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Abstract : 

Our planet is facing a variety of serious threats from climate change that are unfolding unevenly across 
the globe. Uncovering the spatial patterns of ecosystem stability is important for predicting the responses 
of ecological processes and biodiversity patterns to climate change. However, the understanding of the 
latitudinal pattern of ecosystem stability across scales and of the underlying ecological drivers is still very 
limited. Accordingly, this study examines the latitudinal patterns of ecosystem stability at the local and 
regional spatial scale using a natural assembly of forest metacommunities that are distributed over a large 
temperate forest region, considering a range of potential environmental drivers. We found that the stability 
of regional communities (regional stability) and asynchronous dynamics among local communities (spatial 
asynchrony) both decreased with increasing latitude, whereas the stability of local communities (local 
stability) did not. We tested a series of hypotheses that potentially drive the spatial patterns of ecosystem 
stability, and found that although the ecological drivers of biodiversity, climatic history, resource 
conditions, climatic stability, and environmental heterogeneity varied with latitude, latitudinal patterns of 
ecosystem stability at multiple scales as affected by biodiversity and environmental heterogeneity. In 
particular, α diversity is positively associated with local stability, while β diversity is positively associated 
with spatial asynchrony, although both relationships are weak. Our study provides the first evidence for 
the latitudinal pattern of the temporal stability of naturally assembled forest metacommunities across 
scales as affected by biodiversity and environmental heterogeneity. Our findings suggest that the 
preservation of plant biodiversity within and between forest communities and the maintenance of 
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heterogeneous landscapes can be crucial to buffer forest ecosystems at higher latitudes from the faster 
and more intense negative impacts of climate change in the future. 
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and the maintenance of heterogeneous landscapes can be crucial to buffer forest ecosystems at 

higher latitudes from the faster and more intense negative impacts of climate change in the future. 

Keywords: climatic history; resource conditions; climatic stability; forest productivity; spatial 

asynchrony; temporal stability; latitude; spatial scales  

1. Introduction 

Forests play a central role in protecting biodiversity and sequestering carbon, and are also 

considered an important natural solution to help mitigate climate change (Anderegg et al., 2020; 

Gibson et al., 2011; Luyssaert et al., 2008). The ability of forests to maintain ecosystem 

functioning over time, especially in the face of environmental change, that is, temporal stability 

(hereafter “stability”), has gradually become a major focus of theoretical and empirical research 

on forest ecology and management (Jucker et al., 2014; Morin et al., 2014; Qiao et al., 2022; 

Schnabel et al., 2021). Climate change poses a variety of serious threats to tree survival, forest 

growth and sustainability (Bonan, 2008; Chausson et al., 2020; Gadow et al., 2021; Schnabel et 

al., 2019). However, its impact is uneven across the globe, leading to spatial differences in 

ecosystem functioning (Burrows et al., 2011; Choat et al., 2012; Loarie et al., 2009). For instance, 

the higher the latitude within a given region, the faster and more intense may the impacts of climate 

warming be expected (Antao et al., 2021; IPCC, 2014). Yet, there is still a lack of knowledge about 

how the stability of ecosystem functioning varies with latitude. Filling this knowledge gap could 

provide important insights for more effective designs and management solutions for forested 

landscapes, especially in areas most threatened by climate change (Anderegg et al., 2020; Astrup 

et al., 2018; Gadow et al., 2007). 
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Several studies have reported a decline in ecosystem functioning with latitude, which is in 

parallel with broad-scale patterns of biodiversity (Begon & Townsend, 2020; Gillman et al., 2015; 

Lieth & Whittaker, 2012; Tiegs et al., 2019). In contrast, the relationship between the temporal 

stability of ecosystem functioning and latitude is much less explored. The few existing studies 

conducted at local scales show that moths at higher latitudes tend to exhibit lower stability and 

more synchronous species dynamics (Antao et al., 2021), and that the biodiversity-stability 

relationship of zooplankton varies with latitude (Shurin et al., 2007). Currently, the threats of 

increasing environmental changes and human pressures on ecological communities occur from 

local to regional scales, calling for a better understanding of ecosystem stability at multiple spatial 

scales, which are more relevant to management and conservation (Gonzalez et al., 2020; Isbell et 

al., 2017; Wang et al., 2019). The multiscale theory of stability shows that the stability of regional 

communities (γS, i.e. regional stability or γ stability) can be partitioned into the stability of local 

communities (αS, i.e. local stability or α stability) and asynchronous dynamics among local 

communities (βS, i.e. spatial asynchrony) (Wang et al., 2019; Wang & Loreau, 2014). However, it 

remains unknown how the multiscale nature of ecosystem stability changes with latitude and which 

ecological drivers shape this latitudinal pattern. 

Among hypothesized stabilizing mechanisms, biodiversity has been intensively studied in 

local-scale experiments which have demonstrated that local community diversity (αD, i.e. α 

diversity) stabilizes ecosystem functioning (Bai et al., 2004; Hautier et al., 2015; Jucker et al., 

2014; Tilman et al., 2006). In recent years, the study of the biodiversity and stability relationship 

has been extended from a single local spatial scale to broader spatial scales (Wang & Loreau, 2016). 
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The multiscale theory of stability assumes that α diversity and species turnover across space (βD, 

i.e. β diversity) are expected to enhance gamma stability mainly through its positive effects on 

local stability and spatial asynchrony, respectively (Wang & Loreau, 2014, 2016), since α diversity 

and β diversity can provide insurance effects for local and regional community dynamics by 

increasing species and spatial asynchrony, respectively (Liang et al., 2022; Wang & Loreau, 2016). 

There is mounting evidence from experimental studies on manipulated systems of positive 

biodiversity-stability relationships at multiple spatial scales (Hautier et al., 2020; Liang et al., 

2021; Wang et al., 2019; Wang et al., 2021; Zhang et al., 2019). Given that the planet is facing 

significant changes in biodiversity across scales (Dee et al., 2022; Van der Plas, 2019), there has 

been a growing interest in returning to real-world ecosystems to understand whether and how 

biodiversity stabilizes ecosystem functioning in natural ecosystems and at broader scales (Catano 

et al., 2020; Liang et al., 2022; Patrick et al., 2021; Qiao et al., 2022). Unlike real-world ecological 

communities, experimental communities are usually established in a homogeneous environment 

at relatively small spatial extents (Albrecht et al., 2021; Hautier & Van der Plas, 2022). This limits 

the understanding of ecosystems in heterogeneous environments (Chase et al., 2019; Gonzalez et 

al., 2020), removes non-target species to prevent immigration, restricts the role of species dispersal 

and species sorting at landscape level (Leibold et al., 2017; Loreau et al., 2003), and typically 

assembles species randomly to simulate a random loss of diversity in the local species pool 

whereas species loss in natural ecosystems is not random (Genung et al., 2020). However, to date, 

not much is known about the changes in biodiversity and ecosystem stability across scales along 

broad natural gradients in naturally assembled communities, which limits our understanding of the 
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scale dependence of the stabilizing effects of biodiversity in real-world ecosystems. 

Over the past decade or so, given the ongoing global environmental changes, concerns have 

been raised about the interaction between ecosystem stability and drivers that are related to 

environmental change (Garcia-Palacios et al., 2018; Grman et al., 2010; Hautier et al., 2014; 

Hautier et al., 2015; Ma et al., 2017; Oliver et al., 2010; Qiao et al., 2022; White et al., 2022). 

Specific environmental drivers might be important for plant community assembly processes, and 

thus ecosystem functioning and its long-term sustainability at a broader scale, and might exhibit 

significant spatial differences along natural gradients (Burrows et al., 2011; Loarie et al., 2009; 

Nishizawa et al., 2022). We identify four environmental drivers that can influence ecosystem 

stability: (i) Climatic history of a region is an important abiotic factor that may influence system 

processes and the response of ecosystem functioning to climatic perturbations (He et al., 2022; 

White et al., 2022). Ecosystem stability at the landscape scale is known to be associated with 

climatic history (White et al., 2022). Species occurring in areas that regularly experience extreme 

climatic events may develop adaptive signatures that may contribute to maintaining stable 

ecosystem functioning during future extreme events (Craine et al., 2013). (ii) Resource conditions, 

such as temperature and precipitation, which represent the conditions of heat and water in a region, 

are crucial for stabilizing ecosystem functioning, and relevant evidence has been presented in 

numerous studies (Gillman et al., 2015; Kicklighter et al., 1999; La Pierre et al., 2011; Ma et al., 

2017). (iii) Climatic stability (i.e. inverse of variability) during the growing season is another 

important abiotic factor that can influence species richness and community stability (Gherardi & 

Sala, 2015). The invariability of mean temperature and total precipitation during the growing 
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season was found to affect community functioning by reducing species richness and species 

asynchrony in a temperate grassland (Zhang et al., 2018). (iv) Environmental heterogeneity is 

believed to be a major factor in maintaining stable ecosystem functioning at the landscape level 

(Wang et al., 2019; Wilcox et al., 2017). Heterogeneous landscapes offer a wide range of resources 

and microclimates, which can buffer the impact of climate change and produce more stable 

population dynamics (Oliver et al., 2010; Qiao et al., 2022; Wang & Loreau, 2016). However, 

existing studies generally focus on the role of only one or two of these environmental drivers on 

ecosystem stability, risking a potentially biased understanding of their stabilizing effects in 

naturally assembled communities at the local and larger spatial scales.  

To fill this gap, we developed a set of permanent forest plots distributed over a large temperate 

forest region. This observational infrastructure enables us to perform a more comprehens ive 

multiscale analysis of the spatio-temporal dynamics of changes in forest ecosystem functioning, 

including an analysis of the relationships between ecosystem stability at multiple scales (that is, 

spatial asynchrony, local stability, and regional stability) and latitude. We also evaluate the 

biodiversity-stability relationship from local to larger spatial scales, and study the effects of 

biodiversity, geography, and a set of environmental drivers on ecosystem stability at mult ip le 

scales. Specifically, we addressed the following three questions relating to natural forest 

community assembly across large ecological gradients: (i) is forest ecosystem stability at local and 

larger spatial scales negatively associated with latitude? (ii) are the biodiversity-stability 

relationships at local and regional spatial scales positive? (iii) which potential drivers affect the 

latitudinal pattern of ecosystem stability across scales? We expect that this study improves our 
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understanding of how multiscale ecosystem functioning is changing over time and space, and thus 

provides important insights about the consequences of global environmental change and associated 

loss of species diversity in different geographical regions.  

2. Materials and methods 

2.1 Study site 

We used an extensive data set of permanent forest plots distributed in the Chinese provinces of 

Inner Mongolia, Liaoning, Jilin, and Heilongjiang, a study area located in Northeast Asia 

(Supporting Information Appendices S1 and S2). The database includes 262 plots, each containing 

four 100 m2 circular subplots (Supporting Information Appendix S3). The distance between any 

two adjacent subplots is 15 m. The latitudinal range of these plots extends from 39 to 54° N (a 

range of 15°). The total land area of the investigated region is approximately 700 000 km2, of 

which more than one-third is covered by temperate broadleaf and mixed coniferous forests (FAO 

& UN, 2020; Olson et al., 2001). Rainfall ranges from 363.8 to 1,073.7 mm year-1, and the 

temperature ranges from -5.6 to 9.8℃ (Fick & Hijmans, 2017).  

2.2 Calculation of productivity and temporal stability 

All individual trees ≥ 5 cm stem diameter at breast height in the subplots were mapped, identified 

and measured (Supporting Information Appendix S4). The aboveground biomass of each tree was 

calculated based on species-specific allometric models in the county or district where the tree was 

located, using wood density (in grams per cubic centimeter) and diameter at breast height as 

variables (Fang et al., 2014; Wu et al., 2019). The incremental cores of each tree were taken at a 

height of 1.3 m in the summer of 2017 (Supporting Information Appendix S1). We calculated 
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aboveground biomass in 2005, 2009, 2013 and 2017. Forest productivity was quantified as the 

increase in biomass per ha between consecutive years derived from incremental cores and then 

used to calculate temporal stability (del Río et al., 2022; Dolezal et al., 2020).  

Each 100 m2 subplot represents the local (α) spatial scale. The four subplots within each site 

represent the regional (γ, or larger) spatial scale (Wang et al., 2019; Wang & Loreau, 2014). 

Following Tilman et al. (2006) and Hautier et al. (2020), stability at multiple scales was quantified 

as temporal invariability of aboveground biomass productivity after detrending data. At the 

regional scale, regional stability (γS) was the temporal stability of total productivity in four subplots 

in each regional community at each site. At the local scale, local stability (αS) was the temporal 

stability of productivity averaged across four local subplots in each regional community at each 

site. Spatial asynchrony (βS) was defined as the ratio between regional stability to local stability. 

The relevant equations are:  

 𝛾𝛾𝑆𝑆 = ∑ 𝜇𝜇𝑖𝑖𝑖𝑖 �∑ ν𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑖𝑖⁄  (1) 

 α𝑆𝑆 = ∑ 𝜇𝜇𝑖𝑖𝑖𝑖 ∑ �ν𝑖𝑖𝑖𝑖𝑖𝑖⁄  (2) 

 𝛽𝛽𝑆𝑆 = ∑ �ν𝑖𝑖𝑖𝑖𝑖𝑖 �∑ ν𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑖𝑖�  (3) 

where 𝜇𝜇𝑖𝑖 and 𝑣𝑣𝑖𝑖𝑖𝑖 are the temporal mean and variance of productivity of local community i, and 

𝑣𝑣𝑖𝑖𝑖𝑖 is the covariance of productivity between local communities i and j (Loreau & de Mazancourt, 

2008; Wang et al., 2019).  

2.3 Quantification of biodiversity and environmental drivers 

Biodiversity was measured at the local and regional spatial scale. Species diversity was measured 

as the inverse of the Simpson concentration index, 1 ∑ 𝑝𝑝𝑖𝑖2𝑖𝑖⁄ , where 𝑝𝑝𝑖𝑖 is the observed relative 
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abundance of species i. Specifically, α diversity (αD) was measured as the inverse of a weighted 

average of Simpson indices in local subplots, weighted by the relative forest biomass stock of local 

subplots. γ diversity (γD) was measured as the inverse of Simpson index at regional plots. 

Following the multiplicative framework, β diversity (βD) was defined as the ratio of γ diversity to 

α diversity (Wang & Loreau, 2014, 2016).  

Following White et al. (2022), the climatic history was quantified based on the probability of 

the occurrence of extreme climate events. We extracted the daily temperature and daily 

precipitation measurements from 1961-2004 for the geographic coordinates of each plot using a 

gridded dataset with a resolution of 1 × 1 km (Qin & Zhang, 2022) (Supporting Information 

Appendix S5). Extreme precipitations and temperatures were both defined by the "fat tail" measure, 

which represents the range of extreme climates relative to the central part of the data: 

(𝑄𝑄0.975 − 𝑄𝑄0.025) 𝑄𝑄0.875 − 𝑄𝑄0.125⁄  , where 𝑄𝑄𝑋𝑋   represents the x quantile of the distribut ion 

(Schmid & Trede, 2003; White et al., 2022). The period 2005-2017 is the observation time of 

changes in forest productivity for this study. Thus, the period 1961-2004 was used to assess the 

impact of the climatic history rather than the contemporary climate, and to avoid overlap with the 

data on current resource conditions (White et al., 2022). Resource conditions were computed based 

on the conditions of temperature and precipitation affecting tree survival and forest growth (Ma et 

al., 2017; Valencia et al., 2020). We extracted the monthly mean temperature and monthly total 

precipitation from the WorldClim2 dataset with a resolution of 1 × 1 km for the years 2005-2017 

based on the geographical coordinates of each plot (Fick & Hijmans, 2017) (Supporting 

Information Appendix S6). The mean annual temperature and mean annual precipitation of the 
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observation period were used to represent the conditions of temperature and precipitat ion, 

respectively. Climatic stability was quantified using the inter-annual temperature stability and 

inter-annual precipitation stability during the growth period (Zhang et al., 2018). We screened for 

monthly mean temperatures and monthly total precipitation during the local plant growing months 

(May, June, July, August and September) from 2005-2017 (Fick & Hijmans, 2017) (Supporting 

Information Appendix S7). Similar to community stability, the inverse of the interannua l 

coefficient of variation of temperature and precipitation over the plant growing season is used to 

define the temperature and precipitation stability. Environmental heterogeneity of the regional 

communities was represented as the difference among local communities (Heidrich et al., 2020; 

Stein et al., 2015). The standard deviations of the individual stand-basal areas (m2 ha-1) of the 

entire region were used to quantify environmental heterogeneity which is known to be a good 

predictor of terrestrial species diversity and ecosystem processes at broader scales (Enquist et al., 

2009; Pretzsch & Schütze, 2016).  

2.4 Statistical Analysis 

All statistical analyses were performed using the R software unless specified otherwise (R Core 

Team 2021, version 4.1.0). Linear regression analysis (LRA) was used to assess the relationships 

between latitude and ecosystem stability at multiple scales. We also used this approach to assess 

the latitudinal gradients of each predictor variable used in this study, including climatic history, 

resource conditions, climatic stability, environmental heterogeneity, αD and βD. Adjusted R2 values 

in the linear relationship between predictor variables and ecosystem stability were calculated to 

assess how much stability was explained by each individual predictor variable. LRA was used to 
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test whether the linear relationships between γD and γS, αD and αS, βD and βS, latitude and γS were 

significant. Partial LRA was run by extracting the residuals and testing the relationship between 

the residuals and each individual predictor variable. Before conducting the statistical analyses, all 

explanatory and stability variables were naturally log-transformed to meet the normality 

requirements of data analysis.  

Multiple linear regression models were used to evaluate the effects of multiple predictors 

considered to affect ecosystem stability at multiple spatial scales. Before the multiple regression 

analysis, we removed the predictors whose variance inflation factors (VIF) value was more than 

five, such as extreme temperatures, mean annual temperature, and γD, to avoid the problem of 

multicollinearity (Coelho de Souza et al., 2019). Hence, five environmental variables (extreme 

precipitations, precipitation stability, temperature stability, mean annual precipitation, and 

vegetation heterogeneity), two diversity variables (αD and βD), two geographic variables (latitude 

and longitude), and two stability variables (αS or/and βS) were included in the multiple regression 

model for predicting ecosystem stability across geographical scales. The predictor variables were 

standardized (average = 0 and SD = 1). The relative effect of each predictor was obtained by 

calculating the ratio of the standardized regression coefficients of the predictor variables to the 

sum of all absolute coefficients (Gross et al., 2017). The relative importance of predictors was 

grouped into seven identifiable variance fractions: climatic history, climatic stability, resource 

conditions, environmental heterogeneity, ecosystem stability, geography, and biodiversity (Yuan 

et al., 2021).  

Piecewise structural equation modeling (pSEM) was used to illustrate the different pathways 
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by which the above drivers affect regional stability and its two theoretical components. We 

developed a pSEM framework based on a priori knowledge about the mechanisms driving stability 

at multiple scales (Supporting Information Appendix S8). We first used a principal component 

analysis (PCA) on the variables representing climatic history, resource conditions, and climatic 

stability, separately. Then we used the first component PC1 (with an explanation of 64.52%-

88.13%; Supporting Information Appendix S9) to reduce some of the complexity and avoid too 

many paths in the model. The pSEM was estimated using the R package “piecewise” (Lefcheck, 

2016). Fisher's C statistics and Akaike information criterion (AIC) were used to evaluate the 

overall fitness of pSEM. When the model had a Fisher's C statistic with p > 0.05, it was assumed 

that the fit was adequate (Shipley, 2009). Before constructing pSEM, all explanatory variables 

were standardized (average = 0 and standard deviation = 1) to obtain standardized path coefficients.  

3. Results 

The results show that regional stability (γS) and spatial asynchrony (βS) decreased with latitude 

(Fig. 1abd, p < 0.05), but local stability was not significantly related to latitude (Fig. 1d and 

Supporting Information Appendix S10, p > 0.05). γS was positively related to vegetation 

heterogeneity, local stability (αS), βS and α diversity (αD) after controlling the effect of latitude (Fig. 

1c, p < 0.05). βS was positively related to vegetation heterogeneity, αS, αD, and βD after controlling 

the effect of latitude (Fig. 1f, p < 0.05). A similar pattern emerges for biodiversity, as α and β 

diversity also decreased with latitude (Fig. 2h and Supporting Information Appendix S10). A large 

number of environmental drivers decreased with increasing latitude, including extreme 

temperatures, mean annual precipitation, mean annual temperature, temperature stability, and 
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vegetation heterogeneity. Only extreme precipitations and precipitation stability increased with 

latitude (Fig. 2a-g). Among the predictors considered, αD and vegetation heterogeneity explained 

most of γS and αS, while βS is explained by an array of factors (Fig. 2i and Supporting Information 

Appendix S10). The relationships between γD and γS, αD and αS, βD and βS were positive and 

significant (Fig. 3abc, p < 0.001). After controlling for the effect of αD, αS was further positive ly 

associated with vegetation heterogeneity and βS, and negatively associated with βD (Fig. 3d, p < 

0.05). After controlling for the effect of αD, αS was positively associated with vegetation 

heterogeneity and βS, and negatively associated with βD (Fig. 3e, p < 0.05). After controlling for 

the effect of βD, βS was positively associated with extreme precipitations, mean annual temperature, 

mean annual precipitation, precipitation stability, vegetation heterogeneity and αS, and negative ly 

associated with extreme temperatures and latitude (Fig. 3f).  

The multiple linear regressions models explained 100%, 14.7%, and 18.6% of the variations 

in γS, αS and βS, respectively (Fig. 4). Biodiversity, geography and ecosystem stability are the 

important predictive variables for αS and βS, explaining a larger fraction of the total variation. 

Biodiversity and geography were selected as the best predictors of αS (explaining 31.8% of the 

variation) and βS (explaining 25.3% of the variation), respectively. The relationship between 

climate history, resource conditions, climatic stability and ecosystem stability is not significant. As 

expected from theory, regional stability was fully explained by local stability and spatial 

asynchrony (Fig. 4a, Fig. 5, and Supporting Information Appendix S11). Alpha stability and spatial 

asynchrony showed a positive correlation (the standardized direct effect was 0.26, p < 0.001). 

Consistent with our hypotheses, αD had positive associations with local stability (standardized path 
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coefficient of indirect effects 0.27, p < 0.001) while βD is positively associated with spatial 

asynchrony (the standardized indirect effect was 0.17, p < 0.001). Spatial asynchrony decreases 

with increasing latitude (the standardized direct effect was -0.22, p < 0.001) as well as local 

stability and spatial asynchrony through environmental heterogeneity and biodiversity. However, 

although climate history, resource conditions and climatic stability are affected by geographica l 

factors, their effects on biodiversity and stability are not significant (p > 0.05).  

4. Discussion 

4.1 Ne gative  latitudinal gradie nts  in the  s tability of naturally as s e mble d re gional 

communitie s  

Exploring what potential drivers are associated with the ability of ecological communities to 

maintain functioning over time has long been a central issue of ecology and conservation biology 

(Bai et al., 2004; Loreau 2022; McCann, 2000; Tilman et al., 1996). Several theoretical and 

empirical studies have demonstrated that certain ecological drivers affect the functioning and 

stability of ecosystems (Hautier et al., 2014; Isbell et al., 2015; Tilman et al., 2006). These studies 

refer mainly to the local scale, whereas land management decisions are often made at the landscape 

level. In addition, there is a growing awareness that studies of natural ecosystems provide an 

opportunity to identify the factors associated with sustainable ecosystem functioning in real-world 

ecosystems (Hautier & Van der Plas, 2022). Given that threats to biodiversity and ecosystem 

properties from global-scale environmental change are likely to vary spatially in the future (Antao 

et al., 2021; IPCC, 2014). In this study, we tested the relationship between latitude and the temporal 

stability of forest productivity across scales using a network of permanent forest plots spanning a 
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wide ecological and geographic gradient. As expected, we found that the stability of regional forest 

productivity is decreasing with increasing latitude. These results are consistent with growing 

evidence for reduced aboveground wood production, seed production, and temporal stability of 

local insect communities with increasing latitudes (Antao et al., 2021; Gillman et al., 2015; Moles 

et al., 2009). According to the multiscale theoretical framework of stability, spatial asynchrony and 

local stability are the two components that fully explain regional stability. Potential environmenta l 

drivers might indirectly influence regional stability through their effects on spatial asynchrony and 

local stability, which is supported by the results of the structural equation model in this study (Fig. 

5). Our study shows that spatial asynchrony was significantly negatively associated with latitude, 

while local stability was not. This implies that the drivers of negative latitudinal gradients of spatial 

asynchrony are important factors in shaping latitudinal patterns of regional stability.  

4.2 B iodive rs ity and s tability re lations hips  at multiple  s cale s  in natural fore s ts  are  

pos itive  but we ak 

Our study provides evidence that a positive relationship between biodiversity and stability 

dominates at multiple spatial scales in natural forest communities. Specifically, we found that α 

diversity was significantly and positively associated with local stability, which is consistent with 

other theoretical and empirical studies (Hautier et al., 2015; Loreau 2022; Tilman & Downing, 

1994; Yachi & Loreau, 1999). Higher tree diversity may increase the asynchronous temporal 

response exhibited by different species to their shared local environment, or through overyield ing, 

ultimately enhancing the stability of ecosystem functioning in local communities (Jucker et al., 

2014; Schnabel et al., 2019; Yachi & Loreau, 1999). We also found that β diversity was 
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significantly and positively associated with spatial asynchrony. Theoretical studies suggest that β 

diversity is positively associated with spatial asynchrony, based on the fact that higher variatio n 

and dissimilarity in species composition among communities are expected to increase 

asynchronous community responses to environmental fluctuations (Hautier et al., 2020; Wang & 

Loreau, 2016). Most experimental studies have reported positive relationships between β diversity 

and spatial asynchrony (Hautier et al., 2020; Liang et al., 2021; Wang et al., 2021), although non-

significant relationships have also been reported (Zhang et al., 2019). Previous studies at local 

scales have reported that positive relationships between biodiversity and stability were common 

but weak in natural systems (Houlahan et al., 2018). We also observed such evidence in our natural 

forests at local and larger spatial scales. Some evidence from local communities suggests that 

functional and phylogenetic diversity may be of greater predictive power for ecosystem 

functioning and its stability than taxonomic diversity (Cadotte et al., 2008; Craven et al., 2018; 

Qiao et al., 2021). In addition, since the stability trend of forest ecosystems is mainly determined 

by the woody part of the vegetation and the species composition changes relatively slowly, it is 

common to use incremental core data to calculate the temporal stability of forests, which can 

indicate the temporal stability of the state of a forest in a fluctuating environment (del Río et al., 

2022; Dolezal et al., 2020). However, the effects of forest recruitment and mortality on community 

stability remain poorly known. Based on previous experience involving the role of forest 

demographics in biodiversity-ecosystem function relationships, it is expected that over time, forest 

growth, recruitment, and mortality have the potential to affect biodiversity and stability 

relationships through changes in species composition (Poorter et al., 2017; van der Sande et al., 
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2017). Therefore, future studies of biodiversity-stability relationships across spatial scales should 

consider multiple facets of biodiversity and the demographic process, providing a new perspective 

for understanding and predicting these relationships. 

4.3 Latitudinal patte rns  of fore s t s tability acros s  s cale s are  as s ociated with 

e nvironme ntal he terogeneity 

Previous studies usually focus on relatively few ecological drivers which relate to environmenta l 

changes and evaluate their performance in predicting ecosystem stability. In the present study, we 

consider the link between a series of environmental drivers and latitudinal patterns on the temporal 

stability of forest productivity. We found that although most of the environmental drivers of 

climatic history, resource conditions, climatic stability, and environmental heterogeneity varied 

with latitude, only environmental heterogeneity is significantly associated with latitudinal patterns 

of forest ecosystem stability across scales. Environmental heterogeneity is generally considered to 

be particular relevance to conservation because of its ease of manipulation (Hopkins et al., 2007; 

Oliver et al., 2010). High environmental heterogeneity may increase available niche space and 

provide shelter for adverse resource conditions and extreme climates, thus promoting species 

diversity (Hughes & Roughgarden, 1998; Stein et al., 2014), since heterogeneous landscapes may 

provide a wider range of resources and microclimates, which can buffer communities from 

environmental changes and extreme events, resulting in more stable community dynamics (Collins 

et al., 2018; Oliver et al., 2010; Wilcox et al., 2017). Wang and Loreau (2016) used a dynamica l 

model of competitive communities to report that environmental homogenization may lead to the 

destabilizing effect of biodiversity loss at multiple spatial scales that can be more severe. Our study 
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provides evidence of the positive effect of environmental heterogeneity on tree diversity and forest 

stability across scales in naturally assembled communities. Environmental heterogeneity that 

improves α and β diversity may therefore promote regional stability through local stability and 

spatial asynchrony. We advocate future investigations of the contributions of microclimate and 

resources within heterogeneous forest landscapes to the stability of ecosystem functioning, which 

would help to reveal the response mechanism of forest ecosystems to the negative effects of 

environmental homogenization. 

Previous studies that evaluated the performance of different environmental drivers in 

predicting ecosystem stability have yielded inconsistent and even contradictory results. For 

example, White et al. (2022) using remotely sensed data at a landscape level (e.g. spatial extent of 

10 × 10 km) found that vegetation stability was primarily associated with a history of extreme 

events and that these effects outweighed any positive effects of species richness. At a local level 

(e.g. spatial extent of 1 × 1 m), Zhang et al. (2018) et al found that the variability of precipitat ion 

decreased species asynchrony and stability in a long-term study of a temperate grassland 

ecosystem. The role of spatial extents and grain sizes of the research plots on the biodiversity-

ecosystem functioning relationship and the biodiversity-ecosystem stability relationship is 

therefore receiving greater attention (Gonzalez et al., 2020; Qiao et al., 2021). Based on our results 

and previous experience involving the relationship between environmental drivers and ecosystem 

stability, the spatial extent and grain size are likely to affect the identification of important drivers 

affecting the latitude patterns of temporal stability. Therefore, embracing scale-dependence in 

future studies will contribute to a deeper understanding of complex biogeographic patterns and the 
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likely responses to the negative effects of global environmental change and species loss (Chase et 

al., 2018; Gonzalez et al., 2020).  

5. Conclusions 

Based on an extensive data set of permanent forest plots distributed over a large region of 

temperate forests, this study presents evidence about the negative latitudinal pattern of regional 

stability and spatial asynchrony of naturally assembled forest ecosystems. There are positive and 

significant relationships between biodiversity and stability at local and larger spatial scales in the 

observed natural forest ecosystems. A number of environmental drivers varied with latitude, yet 

latitudinal patterns of stability are most closely associated with biodiversity and environmenta l 

heterogeneity. Based on these results, we suggest that the preservation of forest diversity at local 

and larger spatial scales and the maintenance of heterogeneous landscapes are important for 

maintaining forest stability across scales in the region, especially at higher latitudes that are 

expected to be especially impacted by climate change in the future. The results of this study may 

contribute to more effective designs of forested landscapes in a changing environment.  
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Fig. 1 Latitudinal gradient affecting forest ecosystem stability. (a) Spatial distribution of regional 

stability (γS). Relationships between latitude and (b) regional stability (γS, F1,260 = 5.02, p < 0.05); 

(d) local stability (αS, F1,260 = 0.01, p > 0.05); (e) spatial asynchrony (βS, F1,260 = 22.46, p < 0.05). 

Solid lines represent significant relationships with latitude (p < 0.05); blue shaded areas denote the 

95% confidence interval of these relationships. No line was added when the relationship with 

latitude was not significant (p > 0.05). Linear relationship between (c) residuals of the regional 

stability-latitude relationship; (f) residuals of the spatial asynchrony- latitude relationship and each 

independent variable. Points and shades represent the estimated means and 95% confidence 

intervals of the model, respectively. Confidence intervals not overlapping with the dashed line (x 

= 0) and * indicate statistical significance (p < 0.05). Solid symbols indicate statistical significance 

(p < 0.05), hollow symbols no statistical significance (p > 0.05). 
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Fig. 2 Relationships between environmental drivers and latitude (a-h) and R2 values of linear 

regression models between predictor variables and stability (i). All relationships in (a-h) are 

significant (p < 0.05). Solid lines denote significant relationships, shaded areas represent the 95% 

confidence interval of these relationships. In (i), R2 values (%) are provided as grey texts in the 

graph.  
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Fig. 3 Biodiversity-stability relationship across spatial scales. (a) γ diversity-regional stability 

relationship (R2 = 0.08, F1, 260 = 22.33, p < 0.001); (b) α diversity-local stability relationship (R2 = 

0.06, F1, 260 = 18.80, p < 0.001); (c) β diversity-spatial asynchrony relationship (R2 = 0.07, F1, 260 

= 20.66, p < 0.001). Linear relationship between (d) residuals of the regional stability-γ diversity 

relationship; (e) residuals of the local stability-α diversity relationship and (f) residuals of the 

spatial asynchrony-β diversity relationship and each predictive variable. In (a-c), the respective 

areas represent the 95% confidence intervals. The fitted regression is significant at p < 0.05. In (d-

f), points and shades represent the estimated means and 95% confidence intervals, respectively. 

Confidence intervals not overlapping with the dashed line (x = 0) and * indicate statistica l 

significance (p < 0.05). Solid symbols indicate statistical significance (p < 0.05), hollow symbols 

no statistical significance (p > 0.05).  
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Fig. 4 Effects of geography, biodiversity and environmental drivers on ecosystem stability across 

spatial scales. (a) Regional stability; (b) local stability and (c) spatial asynchrony. On the left, 

points and shades represent the standardized regression coefficients of model predictors and 95% 

confidence intervals, respectively. Confidence intervals not overlapping with the dashed line (x = 

0) and * indicate statistical significance (p < 0.05). Solid symbols indicate statistical significance 

(p < 0.05), hollow symbols no statistical significance (p > 0.05). On the right, the relative 

importance of each predictor variable type (expressed as the percentage of explained variance) and 

the adjusted R2 of the models are shown.  
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Fig. 5 Final piecewise Structural Equation Models (pSEMs) exploring the relationships between 

geography, biodiversity, environmental drivers, and stability across scales. Single-headed arrows 

represent causal pathways while double-headed arrows correspond to co-varying variables. Black 

and red solid arrows represent significant positive and negative coefficients (p < 0.05), respectively. 

Grey dashed arrows represent non-significant coefficients (p > 0.05). Model test statistics are: 

Fisher’s C = 71.84, df = 64, p = 0.234, AIC = 147.84. Numbers correspond to standardized 

regression coefficients. The width of the arrows scale with the magnitude of the standardized 

regression coefficients. The percentages next to the endogenous variables represent the variance 

explained by each model (R2). The multiple- layer rectangles indicate the first component from the 

PCA. ‘↑’ and ‘↓’ in rectangles represent the positive and negative relationships between adjacent 

variables and the corresponding PC1, respectively. Extre-tem, extreme temperatures; Extre-pre, 

extreme precipitations; Mea-tem, mean annual temperature; Mea-pre, mean annual precipitat ion; 

Sta-tem, temperature stability; Sta-pre, precipitation stability. 
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