a). There was a noticeable difference in the relative abundance of

Bacteroidota between biotopes, beginning at 6.3% in an Acropora muricata sample (AF1),
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gradually increasing from 13.2% in Lobophyllia (LB1) to 25.1% in seawater (WAS) samples,
and peaking at 30.7% in a sediment sample (SES). Other phyla, including Firmicutes,
Spirochaetota, Bdellovibrionota, and Calditrichota, were also found in most of the biotopes,

with a relative abundance lower than 6% (Fig. 2a).

The differences in relative abundance of bacterial phyla were examined using the Kruskal—
Wallis test (corrected with ¢ < 0.05, Benjamini—-Hochberg method). In the findings, 12 out of

29 phyla exhibited statistically significant differences between the five biotopes (Table 2).

The mean relative abundance of Proteobacteria in Lobophyllia samples (0.76 £ 0.01) was
higher than that in sediment samples (0.34 * 0.05), whereas the abundance of
Desulfobacterota in Lobophyllia samples was only 0.03, which was significantly lower
compared to that in sediment samples (0.24 = 0.02). Interestingly, Actinobacteriota was a
highly abundant phylum in seawater samples (0.1 = 0.01), but insignificant in other biotopes

(below 1% in relative abundance) (Table 2).

At the genus level, the dominant genera in coral biotopes differed from those in seawater and
sediment (Fig. 2b). While Algicola, Vibrio, and Thalassotalea were mainly found in coral
samples, the Rhodobacteraceae strain HIMBI1 and Candidatus Actinomarina were the
dominant genera in seawater samples, and the Sva008/ marine benthic group was the most

abundant genus in sediment samples (Fig. 2b).

A statistical analysis of the top 30 genera (relative abundance greater than 2%) revealed
significant differences in the mean relative abundance of bacterial genera between the five
biotopes based on the Kruskal-Wallis test (corrected with g < 0.05, Benjamini-Hochberg

method) (Table S1). In general, Acropora muricata and seawater samples exhibited a higher
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number of dominant genera than the other samples. In particular, the top five genera,
including Vibrio (0.17 £ 0.03), Thalassotalea (0.1), Malaciobacter (0.08 = 0.01),
Thalassolituus (0.07 £ 0.01) and Halarcobacter (0.06 £ 0.01) were remarkably higher in the
Acropora muricata samples compared with the other four biotopes. Likewise, HIMBI1,
Candidatus_Actinomarina, the NS4 marine group, the NS5 marine group, and Clade la were
significantly different between biotopes; the abundance of these was highest in the seawater
biotope with an average relative abundance of more than 5%. In the Porites biotope, Algicola
(0.3 £ 0.02) and Marinifilum (0.06 £ 0.01) were the most abundant bacterial genera, with a

higher dominance than in other biotopes (Kruskal-Wallis test, g < 0.05).

To compare the composition and relative abundance of dominant bacterial genera (mean
relative abundance > 2%) in more detail, we divided the five biotopes into three groups: coral
(including all nine coral samples), seawater (WA), and sediment (SE). Differences in
bacterial relative abundance between groups were observed at the genus level based on the
Welch t-test with STAMP software (corrected p-value < 0.05). The results of the statistical
analysis revealed that there was a highly significant difference in the relative abundance of
bacterial genera between groups and that each had its own distinct dominant genera (Fig. 3).
The bacteria in the coral group consisted mainly of Algicola, Vibrio, Thalassotalea, and
Halarcobacter (Fig. 3a). In contrast, the seawater was dominated by HIMBII,
Candidatus_Actinomarina, the NS4 marine group, the NS5 marine group, Clade la, and
Muricata (Fig. 3b), while the sediment was dominated by the Sva0081 benthic group,

Woeseia, and Candidatus _Thiobios genera (Fig. 3c).

3.3. Biomarker analysis based on bacterial community abundance

We designed a linear discriminant analysis to detect differentially abundant bacteria taxa in

the five biotopes by comparing bacterial contents across all biotopes using biomarkers in the
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genomic data. In this comparison of the bacterial components in all five samples, a total of 23
bacterial taxa were identified (LDA score > 4.5), with significant taxonomic variation
between the samples (Fig. 4, Table S2). The analysis showed that the Porites samples had the
greatest diversity of bacterial taxa of all the biotopes, while the number of biomarkers in

Lobophyllia was the smallest, with only two biomarkers (Fig. 4).

This analysis found 23 bacterial biomarkers across all the taxonomic units (from species to
phylum) with significant differences in relative abundance and the LDA score (Fig. 4). Of
these, 10 biomarkers were identified in the Porites biotope: Arcobacteraceae (LDA = 4.51,
FDR = 0.01), Campylobacterota (LDA = 4.54, FDR = 0.01), Campylobacteria (LDA = 4.54,
FDR = 0.01), Campylobacterales (LDA = 4.54, FDR = 0.01), Bacteroidales (LDA = 4.57,
FDR = 0.01), Gammaproteobacteria (LDA = 4.68, FDR = 0.01), Algicola (LDA = 4.81, FDR
= 0.01), Enterobacterales (LDA = 4.98, FDR = 0.01), Pseudoalteromonadaceae (LDA =
4.82, FDR = 0.01) and Algicola bacteriolytica (LDA = 4.75, FDR = 0.01). In Acropora
muricata samples, biomarkers included the phylum Proteobacteria (LDA = 5.10, FDR =
0.01), class Alphaproteobacteria (LDA =5.01, FDR = 0.01), and order Rickettsiales (LDA =
4.87, FDR = 0.03). In seawater and sediment, each biotope had four biomarkers, whereas
Lobophyllia had only two: Terasakiellaceae (LDA = 4.52, FDR = 0.02) and Rhodospirillales
(LDA =4.62, FDR = 0.02). Furthermore, the species Algicola bacteriolytica was found to be

the lowest taxonomic unit in this study (Fig. 4, Table S2).

3.4. The core microbiome of Biotopes

Taxa present in at least 70% of the samples (with greater than 0.1% abundance) were defined
as the core microbiota of the bacterial community. Using UpSet diagrams, we identified a
total of 694 core ASVs across all samples, accounting for 19.8% of the total (3,497 ASVs).

However, significant proportions of unique ASVs were detected in each biotope: 72 in

12
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Acropora muricata, 79 in sediment, 119 in Porites, 124 in seawater, and 134 in Lobophyllia

(Fig. 5).

The Lobophyllia samples had the highest number of core ASVs (201), followed by Porites
(153) and seawater (153) samples, while Acropora muricata and sediment samples had the
lowest ASVs, with less than 100 for each (Fig. 5). We found no shared ASVs between
seawater and sediment samples. In contrast, the three types of coral showed similarity in core
bacteriome composition, with a total of 33 shared core ASVs (7 for Acropora muricata and
Lobophyllia, 9 for Acropora muricata and Porites, 12 for Porites and Lobophyllia, and 5 for
all three biotopes). Surprisingly, none of the ASVs were shared across all five biotopes, and
only one ASV was shared by four biotopes. However, five core ASVs were found to be
shared by all three coral biotopes: ASV2, ASVS, ASV46, ASV49, and ASV83. Four of these
ASVs were classified at the genus level (4lgicola, Vibrio, Alteromonas, and Catenococus),

and only one was classified to species level (4/gicola bacteriolytic) (Table S2).

4. Discussion

A number of studies have demonstrated that highly diverse microbial communities inhabit
coral reefs (Ceh et al., 2011; Hussien et al., 2019; Li et al., 2013). However, most of these
have investigated the diversity and function of the microbial communities associated with
coral and other hosts, while little attention has been given to the free-living bacteria present in
marine habitats such as the seawater and sediment surrounding coral reefs. Our study sought
to provide information on this through a comparative analysis of bacterial communities

present in five biotopes in the Gulf of Thailand.

4.1. Differences in bacterial diversity and community structure

13
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We found that the coral-associated bacterial communities were highly diverse and
significantly different from those in the seawater and sediment samples. Based on richness
and Shannon evenness, benthic communities had the highest bacterial diversity of all the
biotopes, followed by two corals (Porites and Acropora muricata), and seawater was the least
diverse, except for the Lobophyllia biotope (Table 1). This is in line with the results reported
by Kemp et al. (2015). Previous studies have suggested that sediment could be regarded as a
microbial seed bank and that the bacterial community inhabiting the sediment shares a similar
taxonomic composition with other biotopes such as algae, corals, and sea cucumbers (Cleary
et al., 2019). Other studies have shown that sediment samples are rich in nutrients, as they
accumulate large amounts of organic and inorganic compounds (Chaudhari et al., 2020; Dong
et al., 2022), which could explain why our sediment samples had a more diverse bacterial

population than the other samples.

A PCoA plot and clustering dendrogram also demonstrated the variation in the bacterial
community structure of coral, sediment, and seawater biotopes (Fig. 1). In line with previous
studies (Kemp et al., 2015; Schoéttner et al., 2012, 2009), our findings revealed a clear
separation in bacterial composition and community structure between biotopes, suggesting a
divergence between non-host biotopes and host biotopes. However, it was found that host
biotopes (the corals) tended to cluster more closely together on the PCoA plot than the other
biotopes, suggesting that coral biotopes could contribute to stabilizing the microbial
community structure. Notably, although forming distinct clusters, samples from Lobophyllia
were closer to seawater and sediment than other coral biotopes (Fig. 1). Moreover, the core
bacteriome analysis showed that populations of bacteria inhabiting Lobophyllia samples
shared significantly more ASVs with sediment (13) and seawater (22) than with the other

coral biotopes, and their distributional positions were closer to seawater and sediment than to
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the other coral samples (Fig. 5). This suggests that the bacterial population in the Lobophyllia

biotope could be affected by the surrounding sediment and seawater.

4.2. Common and specific bacteriome composition

Proteobacteria are thought to play an important role in various biogeochemical cycles,
including nitrogen and carbon cycles, sulfur metabolism, and nutrient turnover (Quach et al.,
2021; Zhou et al., 2020). In line with several previous studies (Carlos et al., 2013; Cleary et
al., 2019), this study found that most of the samples were dominated by the Proteobacteria
phylum. However, this finding contrasts with that of Kemp et al. (2015), which found a
higher proportion of Cyanobacteria in marine biotope bacterial communities (Kemp et al.,
2015). This difference may be due to the different hosts and geographic sites. Besides, the
decline in relative abundance of Proteobacteria was found to be accompanied by a gradual
increase in relative abundance of Bacteroidota, which reflected the shift in the components of

bacterial communities across biotopes.

One of the main goals of our study was to identify bacteria that existed in specific biotopes
and core taxa. Some of the biotopes we sampled had a high prevalence of specific bacterial
taxa. For example, in the coral biotopes, there was a relatively high abundance of bacterial
taxa belonging to the genera Algicola, Vibrio, Alteromonas, and Catenococus, and the species
Algicola bacteriolytic. These formed part of the core bacteriome we identified. The STAMP
statistical analysis also indicated that HIMBI1, Candidatus Actinomarina, the NS4 marine
group, NS5 marine group, Clade Ia, and Formosa genera were mainly found in seawater,
while the Sva0081 benthic group, Woeseia, and Candidatus _Thiobios accounted for a higher
proportion of the bacterial community in the sediment. This indicates that each biotope
harbors different bacterial taxa that play particular functional roles or are involved in the

biotope’s particular biogeochemical processes.
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Although few investigations have highlighted the functional role of the genus Algicola in
coral, its presence in diseased coral samples has been demonstrated in a number of findings
(Becker et al., 2022; Meyer et al., 2019; Sér¢ et al., 2016). Likewise, Vibrio (Becker et al.,
2022; Meyer et al., 2019; Séré et al., 2016), Alteromonas (Séré et al., 2016), and Catenococus
(Fifer et al., 2022) genera have been detected in disease-associated coral samples. According
to Cervino et al. (2004) and Frydenborg et al. (2014), Vibrio could exist in the coral holobiont
as an opportunistic bacterium when environmental conditions change. Alteromonas and
Thalassotalea genera, on the other hand, benefit coral organisms by participating in
metabolic pathways that allow the coral holobiont to absorb sources of carbohydrates (Kim et
al., 2020), sulfur, and carbon more efficiently (Liu et al., 2018; Raina et al., 2009). In our
study, all coral samples were in good health. Thus, the presence of bacteria (such as Algicola
and Vibrio) may indicate that they are opportunistic pathogens that have no effect on host
health.

Sediment samples consisted mostly of bacterial taxa from the marine benthic group, which
are concerned with biogeochemical cycles such as carbon, sulfur, nitrogen, and sediment
remineralization. In this study, the prevalence of the genera Sva008! sediment group,
Woeseia, Candidatus Thiobios (Fig. 3), and Thiogranum (Table S1) in the sediment samples
agrees with previous studies of sediments from other regions, including Valdibora Bay
(Adriatic Sea), Mesoamerican Reef, Boihai Sea, and Bismarck Sea (Demko et al., 2021; Guo
et al., 2022; Meier et al., 2019; Paliaga et al., 2019). Furthermore, the LDA result suggested
that biomarkers in sediment biotope were the members of the phylum Desulfobacterota,
which are recognized as sulfate-reducing (Flieder et al., 2021) and hydrocarbon—degrading
microorganisms (Zhang et al., 2021). It can be said that the microbes associated with the
sediment biotope were quite diverse and enriched by marine benthic groups, indicating that

such bacteria may play an essential part in the metabolism pathways of marine sediments.
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Seawater samples had the lowest bacterial diversity and composition among the five
biotopes, with just three phyla (mean relative abundance>1%, Table 2). We discovered a
higher proportion of the phylum Actinobacteriota in seawater column samples. This result is
in contrast to the study of Kuang et al. (2015), who found that the phylum Actinobacteriota
predominated in coral samples. Members of the actinobacterial group have previously been
identified as potential sources of bioactive and antimicrobial compounds (Mahmoud and
Kalendar, 2016). Some genera (Fig. 3b) in our findings were previously described in the
study of Kopprio et al. (2021), including NS4 marine group, NS5 marine group, HIMBI1, and
Formosa. Accordingly, these genera lived in low oxygen environments and were potential
indicators of eutrophication status in Vietnam’s Cam Ranh and Van Phong Bays. As a result,
the ubiquitous presence of actinobacterial members (such as Actinobacteriota and
Candidatus_Actinomarina) and the genera NS4 marine group, NS5 marine group, HIMBI11,
and Formosa in the seawater samples surrounding coral reefs may be regarded as potential

bacterial markers of environmental quality and host health.

5. Conclusion

This study is one of the few to date to examine not only the coral bacteriome but the
bacteriome of its surroundings and whether and how these are interrelated. We were able to
identify the bacterial communities associated with three genera of scleractinian coral
(Acropora, Lobophyllia, and Porites), as well as those in the nearby sediment and seawater.
While there were significant differences in the relative abundance of dominant bacteria in
these different biotopes, Proteobacteria were dominant in most of them; however, there were
no shared bacteria across all five biotopes. Coral biotopes had the highest diversity of taxa
(15 biomarkers), followed by seawater (4 biomarkers) and sediment biotopes (4 biomarkers).

It should be noted that sampling was only conducted in one session during one season, so
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temporal variation in bacterial communities was not assessed. Sampling was also only carried
out in one location, and only healthy coral was selected. Further studies would be valuable to
broaden knowledge on the microbiome of these essential marine ecosystems, which are

currently facing numerous threats.
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Tables

Table 1. Alpha diversity estimates of bacterial communities associated with each sample analyzed in

this study
*Samples were rarefied to 5,799 sequences before calculation of diversity metrics. Different letters

indicate significant differences among biotopes based on Kruskal test and Dunn’s test pairwise

comparisons with p value < 0.05.
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Table 2. Statistical analysis of the top 12 phyla (with relative abundance > 1%) detected across five
biotopes (AF = Acropora muricata, LB = Lobophyllia, PO = Porites, SE = sediment, WA =

seawater).

Figure Captions

Fig. 1. Cluster analyses of bacterial communities from five biotopes based on the Bray—Curtis
dissimilarity. (a) Principal coordinate analysis (PCoA); (b) Hierarchical clustering dendrogram (Ward
algorithm). PCoA1 explained 29.2% and PCoA2 27.6% of the total variation in bacterial community

structure.

Fig. 2. Taxonomic classification and top 20 bacterial taxa in relative abundance across biotopes

(phyla, Fig. 2a and genera Fig. 2b).

Fig. 3. STAMP analysis (Welch’s t-test, p < 0.05) of significant differences of the dominant genera in
three different groups (coral, water, and sediment). Comparison of genera between coral and sediment
(a), coral and seawater (b), and sediment and seawater groups (c). Bars indicate the standard
deviation, and corrected p-values are indicated to the right. For each comparison, the mean proportion

of genera (left) and difference in mean proportions (right) were represented.

Fig. 4. Linear discriminant analysis effect size (LEfSe) results on biotope bacteriomes. On the left, the
abundance distribution of biomarkers from five biotopes is shown as a boxplot (p < 0.05, Kruskal—
Wallis test). On the right, each dot represents the mean of logio (LDA score) of a biomarker with the

highest abundance.

Fig. 5. UpSet plot showing intersections between the bacteria community in the five different
biotopes. Numbers to the left represent the number of core ASVs in each group, while numbers above

the graph show the unique and shared ASVs.
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Table 1. Alpha diversity estimates of bacterial communities associated with each sample analyzed in this study

samples

Sample Biotope Sequeni:e ASVs C':haol Shannon Good’s
Reads Observed Richness Index Coverage
AF1 21,081 227 241.78 3.90 98.69
AF2 fncur:’igztr: 18,834 194 201.00 3.97 99.49
AF3 21,736 217 222.04 4.00 98.64
'\f\iigéztf;?nal:ﬂS:t‘:ita';”gl:zr 2127169y  221.6(204y  4.0(0.1)°
LB1 22,922 676 717.46 5.44 100.00
LB2 Lobophyllia 19,100 571 599.71 5.24 98.62
LB3 21,198 510 529.32 4.77 98.84
Mean (standard deviation) f
Lébophy"ia Samples) or 585.7(840)*  6155(95.1)*  5.2(0.3)®
PO1 22,983 228 239.54 3.77 98.70
PO2 Porites 19,033 222 240.12 3.78 100.00
PO3 32,555 302 326.57 3.95 98.70
Mean (standard deviation) for Porites 251.0(44.6)° 268.7(50.1)° 3.8(0.1)
samples
SE1 9,558 417 423.12 5.70 95.64
SE2 10,929 409 426.88 5.49 98.80
SE3 Sediment 10,746 435 449.00 5.64 97.10
SE4 5,799 315 324.71 5.39 99.10
SE5 10,474 437 44491 5.66 99.77
Mean (sta.ndard deviation) for 402.6(50.4) 413.7(51.0)° 5.6(0.1)°
sediment samples
WA1 15,885 200 213.91 4.48 99.01
WA2 17,240 195 206.14 4.37 98.48
WA3 Seawater 18,491 206 210.23 4.50 99.52
WA4 18,525 201 204.27 451 100.00
WAS 17,328 199 202.60 4.43 100.00
Mean (standard deviation) for seawater 200.2(4.0)° 207.4(4.6)° 45(0.1)
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Table 2 Statistical analysis of the top 12 phyla (with relative abundance > 1%) detected across five biotopes (AF =

Acropora muricata, LB = Lobophyllia, PO = Porites, SE = sediment, WA = seawater)

Taxa Relative abundance (Mean £ S.D)

AF 5 50 S WA p-value g-value
Proteobacteria 0.69+0.02 0.76+0.01 0.49£0.05 0.34+0.05 0.64+0.01 1.80E-03 = 4.65E-03
Bacteroidota 0.08+0.02 0.14+0.01 0.19+0.02 0.28+0.02 0.24+0.01 1.80E-03  4.65E-03
Desulfobacterota 0 0.03+0 0.06+0 0.24+0.02 0 1.80E-03  4.65E-03
Campylobacterota  0.15+0.02 0.01+0 0.14+0.01  0.04+0.03 0 2.80E-03  4.65E-03
Actinobacteriota 0 0 0 0 0.140.01  2.20E-03  4.65E-03
Firmicutes 0.05+0.01 0.01+0 0.05+0 0.02+0.01 0 7.10E-03  7.10E-03
Spirochaetota 0 0 0.04+0 0.04+0 0 3.10E-03  4.65E-03
Bdellovibrionota 0 0.01+0 0 0.02+0 0 4.40E-03  5.28E-03
Calditrichota 0 0 0 0.02+0 0 4.30E-03  5.28E-03
Acidobacteriota 0 0 0 0.01+0 0 1.80E-03  4.65E-03
Myxococcot 0 0.01+0 0 0.01 0 5.40E-03  5.89E-03
Fibrobacterota 0 0 0 0.01 0 2.60E-03  4.65E-03
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