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We investigate the strong interaction between two baroclinic tripolar eddies in a three-dimensional, rapidly-
rotating, continuously stratified flow under the quasi-geostrophic approximation. Each tripolar eddy consists
of an anticyclonic central vortex with two oblate cyclonic vortices located above and below the anticyclone.
The interaction depends on the vertical and horizontal offsets between the two tripolar eddies. For small
and low PV oblate cyclones, each tripolar eddy alone is only weakly unstable to a baroclinic mode. The
instability puts the three vortices out of alignment. Most of the eddy however survives the instability. When
two tripolar eddies interact, their constituent vortices may merge. Merger occurs when the eddies are close
enough together, and shows similarities with the merger of monopolar vortices. Vertically separated eddies
do not align vertically. This suggests the importance of an external flow for the alignment, observed in
the oceans, to occur. We finally show that the interaction between two tripolar eddies with intense oblate
cyclones is very different and show similarities with the dynamics of dipolar baroclinic eddies known as
hetons.

1. Introduction

We investigate the interaction between two identical mesoscale eddies. Each eddy consists
of a central anticyclonic vortex surrounded above and below by smaller and weaker cyclonic
lenses. A motivation for the study stems from observations of Mediterranean water Eddies
(or Meddies) in the North Atlantic, see e.g. Richardson et al. (2000). The stability of various
baroclinic eddies has been studied by many authors, including Nguyen et al. (2012), Meunier
et al. (2015), Yim et al. (2016), Storer et al. (2018), Menesguen et al. (2018), Meunier et al.
(2018), Carton et al. (2014) for so-called Gaussian vortices, or for piecewise uniform vortices
by Miyazaki et al. (2003), Reinaud (2017). On the other hand, tripolar vortices where two like-
signed vortices are at the same depth have been investigated by Reinaud and Carton (2015).
In the absence of the cyclonic lenses, the strong interaction between two like-signed vortices
has already been extensively studied in the literature. One of the possible outcome of such
interactions is the vortex merger, whereby the two vortices combine, in general only partially,
to form a larger vortex. Vortex merger has often been observed in the oceans. For example,
instances of vortex merger has been observed in East Australian current (Cressell, 1982) and
in the vicinity of the Kuroshio current (Yasuda, Okuda and Hirai, 1992). More recently the
merger of two storms has been observed in the Jovian atmosphere.1 Vortex merger has also be
extensively studied numerically. The merger of two monopolar planar two-dimensional vortices
has been investigated by Overman II and Zabusky (1982), Melander et al. (1988), Dritschel
and Waugh (1992), Waugh (1992), Dritschel (1995) to name but a few studies. The merger
of two monopolar three-dimensional vortices in geophysical context has been studied by von
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Hardenberg et al. (2000), Dritschel (2002), Reinaud and Dritschel (2002, 2005), Bambrey et al.
(2007), Ozugurlu et al. (2008), Reinaud and Dritschel (2018). The upshot of these studies,
and many others, is that two vortices may merge provided they are separated by a distance
less than a threshold known as the critical merger distance. Conservation of invariants, such
as the total energy and the angular impulse implies that the formation of a larger vortex
from the merger process must be accompanied by the formation of filamentary and small
scale secondary vortices and debris. The strong interaction therefore contributes, in physical
space, to both an inverse energy cascade due to the formation of a larger vortex, and to direct
enstrophy cascades due to the formation of small scale filaments and debris. Such interactions
therefore provides a route for the double energy cascades observed in geostrophic turbulence.

In the present paper, we investigate the interaction between two geophysical eddies in the
case the vortices are not monopolar but are rather baroclinic tripolar eddies. Such eddies
containing potential vorticity anomalies of both signs have often been observed in the oceans,
see for example Yang et al. (2019) in the Indian ocean. As mentioned, other examples of
eddies with both signs of potential vorticity anomalies include the Mediterranean water Eddies
(Meddies), see for example Pingree and Le Cann (1993), Carton (2001), Bashmachnikov and
Carton (2012). The tripolar structure of Meddies is also discussed by Paillet et al. (1999, 2002),
Carton et al. (2002). Moreover interactions between Meddies have been observed southwest
of Portugal during the SEMANE 2000 experiment, see Carton et al. (2010). L’Hégaret et al.
(2014) also reported the interactions of Meddies. The study of the strong interaction between
tripolar baroclinic eddies is therefore of interest. Ciani et al. (2016) have recently studied
numerically the merger of isolated Gaussian vortices solving the primitive equations. The
present paper can be seen as an extension to these results by including the effect of a vertical
offset between the two vortices, albeit doing so under a simpler, quasi-geostrophic dynamics.

The paper is organised as follows. The mathematical formulation and the geometry of the
problem are described in section 2. We then address the linear stability and the nonlinear
evolution of a single eddy in section 3 where we show that the eddies are weakly unstable.
The timescale associated with the destabilisation of the eddy is however typically larger than
the timescale associated with the strong interaction between the vortices. The interaction
between two eddies is studied in section 4. Conclusions are given in section 6.

2. Mathematical formulation and geometry

Large scale oceanic flows are strongly influenced by the rapid background planetary rotation
and the stable density stratification. The quasi-geostrophic (QG) model is the simplest dy-
namical model which takes into account these two effects. In the form used in this study, the
QG model derives from an asymptotic expansion of Euler’s equations for an adiabatic, rotat-
ing, stratified fluid under the Boussinesq approximation. It is strictly valid for Fr2 � Ro� 1,
where Fr = U/(NH) and Ro = U/(fL) are the Froude and Rossby numbers respectively.
Here U is a characteristic horizontal velocity scale, L and H are characteristic horizontal
and vertical length scales respectively. N is the buoyancy frequency while f is the Coriolis
frequency. For simplicity, we take N and f constant, and the physical vertical coordinate is
stretched by the constant N/f . It should be noted that N/f � 1 in most parts of the oceans
at mid-latitudes, see Dijkstra (2008). Under these assumptions the flow is completely governed
by the evolution of a single scalar quantity, the QG potential vorticity anomaly q, hereinafter
referred to as PV for simplicity. PV can be defined from the flow streamfunction ϕ,

q =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂ϕ

∂z2
, (1)
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where the streamfunction ϕ is defined from the non-divergent geostrophic advective horizontal
velocities

u = −∂ϕ
∂y
, v =

∂ϕ

∂x
. (2)

Finally, in absence of adiabatic and frictional effects, PV is materially conserved,

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0. (3)

While the vertical velocity is not zero under the QG approximation, it is too small to
contribute to the advection in equation (3). A complete derivation of the QG model can be
found in Vallis (2006). It should be noted that equation (1) can be formally inverted under
the condition ϕ(x)→ 0 as |x| → ∞ as

ϕ(x) = − 1

4π

y q(x′)
|x− x′|d

3x′. (4)

We investigate the interaction between two eddies. Each eddy consist of three uniform PV
vortices: a central vortex surrounded above and below by two lenses. The central vortex is
a sphere, in the vertically stretched reference frame, of uniform PV qc = −2π. We denote
its half-height hc equal to its horizontal radius rh. The upper (resp. lower) lens is initially a
spheroid with the same horizontal radius rh as the central vortex and half height ht (resp.
hb) set to 0.25 rh. The upper (resp. lower) lens has uniform PV qt (resp. qb). We consider
two different cases. In the first case, we consider symmetric baroclinic tripolar eddies where
qt = qb = −0.3qc = 0.6π. In the second case, we consider asymmetric baroclinic tripolar eddies
with qt = 0.2qc = 0.4π and qb = −0.3qc = 0.6π. These choices are motivated by estimates
made on Meddies, see Paillet et al. (2002), Carton et al. (2002).

The strength κ of a given vortex of uniform PV q, half-height h and horizontal radius r is
given by κ = (4π)−1

t
vortex q(x)d3x = qr2h/3. The strength ratio between the central vortex

and the top vortex is therefore qchc/(qtht) = 13.3 for the symmetric eddies and 20 for the
asymmetric eddies.

It should be noted that there is no dynamical asymmetry between cyclonic and anticyclonic
vortices under the quasi-geostrophic approximation. Considering a cyclonic central vortex
surrounded from above and below by anticyclonic lenses leads to the same conclusions.

These values of PV implicitly set the time scale of the problem. For example, a single sphere
of uniform PV q has a turnover period Tover = 6π/q. For each eddy, the centres of the three
vortices are initially aligned along the same vertical axis, and the three vortices touch. So at
t = 0, the central vortex eddy i (i ∈ {1, 2}) is centred at (xic, y

i
c, z

i
c), and the centre of the

upper (resp. lower) lense is (xic, y
i
c, z

i
c + hc + ht) (resp. (xic, y

i
c, z

i
c − hc − hb)). The two eddies

are initially separated in the horizontal direction by ∆x ≡ x2
c(t = 0) − x1

c(t = 0), and in the
vertical direction by ∆z ≡ z2

c − z1
c both taken positive without loss of generality. The general

geometry of the problem is summarised in figure 1. The length scale of the problem is set by
imposing that the total height occupied by the pair of eddies is H = ∆z+ 2(hb+hc+ht) = 1.

Both the linear stability analysis and the nonlinear simulations of the eddies are performed
using techniques based on Contour Dynamics. The fluid domain is discretised in the vertical
direction by a large number nl of horizontal layers. In each layer, the contours bounding the
uniform PV vortices are discretised by a set of nodes whose velocity is obtained by inversion,
via equation (4).
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Figure 1. General geometry for two interacting baroclinic tripolar eddies (Colour online).

3. A single baroclinic tripolar eddy

We first investigate the linear stability and the nonlinear evolution of a single baroclinic eddy
centred at the origin, (xc, yc, zc) = (0, 0, 0). The PV changes sign in the vertical direction
through the tripolar eddy. This means that the tripolar eddy may be sensitive to baroclinic
instabilities. Let xe = (xek, y

e
k, z

e
k) denote the location of a point along a circular contour

k bounding the eddy. We analyse deformation modes for the vortex bounding contours by
considering radial perturbations of the form

r′k = rek +
ηk
rek

eσt+imθ, (5)

where r′k is the perturbed (local) horizontal radius of contour k, rek =
√
xek

2 + yek
2 is the

horizontal radius at equilibrium, ηk is the perturbation ‘area’, σ ∈ C is the complex frequency,
m ∈ R is the azimuthal wave number, θ = tan−1(y/x) is the azimuthal angle.

The linearised equation which governs the evolution of the perturbation is

∂ηk
∂t

+ Ωk
∂ηk
∂θ

=
∂Fk
∂θ

(6)

with

Fk =

nc∑

l=1

∆ql

∫ 2π

0
ηle

σt+imθ′ Gk,l(|xek(θ)− xel (θ
′)|) dθ′ (7)

where Gk,l is the Green’s function giving the influence of the PV bounded by the contour l on
a point along the contour k. ∆ql is the PV jump across the contour l, nc is the total number
of contours, and finally Ωk is the constant basic-state angular velocity around contour. This
leads to a 2× nc real eigenvalue problem where σ are the complex eigenvalues and ηk are the
eigenvectors.

The real part σr of σ corresponds to the growth rate of the mode while the imaginary
part, σi, is its frequency. It should be noted that of σ = σr + iσi is an eigenvalue, it complex
conjugate σ∗ = σr − iσi is also an eigenvalue. Moreover −σ and −σ∗ are also an eigenvalue.

The mode m = 1 corresponds to a horizontal shift of the contours, and therefore corresponds
to a vertical shearing of the eddy.

For both the symmetric and asymmetric baroclinic tripolar eddies considered in this study,
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(a) (b)

Figure 2. Orthographic view on the vortex bounding contours at t = 100 for (a) a symmetric baroclinic tripolar eddy
and (b) an asymmetric baroclinic tripolar eddy. The contours are viewed at an angle of 65◦ from the vertical axis. The
colour shading indicates the depth z of the contours, with lighter contours near the bottom. Red contours bound positive
(cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

only the mode m = 1 is unstable. The corresponding growth rate is σr/qc = 3.131 × 10−2

for the symmetric baroclinic tripolar eddy, and is σr/qc = 2.63 × 10−2 for the asymmetric
baroclinic tripolar eddy. The growth rate is lower for the asymmetric case compared to the
symmetric case because the PV of the top vortex is less in this case, corresponding to a weaker
vertical shear.

We next illustrate the effect of the instability on the evolution of the baroclinic tripolar
eddies. We perform a nonlinear simulation of a single eddy using Contour Dynamics. Details
on the method can be found in Dritschel and Saravanan (1994). The numerical method is
purely Lagrangian, and the fluid domain is explicitly infinite. The boundary conditions are
that the velocity vanishes at r =

√
x2 + y2 + z2 →∞. Time is marched using a fourth-order

Runge-Kutta scheme with a time-step ∆t = π/(20qc) for high accuracy. The complexity of the
vortex bounding contours is controlled by Contour Surgery, see Dritschel (1988). The full eddy
is mapped by nl = 203 horizontal layers in the vertical direction. The surgical parameters are
set to standard values: the dimensionless cutoff scale µ is set to 0.15, and the large scale L is
set to rh, see Dritschel (1988) for details. The same surgical scales are used throughout the
study.

Figure 2 shows snapshots of the flow at t = 100 for both the symmetric and asymmetric
baroclinic tripolar eddies. The mode m = 1 grows and this growth results in the tilting of
the eddies. The three vortices move out of vertical alignment and subsequently deform as the
strain and shear induced by the vortices onto each other is no longer axisymmetric. The upper
and lower lenses deform more than the central vortex as they contain less intense PV. The
ability of a vortex to withstand deformation indeed depends on its PV. Intense (high PV)
vortices tend to deform less than weak (low PV) vortices when subject to external strain and
shear.

At any time t, we identify the vortices present in the flow as contiguous regions of PV
distinguishing regions of positive and negative PV. We can then determine the vortex volumes
and the location of their centres by contour integration. The horizontal trajectory of the centres
(xi, yi, zi), i = 1, 2, 3 of the three largest vortices corresponding respectively to the main part
of central vortex and the main parts of the upper and lower lenses is shown in figure 3(a) for
the symmetric baroclinic tripolar eddy. The centre of the central anticyclonic vortex roughly
remains at the origin. On the other hand, the centres of the two upper and lower cyclonic
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lenses spiral out until t ' 100. This is confirmed by the evolution of the horizontal radial

distance
√
x2
i + y2

i of the vortex centres from the z−axis in figure 3(b). This indicates that

the baroclinic tripolar eddy increasingly tilts as a whole during this time period. Then, the
tilting angle of the eddy oscillates as indicated by the oscillation of the radial distance of centres
of the upper and lower lenses. Figure 3(c) shows the evolution of the relative volume V/V0

of the three largest vortices, where V0 is the volume of each individual vortex at t = 0. The
largest, central, anticyclonic vortex almost continuously sheds material through small scale
filaments and debris. These are produced by the deformation of the central vortex subject to
the vertical shear induced by the two lenses, and the associated baroclinic mode m = 1. By
t = 200, which corresponds roughly to 67 vortex turnover periods, the central anticyclonic
vortex has lost around 3.5% of its volume. The cyclonic lenses deform more. They however
do not shed initially any significant amount of small scale filaments. Instead a large filament
forms from both the upper and lower lenses. This filament later detaches from the main lenses
at t ' 100. The evolution of both the upper and the lower lenses is very similar until t ' 110.
Later, due to the build-up of small asymmetries originated in the numerical noise, the filament
detaching from the lower cyclonic lens is slightly larger than the filament detaching from the
upper lens. This results in a main lower lens being smaller than the upper lens for t > 110.
Figures 3(d, e, f) show the vortex centres trajectories and their volume evolution for the
asymmetric baroclinic tripolar eddy. Results are qualitatively similar. Recall that the growth
rate of the baroclinic, vertically-shearing, mode for the asymmetric case is smaller compared
to the symmetric case. Consequently, the amplitude of the outward, spiralling motion of the
centres of the upper and lower cyclonic lenses is reduced. On the other hand, we see that the
weaker upper lens loses more material than the stronger lower lens. The difference is however
not significant. Indeed the difference in volume between the upper and lower lenses is of the
same order of magnitude as the one observed for the symmetric case, where the asymmetry
only originates from numerical noise and the subsequent turbulent-like nature of the flow. In
both cases, each lens sheds less than 10% of its volume.

The upshot is that, although the structures are unstable and undergo both deformation and
loss of material, the baroclinic tripolar eddies retain most of their volume.

4. Interaction between two baroclinic tripolar eddies

We next investigate the strong interaction between two baroclinic tripolar eddies. We separate
the study into two parts due to the lack of vertical advection under the QG approximation.
In the first part we consider two eddies vertically offset by ∆z/rh < 3. Then, the two eddies
occupy some common horizontal layers and the eddies can touch (and potentially locally
merge). In this regime, we explore three values for the vertical offset, ∆z/rh = 0, 1.25 and
2.5. For the first two values, the two central anticyclonic vortices share some horizontal layers.
On the other hand, in the last case, only the upper cyclonic lens of the lower eddy occupies the
same layers as the lower lens of upper eddy. In this case, the two central anticyclonic vortices
however cannot merge (∆z > 2rh = 2hc). In a second part we consider ∆z/rh = 3 and the two
eddies do not share common horizontal layers, hence cannot merge convectively. They can still
potentially align vertically. The problem of alignment of three-dimensional monopolar vortices
under the QG approximation is discussed in detail in Reinaud and Carton (2020).

For each value of the vertical offset ∆z, we investigate the influence of the horizontal offset
∆x between the two tripolar eddies. In all cases, the interaction is studied numerically using
Contour Dynamics. The full vertical extend of the PV distribution H = 1 is mapped by
200 layers. Appendix A examines how the numerical method conserves some of the inviscid
invariants of QG dynamics.
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Figure 3. (a) Horizontal trajectories of the centre of the three largest vortices during the nonlinear evolution of the

unstable symmetric baroclinic tripolar eddy. (b) Evolution of the horizontal radius
√
x2i + y2i of their centres. (c) Evolution

of their volume. The blue curves correspond to the central anticyclonic vortex while the red curves correspond to the
cyclonic lenses. The solid line corresponds to the upper lens while the dotted line corresponds to the lower lens. (d) same
as (a) but for the asymmetric tripolar eddy. (b) same as (e) but for the asymmetric tripolar eddy. (f) same as (d) but
for the asymmetric tripolar eddy (Colour online).

4.1. Moderate vertical offsets

We first consider the interaction between two tripolar eddies separated in the horizontal
direction by 2.1 ≤ ∆x/rh ≤ 3.2 for the three vertical offsets, ∆z/rh = 0, 1.25, and 2.5.
Simulations are run until t = 200 ' 133Tover. Tover denotes here the turnover period of a
single sphere of uniform PV q = 2π, equal, in absolute value, to the PV of the spherical central
anticyclonic vortex of the tripolar eddies.

As for the single eddy, we identify the coherent structures present in the flow as contigu-
ous regions of PV. We distinguish between regions of negative PV stemming from the two
central anticyclones and the regions of positive PV stemming from the cyclonic lenses. We
first determine the ratio of the final volume Vf , at t = 200, of the two largest anticyclones
present in the flow to their initial volume V0. Results are presented in figure 4. There is
overall little qualitative difference between the symmetric and asymmetric configurations. For
horizontally aligned eddies, ∆z = 0, the volume of the largest anticyclone formed is larger
when the eddies are initially close together, as one expects. In these cases, one of the two
anticyclones increases its volume by absorbing material from the other anticyclone through
merger. Examples of such close interactions are presented in figure 5 for ∆x/rh = 2.1 for both
the asymmetric and symmetric configurations. The flow snapshots confirm the formation of a
main central structure which retains a large part of the total initial negative PV. Small scale
debris and filaments are ejected away from the main structure. In the case of the merger of
two monopolar vortices, these ejections are associated with the conservation of angular im-
pulse J = (1/2)

t
q(x2 + y2)d3x, see the argument in Reinaud and Carton (2020). A similar

ejection occurs here for the tripolar eddies. Conversely, for ∆x/rh < 2.5, the final volume Vf
of the second largest anticyclonic vortex is very small as shown in figure 4(b). This confirms
that, besides the largest anticyclone, only small scale anticyclonic debris and filaments remain
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Figure 4. (a) Ratio of the volume at t = 200 Vf to the initial volume V0, of the largest (anticyclonic) vortex present in the
flow vs ∆x/rh for the asymmetric configuration (•) and symmetric configuration (×) for ∆z = 0 (black), ∆z/rh = 1.25
(blue) and ∆z = 2.5 (red). (b) Vf/V0 for the second largest anticyclone (same conventions). (Colour online).

Figure 5. Evolution of the vortex bounding contours for two interacting baroclinic, tripolar eddies for ∆x/rh = 2.1,
and from left to right at t = 1, 3, 10, and 200. First row: ∆z = 0 and the eddies are asymmetric. Second row: ∆z = 0,
and the eddies are symmetric. The contours are viewed orthographically at an angle of 65◦ from the vertical axis. The
colour shading indicates the depth z of the contours, with lighter contours near the bottom. Red contours bound positive
(cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

after the interaction.
Then, as ∆x increases, the volume ratio Vf/V0 for the largest anticyclone decreases con-

tinuously, and reaches values less than but close to 1, when ∆x & 2.65 for the symmetric
case and ∆x & 2.7 for the asymmetric case. For such large horizontal offsets, the largest
vortex overall loses material rather than gains some. The material lost is however small. For
intermediate horizontal offsets, 2.5 . ∆x/rh . 2.75, the second largest anticyclone retains a
non-negligible fraction of its initial volume. This indicates that the two vortices merge to cre-
ate a larger structure which eventually breaks asymmetrically into two unequal-sized vortices.
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Figure 6. Evolution of the vortex bounding contours for two symmetric interacting baroclinic, tripolar eddies for ∆z = 0
at, from left to right, t = 1, 3, 10, and 200. First row: ∆x/rh = 2.5. Second row: ∆x/rh = 2.6. Third row: ∆x/rh = 2.7.
Fourth row: ∆x/rh = 3.2. The contours are viewed orthographically at an angle of 65◦ from the vertical axis. The
colour shading indicates the depth z of the contours, with lighter contours near the bottom. Red contours bound positive
(cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

For large horizontal offsets, the volumes of the two second largest anticyclones are comparable,
confirming that the interaction between the two vortices is weak.

Figure 6 shows the interaction of the two tripolar eddies for increasing values of the hor-
izontal offset ∆x/rh = 2.5, 2.6, 2.7, and 3.2. We can see the continuous transition from a
regime where only one large anticyclonic structure forms (∆x/rh = 2.5), to one where a sec-
ondary anticyclonic satellite forms from the asymmetric splitting of the first merged structure
(∆x/rh = 2.6), to one where the two anticyclones only periodically touch after an initial short
merger, exchanging little material (∆x/rh = 2.7) and finally to one where the anticyclones
never touch (∆x/rh = 3.2). These regimes can be characterised quantitatively. Following
Dritschel and Waugh (1992) and Reinaud and Dritschel (2002), we define the merger effi-
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ciency for the anticyclones

%−eff (t) =
V −tot(t)− V −max(t)

V −max(t)
(8)

where V −tot(t) is the total volume of negative PV present in the flow at time t and V −max(t) is the
volume of the largest anticyclone. For the binary interaction between two identical vortices,
when the vortices first merge, %−eff < 0.1 corresponds to a complete merger, 0.1 ≤ %−eff ≤ 0.9

to a partial merger, and %−eff > 0.9 corresponds to a weak exchange. The interaction is elastic

when the vortices never touch. Figure 7 shows %−eff vs ∆x/rh. The two anticylones com-

pletely merge for ∆x/rh ≤ 2.55 for the asymmetric configuration and ∆x/rh ≤ 2.5 for the
symmetric configuration. Recall that the anticyclones are subject to a slightly more intense
shear from the cyclonic lenses in the symmetric case. The interaction is a partial merger for
2.6 ≤ ∆x/rh ≤ 2.65 for the asymmetric case and 2.55 ≤ ∆x/rh ≤ 2.6 for the symmetric case.
For larger horizontal offsets the interaction is either a weak exchange or an elastic interac-
tion. The thresholds separating the different regimes of interaction are consistent with the
ones obtained by Reinaud and Dritschel (2002) for the merger of two spherical monopolar
eddies. Reinaud and Dritschel (2002) showed that for ∆z = 0, complete merger occurred for
∆x/rh ≤ 2.55, partial merger for 2.6 ≤ ∆x/rh ≤ 2.7, weak exchange and elastic interac-
tions for ∆x/rh ≥ 2.75. It should however be noted that Reinaud and Dritschel (2002) used
a tri-periodic hybrid Eulerian-Lagrangian method (the Contour Advective Semi-Lagrangian
method, introduced by Dritschel and Ambaum (1997), and the vortices were typically mapped
by fewer horizontal layers. This means that the presence of the upper and lower cyclonic lenses
has a relatively weak qualitative influence on the nature of the interaction for the central anti-
cyclonic vortices. It should however be noted that this may not be true beyond the QG regime,
when ageostrophic effects are no longer small and must be taken into account. Indeed, although
there is no dynamical asymmetry between cyclonic and anticyclonic vortices under the QG
approximation, cyclones and anticylones have different properties at finite Rossby numbers.
Cyclones tend, in general, to be more stable than anticylones, see Tsang and Dritschel (2015).
Moreover, the study of the merger of two monopolar vortices at finite Froude and Rossby
number by Reinaud and Dritschel (2018) has shown the strong influence of vertical shear
on the strong interaction. Anticyclonic vortices appear to be more sensitive to vertical shear
than cyclonic vortices. These effects are likely to affect the evolution of a pair of interacting
baroclinic tripoles, where the multipolar nature of the interaction provides additional sources
of vertical shear.

Figure 8 shows the time evolution of the distance δx between the centroids of the two largest
anticyclones in the flow. Merger is seen through a drop of this distance to zero when only one
anticyclonic vortex is present. Merger occurs when ∆x/rh ≤ 3. As expected merger happens
sooner if the vortices are initially closer. Then a secondary vortex detached and δx increases.
Note that δx may exceed its initial value. This may happen when the two main structures
have different volume.

Figure 9 shows the initial and final distributions of volume of PV as a function of the
characteristic length scale r, based on the volume, for ∆z = 0 and ∆x/rh = 2.1, 2.4, 2.7 and
3.1 for symmetric cases. To that purpose we first define rmax = 3

√
2 rh ' 1.26 rh, the mean

radius of a vortex twice the size of the initial anticyclones. This corresponds to the largest
possible vortex in the flow, hypothetically produced by the full merger of the two anticyclones.
We then divide the range [0, rmax] into 20 bins of equal width rmax/20 and we accumulate the
volumes of all structures present in the flow in the bin corresponding to the mean radius r of
the structure. The mean radius is, by definition, the radius of a sphere of the same volume. For
a contiguous region of PV of volume V , r ≡ 3

√
3V/(4π). Initially all the volume is contained

in two separate scales: rh ' 0.8 rmax for the spherical anticyclones and 3
√

1/4 rh ' 0.5 rmax
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Figure 7. Merger efficiency for the central anticyclones %−eff = (V −
tot − V −

max)/V −
max at t = 200, for ∆z/rh = 0 (black)

and ∆z/rh = 1.25 (blue). •: asymmetric baroclinic tripolar eddies, ×: symmetric baroclinic tripolar eddies (Colour
online).

for the cyclonic lenses. The associated volumes are indicated by the black bars in figure 9. At
the final time, t = 200, some PV volume (red bars in figure 9) has been transferred to small
scales in all four cases. For ∆x/rh = 2.1 and 2.4, the two anticyclones partially merge. This
results in a transfer of volume of PV to larger scales. This transfer increases with the merger
efficiency discussed above. There is no merger for ∆x/rh = 3.1 and only weak exchange for
∆x/rh = 2.7. This results in no creation of larger scale, and only a diminution of the volume
present at the scale rh by filamentation of the two anticyclones. For ∆x/rh = 2.7, the cyclonic
vortices also partially survive (see the second largest red bar of the third panel of figure 9
for 20r/rmax = 7). In this case the two sets of cyclones initially merge but two (upper and
lower) cyclonic merged structures break apart. Two main cyclones emerge from the splitting,
move away from the other vortices and manage to withstand the shear induced by the other
vortices.

For a small vertical offset, ∆z/rh = 1.25, the situation is different. The final volume of the
largest anticyclone varies little with the horizontal distance ∆x if ∆x/rh . 2.5. In these cases
Vf ' 1.4V0, see figure 4(a). The two anticyclonic vortices first merge to create an unstable
tilted dumbbell-like structure. This structure eventually breaks symmetrically into two main
unequal-sized vortices and a plethora of filaments and small scale debris. The final volume of
the largest vortex is typically less than the volume of the largest vortex for the same horizontal
offset but ∆z = 0. This is first expected because horizontally-aligned anticyclones (∆z = 0)
are overall closer together than vertically shifted anticyclones (∆z 6= 0) for a given ∆x. But
this alone cannot explain the difference. In the case ∆z = 0, the vortices occupy the same range
of depths, hence they can potentially merge over a wider depth range than vertically-offset
vortices can. Recall indeed that the lack of vertical advection implies that only PV regions
at the same vertical level can merge. Horizontally-aligned vortices create a stronger link and
exchange more material during the early stages of the merger than vertically-offset vortices do.
Moreover, the titled dumbbell structure first formed during the merger of two vertically-offset
vortices is more deformed and less compact than the dumbbell structure formed for ∆z = 0.
The former is more sensitive than the latter to both the self-induced shear and the shear and
strain induced by the surrounding cyclonic PV.

For largest horizontal offsets, the vortices are too far apart to strongly interact. The two
anticyclones only shed a limited amount of material as attested by the Vf/V0 . 1 for the two
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Figure 8. Horizontal distance δx between the two largest anticyclonic vortices for ∆z = 0 and (a) two interacting
symmetric baroclinic tripolar eddies and (b) asymmetric baroclinic tripolar eddies. ∆x/rh = 2.1 (solid black line), 2.2
(solid red line), 2.3 (solid blue line), 2.4 (solid green line), 2.5 (dotted black line), 2.6 (dotted red line), 2.7 (dotted blue
line), 2.8 (dotted green line), 2.9 (dash-dotted black line), 3.0 (dash-dotted red line), 3.1 (dash-dotted blue line). (Colour
online).
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Figure 9. Distribution of the volume of PV contained at the physical scale r for ∆z = 0 and ∆x/rh = 2.1 (a), 2.4 (b),
2.7 (c) and 3.1 (d) at t = 0 (black) and t = 200 (red) for symmetric cases (Colour online).

largest anticyclonic structures in figure 4.
Figure 10 shows the interaction between symmetric eddies for ∆z/rh = 1.25 and ∆x/rh =

2.1, 2.5, 2.8. ∆x/rh = 2.1 is the smallest horizontal offset tested while ∆x/rh = 2.5 corre-
sponds to the largest horizontal offset for which the anticyclones partially merge as shown in
figure 7. In both cases, we observe the formation of a larger, persistent structure as a result of
the merger. For ∆x/rh = 2.6 and 2.7 (not shown) the two central anticyclone merge at early
stage but detach rapidly almost symmetrically. Figure 4 confirms that, in both these cases, at
the end of the simulation the two largest anticyclones have nearly equal volumes, also close
to their initial volume. For ∆x/rh ≥ 2.8, shown in figure 10 (third row), the two anticyclones
never touch.

For ∆z/rh = 2.5 the two anticyclones are vertically disjoint and cannot merge. They can
however shed material due to the shear induced by the vortices. For all values of ∆x investi-
gated, the amount of material shed by the two anticyclones is small and the vortices retain
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Figure 10. Evolution of the vortex bounding contours for two interacting baroclinic, symmetric tripolar eddies for
∆z/rh = 1.25. First row: ∆x/rh = 2.1 and from left to right at t = 1, 3, 34, and 200. Second row: ∆x/rh = 2.5 and
t = 0, 2, 11.5, 200. Third row: ∆x/rh = 2.8 and t = 0, 5, 12, 200. The contours are viewed orthographically at an angle
of 65◦ from the vertical axis. The colour shading indicates the depth z of the contours, with lighter contours near the
bottom. Red contours bound positive (cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

most of their PV. Figure 11 shows the evolution of the two tripolar eddies for ∆x/rh = 2.1
and ∆x/rh = 3.1. The two central anticyclones deform little.

It should be noted however that in all cases, even when the two anticyclones are little
affected by the interaction, the cyclonic lenses always experience strong deformation and are
often strained out.

We next conduct a similar analysis for the four largest cyclonic eddies present in the flow
at the end of the simulation. The ratio of the final volume to their initial volume, Vf/V0, for
these cyclonic vortices is presented in figure 12. The evolution of the cyclonic lenses is more
complex than the evolution of the central anticyclones. Their PV is, in absolute value, less
than the one of the anticyclones, and they are easily strained out by the anticyclones.

For ∆z = 0 both lower (resp. upper) lenses of each tripolar eddy are at the same vertical
level. For all horizontal distance considered in the paper, 2.1 ≤ ∆x/rh 5 3.2, the lenses
deform strongly and merge, even if only temporarily, at some point during the simulation.
There is a competition between the horizontal shear and vertical shear, mainly exerted by
the large anticyclones, and the ability of the cyclonic lenses to merge and hence to form a
large cyclonic vortex. If ∆x small, the lower (resp. upper) cyclonic lenses of the two eddies
first merge together rapidly. The structure breaks slightly asymmetrically. By the end of the
simulation, the resulting structures are however typically smaller in volume than the initial
lenses (except for the asymmetric case with ∆x/rh = 2.4). This is due to the fact that the
low-PV cyclonic vortices are subjected to an intense shear and strain from the anticyclones



January 22, 2021 Geophysical and Astrophysical Fluid Dynamics rc20˙rev1

14

Figure 11. Evolution of the vortex bounding contours for two interacting baroclinic, symmetric tripolar eddies for
∆z/rh = 2.5. First row: ∆x/rh = 2.1, and from left to right at t = 1, 3, 10, and 200. Second row: ∆x/rh = 3.1 and
t = 0, 9.5, 52.5, and 200. The contours are viewed orthographically at an angle of 65◦ from the vertical axis. The colour
shading indicates the depth z of the contours, with lighter contours near the bottom. Red contours bound positive
(cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

and loses large amounts of material to large spiralling filaments. This can be seen in figure
6. Additionally, figure 13 (left) shows a top view on the horizontal layers occupied by the
largest cyclonic vortex at t = 200. We see two main compact vortices surrounded by a ring of
filamentary PV.

For larger horizontal offsets the interaction between the two eddies is weaker. The lenses
located at the same height periodically touch but do not fully merge. All the four lenses are
partially strained out by the combination of the vertical shear and horizontal strain induced
by the vortices. Large filaments eventually detach from the lenses, decreasing their volume
significantly. The evolution of the lenses can also be seen in figure 6.

For ∆z/rh = 1.25 the situation is different as the four lenses occupy different depths.
Merger between the lenses is not possible. The lenses can only lose material. Recall that
∆z ≡ x2

c − x1
c ≥ 0. Hence the overall centre of the tripolar eddy 1 is below the centre of eddy

2. The upper lens of eddy 1 and the lower lens of eddy 2 share common horizontal layers with
the central anticyclone of the other eddy. As seen in figure 10, these lenses are rapidly strained
around the anticyclonic eddies. The two other cyclonic lenses also later shed long filaments.
Figure 14 shows the vertical coordinate of the centre of the four largest cyclones at the end
of the simulation, t = 200. It shows that the two largest cyclonic vortex at the end of the
simulation are the upper lens of the top eddy or the lower lens of the bottom eddy, i.e. the
lenses the furthest away from the rest of the PV. These are the ones experiencing the least
strain and shear.

The two largest vortices have a larger final volume if ∆x is small. This is due to some partial
alignment of the positive PV. The vertically outermost cyclonic lenses partially align, during
the intermediate stages of the evolution of the interaction, with the cyclonic lenses swirling
and wrapping around the anticyclonic eddies. This partial vertical alignment of the deformed
cyclonic lenses can be seen in 10 for ∆x/rh = 2.1 at t = 34 (first row, third panel from the
left), ∆x/rh = 2.5 at t = 11.5 (second row, third panel from the left), and ∆x/rh = 2.8 at
t = 12 (third row, third panel from the left). Recall that for small ∆x the anticyclone merge
while they do not for large ∆x. In the latter case, the innermost lenses are further stretched as
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Figure 12. Ratio of the volume Vf at t = 200 to the initial volume V0 for the largest cyclonic vortex present in the flow
vs ∆x/rh for the asymmetric configuration (•) and symmetric configuration (×). The first column of panels corresponds
to ∆z = 0, the second column to ∆z/rh = 1.25, the third column to ∆z/rh = 2.5. As in figure 12, we rank the first four
largest vortices according to their volume. The first row of panels is for the largest vortex (Fi), the second row is for the
second largest vortex (Se), the third row is for the third largest vortex (Th) and the fourth row is for the fourth largest
vortex (Fo) . Details of the panels in (∆z/rh, volume rank) are (a) : (0, F i), (b) : (1.25, F i), (c) : (2.5, F i), (d) : (0, Se),
(e) : (1.25, Se), (f) : (2.5, Se), (g) : (0, Th), (h) : (1.25, Th), (i) : (2.5, Th), (j) : (0, Fo), (k) : (1.25, Fo), (l) : (2.5, Fo).
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Figure 13. Top view on the vortex bounding contours in the region (x, y) ∈ [−1.8, 1.8]2 for ∆z = 0 at t = 200 for
∆x/rh = 2.2 (left) and ∆x/rh = 3.1 (right).

they tend to swirl around both vortices. The outermost lenses, by partially aligning with the
innermost lenses are also more stretched and deform if ∆x is large. This results in a smaller
final main cyclone. The sharp decreases in the volume of the largest cyclone in the graph
Vf/V(∆x) is consistent the critical merger distance of the anticyclones in figure 7.

For ∆z/rh = 2.5, the two innermost lenses, that is the upper lens of eddy 1 and the lower
lens of eddy 2 are at the same vertical level and can merge in the symmetric case. Recall that
these lenses, containing low PV are strongly deformed by the strain and shear induced by the
vortices. The deformation make the innermost vortices merge rapidly. The merged structure
is however very deformed and cannot withstand the shear and strain. As a consequence, it is
eventually strained out. This can be quantitatively measured by looking at the efficiency of
the merger of the two vertically innermost lenses. For that purpose, as a diagnostic of the full
simulations, we isolate the horizontal layers which contain the innermost lenses only. We then
again identify all coherent structures present in these layers by determining the volumes of
contiguous PV. We then calculate the merger efficiency %+

eff defined in a similar way as %−eff in

equation (8) but for the positive PV in these layers. %+
eff is therefore the ratio of the difference

between the total volume of positive PV in these layers and the volume of the largest cyclone
there, V +

tot(t) − V +
max(t) at time t, to V +

max(t). Results are shown in figure 15. Initially %+
eff

equals one for the pair of equal volume lenses. Then, %+
eff collapses to zero as the two lenses

merge. The merged vortex sometimes breaks and re-merges while creating small scale debris.
However, for all cases, % eventually exceeds the value of 1. This volume of the largest structure
is less than half the total volume of PV in these layers: the vortices are small and are being
strained out. Indeed %+

eff > 1 means V +
tot > 2V +

max. Figures 12 and 14 indicate that the largest
cyclones at the end of the simulation also stem from the outermost lenses. Again, these are
the vortices the furthest away from the rest of the PV. This is true except for the symmetric
case for ∆x/rh = 2.1. In that case, a structure formed by the merger of the two innermost
vortices is 10% larger than the second largest vortex, which is located at the top, see figures
12 and 14. It should however be noted that in this case all these cyclonic vortices can in fact
seen as debris. Even the largest cyclonic vortex contains, at t = 200, only 5% of the initial
volume one lens. The fact that the biggest debris are found where the innermost lenses were,
may not be significant due to their size. Yet, one can argue that the two innermost lenses
are initially very close together, and merge more efficiently than in the other cases for larger
∆x. When the merged vortex eventually breaks apart, this large vortex creates larger debris
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Figure 14. Vertical coordinate of the centre for the cyclonic vortex at t = 200 vs ∆x/rh. The panels are organised as in
figure 12.
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Figure 15. Evolution of the efficiency %+eff (t) = (V +
tot(t)−V +

max(t))/V +
max(t) for the vertically innermost cyclonic lenses

for ∆z/rh = 2.5. ∆x/rh = 2.1 (black solid line), 2.3 (red solid line) 2.5 (blue solid line), 2.7 (black dotted line), 2.9 (red
dotted line) and 3.1 (blue dotted line). (Colour online).

Figure 16. Top view on the vortex bounding contours in the region (x, y) ∈ [−1, 1]2 for ∆z/rh = 2.5 at t = 200 for
∆x/rh = 2.2 (left) and ∆x/rh = 3.1 (right).

compared to the other debris formed from the outermost lenses (which cannot merge with
other vortices). For ∆x/rh small, all the cyclones are small, see the first column of figure 12.
In all cases, all four lenses lose material. The loss of material decreases as ∆x increases. This
is due to the fact that as ∆x increases, these lenses are less influenced by the shear and strain
induced by the other tripolar eddy.

Figure 16 provides a top view on the vortex bounding contours in the horizontal layers
occupied by the largest cyclonic vortex at t = 200 for ∆x/rh = 2.2 and for ∆x/rh = 3.1.
The lenses have produced more small scale debris and filaments for ∆x/rh = 2.2 than for
∆x/rh = 3.1.

4.2. Alignment of vertically offset eddies

We next focus on the case ∆z/rh = 3. This is the case where the two tripolar eddies occupy
distinct but contiguous horizontal layers. None of the vortices can merge with another vortex
from the other eddy. However, the vortices can still lose material due to the vertical strain and
horizontal shear induced by the other vortices. The vortices can also move horizontally. This
motion can result in the vertical alignment of the vortices. For example the merger observed
by Cresswell (1982) in the East Australian Current can be seen as the result of the alignment
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Figure 17. Evolution of the vortex bounding contours for two symmetric interacting baroclinic, tripolar eddies for
∆z/rh = 3 at, from left to right, t = 1, 3, 10, and 200. First row: ∆x = 0. Second row: ∆x/rh = 1. Third row:
∆x/rh = 1.6. The contours are viewed orthographically at an angle of 65◦ from the vertical axis. The colour shading
indicates the depth z of the contours, with lighter contours near the bottom. Red contours bound positive (cyclonic)
PV, blue contours bound negative (anticyclonic) PV (Colour online).

of the eddies. Vortex alignment is a common occurrence in the oceans.
Most interactions between vertically offset monopolar vortices however does not result in

an alignment, as studied recently by the same authors Reinaud and Carton (2020). However
the alignment of non-equilibrium or unstable vortices is possible as for example shown ex-
perimentally by Hopfinger and van Heijst (1993). For tripolar vortices, the opposite-signed
vortices of the tripoles can misalign. This may trigger a relative inward or outward horizontal
motion for the vortices.

Figures 17(a), (b) show the evolution of the flow for ∆z/rh = 3 and ∆x/rh = 0, 1, and
1.6. We can see that the innermost cyclonic lenses seem to align vertically. They are however
subject to a strong vertical shear and horizontal strain and lose a significant amount of material
to small scale debris and filament.

Figure 18 shows the evolution of d+ =
√
x2
m + y2

m the horizontal distance between the centre
(xm, ym) of the largest cyclone in the layers initially occupied by the innermost cyclonic lenses
and the z−axis, as well as the evolution of their volume V +(t) normalised by the initial volume
of a single cyclonic lens V +

` (0) for ∆z/rh = 3, and ∆x/rh = 0, 1 and 2.2. The evolution of
d+ provides an indirect indication of alignment of the two innermost cyclonic structures. The
process of vertical alignment should be indicated by a decrease in d+. For ∆x = 0, the two
innermost lenses are on the top of each other and therefore touch at t = 0. They therefore
form a single contiguous structure. It should be noted that, due to the finite discretisation
of the lenses, the two vortex bounding contours in contact overlap over a finite area and
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Figure 18. Evolution of (a) the horizontal distance d+ between the largest innermost cyclone and the z-axis for ∆z/rh =
3 and ∆x/rh = 0 (solid balck line), 1 (blue dashed line) and 2.2 (red dotted line), and (b) the relative volume of the
largest innermost cyclone V +(t)/V +(0) (Colour online).

not just a point. The volume of the connected structure is therefore twice the one of an
‘individual’ lens of the other cases. This structure partially breaks asymmetrically as seen
from the sharp decrease in its volume at t ' 62, and further sheds debris and filaments as
the flow evolves. The centre of the largest resulting cyclone moves away from the z−axis and
is put out of its initial alignment with the other structures. For both ∆x/rh = 1 and 2.2,
despite large amplitude oscillations, due to the complex dynamics and repeated shedding and
reattachment of material to the largest cyclonic vortex, the overall trend is that the centre of
the main cyclone gets closer to the z-axis. The trend is however small. Moreover, the vortices
lose a significant amount of material (see in particular the case ∆x/rh = 2.2), reducing the
pertinence of attempting to quantify the alignment of the lenses.

We next focus on the two main vortices: the two central anticyclones. We denote δx(t)
(resp. δz) the time dependent horizontal (resp. vertical) separation between the centres of the
two largest anticyclones. It should be noted that δx(0) = ∆x, and δz(0) = ∆z. Figure 19
shows evolution of φ(t) = tan−1(δz(t)/δx(t)) for 0 ≤ ∆x/rh ≤ 2.2 with an increment of 0.1
between cases. If the two vortex centres aligned vertically (δx → 0) then φ → π/2. Results
show that the angle φ oscillates but does not increase by the end of the simulation from its
initial value in almost all cases. There is no tendency to alignment for the anticyclones. In fact
for intermediate values of ∆x the angle tend to decrease, indicating that δx has increased.
Figures 17(c), (d) shows the ratio φ(200)/φ(0), confirming that for intermediate values of ∆x
the anticyclones move further away from vertical alignment. The decrease in angle remains
very small, 5% at most.

5. Isolated tripolar eddies

In the previous sections, we have focused on tripolar eddies for which the lower and upper
cyclonic lenses carry little strength compared to the central anticyclone. This regime is rel-
evant to Meddies. Significant differences are expected if the cyclonic lenses have strengths
comparable to the strength of the central anticyclones. Of particular interest are the so-called
isolated eddies whose overall strength vanishes. In this case, the far field induced by the eddies
is very weak. We therefore consider the interaction between two symmetric eddies, with the
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Figure 19. Evolution of the tilt angle φ(t) = tan−1(δz(t)/δx(t)) for ∆z/rh = 3, and 0 ≤ ∆x/rh ≤ 2.2 and for (a) the
asymmetric configurations and (b) the symmetric configurations. ∆x/rh varies by 0.1 between consecutive curves. Ratio
φ(200)/φ(0) vs ∆x for (c) the asymmetric configurations and (d) the symmetric configurations (Colour online).

same geometry as before, but with qt = qb = −2qc. Recall that the volume of each lens is a
quarter of the volume of the central vortex. This means that the strength of each lens is half,
in absolute value, the one of the central vortex. The integrated PV over each tripolar eddy is
zero.

We first analyse the linear stability of a single tripolar eddy. The most unstable mode has
an azimuthal wave number m = 2 with a growth rate σr/qc = 6.948 × 10−2. The nonlinear
evolution of the unstable eddy is shown in figure 20. We can clearly see the growth of modem =
2 which results eventually in the splitting of each vortex into two main vortices, accompanied
small debris. These secondary vortices form secondary tripolar vortices. The vortices of these
secondary tripolar eddies are not vertically aligned and have a dipolar moment which makes
them move away from each other. Again, this is similar to hetons breaking as the result of
the growth of an azimuthal mode m = 2.

Figure 21 shows the evolution of the two isolated eddies for ∆z = 0 and ∆x/rh = 2.2. During
the early evolution of the flow, the lenses and the central vortices of the two eddies merge.
However, due to baroclinic effects, the cyclonic and anticyclonic vortices move away from
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Figure 20. Evolution of the vortex bounding contours for a singlesymmetric, isolated baroclinic, tripolar eddy from left
to right, t = 24, 35, 51, and 62. The contours are viewed orthographically at an angle of 65◦ from the vertical axis. The
colour shading indicates the depth z of the contours, with lighter contours near the bottom. Red contours bound positive
(cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

Figure 21. Evolution of the vortex bounding contours for two symmetric, isolated baroclinic, tripolar eddies for ∆z = 0
and ∆x/rh = 2.2 at, from left to right, t = 1, 4, 10, and 17. The contours are viewed orthographically at an angle of 65◦

from the vertical axis. The colour shading indicates the depth z of the contours, with lighter contours near the bottom.
Red contours bound positive (cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

Figure 22. Evolution of the vortex bounding contours for two symmetric, isolated baroclinic, tripolar eddies for ∆z/rh =
1.25 and ∆x/rh = 2.2 at, from left to right, t = 2, 5.5, 20 and 30. The contours are viewed orthographically at an angle
of 65◦ from the vertical axis. The colour shading indicates the depth z of the contours, with lighter contours near the
bottom. Red contours bound positive (cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

vertical alignment, creating a dipolar moment. The merged structure is pulled apart. Two
misaligned tripolar eddies move away from the centre of the domain. A bridge of negative
PV has formed between the two anticylones. This bridge is stretched by the tripolar vortices
moving away from the centre of the domain. This stretching is not intense enough to stabilise
the bridge of PV which eventually rolls up, creating a small cyclonic structure in the centre.
By symmetry, this vortex remains near the centre, at least until the end of the simulation
t = 20.5. It should be noticed that the evolution the flow after the initial merger of the eddies
is similar to the evolution of unstable hetons, see Reinaud and Carton (2009).

We conduct a similar numerical experiment for ∆z/rh = 1.25. Results are shown in figure 22.
The situation is more complex. Recall that for ∆z/rh = 1.25 the cyclonic lenses cannot merge.
The two anticyclones first merge to form a tilted dumbbell-like structure. Each part of the
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Figure 23. Evolution of the vortex bounding contours for two symmetric, isolated baroclinic, tripolar eddies for ∆z/rh =
2.5 and ∆x/rh = 2.2 at, from left to right, t = 3, 14, 22.5 and 34.5. The contours are viewed orthographically at an angle
of 65◦ from the vertical axis. The colour shading indicates the depth z of the contours, with lighter contours near the
bottom. Red contours bound positive (cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

Figure 24. Evolution of the vortex bounding contours for two symmetric, isolated baroclinic, tripolar eddies for ∆z/rh =
3 and ∆x/rh = 0 at, from left to right, t = 15.5, 20.5, 27.5 and 44. The contours are viewed orthographically at an angle
of 65◦ from the vertical axis. The colour shading indicates the depth z of the contours, with lighter contours near the
bottom. Red contours bound positive (cyclonic) PV, blue contours bound negative (anticyclonic) PV (Colour online).

dumbbell-like structure strongly interact with the innermost cyclonic lenses. The strain and
shear induced by the upper lens of the lower tripolar eddy shears and splits the anticyclonic
central vortex of the upper tripolar eddy in two main vortices. So does the lower lens of the
upper eddy to the central cyclone of the lower eddy. At the same time, the upper lense of the
upper eddy moves out of alignment with the anticyclone of the same eddy, creating a dipolar
moment as for the case ∆z = 0.

Consequently, the first main vortex resulting from the splitting of the central anticyclone of
the upper eddy, eddy 2, pairs with its the upper cyclonic lens and moves away from the centre
of the domain as a heton. Meanwhile the second main part of the same anticyclone pairs with
the upper lens of the lower eddy, eddy 1, as a dipole which also moves away from the centre
of the domain. The fate of the second anticyclone is similar.

For ∆z/rh = 2.5 and ∆x/rh = 2.1 the two innermost lenses merge rapidly as can be seen in
figure 23. The merged lens eventually breaks into two secondary vortices as it is pulled apart by
the heton-like structures formed by the misaligned central anticyclones and cyclonic outermost
lenses. Eventually the structures form highly deformed secondary multipolar structures which
move away from each other.

Finally for ∆z/rh = 3 and ∆x = 0, the situation is different. Results are shown in figure
24. The two innermost lenses remain vertically aligned during the duration of the simulation
t ∈ [0, 35], but move away from the z−axis. The other vortices are put out of alignment with
the innermost lenses. The symmetry of the flow with respect to the horizontal plane passing
between the two innermost lenses is preserved and all vortices remain near the centre of the
domain, at least until t = 35. The two anticyclones deform and partially break due to the
intense shear and strain induced by the cyclonic lenses.
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6. Conclusions and perspectives

We have explored the interaction between two tripolar baroclinic eddies. Considered separately
each eddy is only weakly unstable. The instability puts the vortices out of alignment. The
resulting increased vertical shear and horizontal strain leads to the partial break-up of the
small, low PV, upper and lower lenses surrounding the high-PV large anticyclone.

In the case of two interacting eddies, the two central anticyclones merge together provided
they are closer than a threshold. This threshold is roughly the same as the one obtained for
the same vortices without the upper and lower lenses. This is not surprising, considering the
difference in strength between the central vortices and the lenses (between 13.3 and 20 as
indicated in section 2). In general the lenses are partially destroyed during the interaction,
generating large amounts of small scale debris and filament.s These further feed the energy
and enstrophy cascades.

Similarly to the study of the alignment between two monopolar vortices by Reinaud and
Carton (2020), the tripolar eddies do not strongly align vertically by themselves. Again, the
efficient alignment of such structures requires an additional external velocity field pushing the
two structures closer together.

The current study was performed under the quasi-geostrophic approximation in the f -plane.
Two natural extensions of this study should be considered. On the one hand, in practice, the
interaction between such meso-scale eddies occurs over a relatively large horizontal area.
Hence, an extension of this work in the β−plane, where the effects of the natural background
variation of the planetary vertical vorticity are taken into account, at leading order, could be
considered. This background planetary vorticity makes vortices drift in a direction depending
on the sign of their PV. This differential β−drift will induce a vertical shear on the baroclinic
tripolar vortices. The second natural extension is to consider the ageostrophic effects, by
studying the interaction at small yet finite Rossby number. Recent studies by Ciani et al.
(2016), Reinaud and Dritschel (2018) and Orozco Extrada et al. (2020) have shown that these
effects can drastically alter the interaction between two vortices, and in particular the way they
merge. Notably cyclonic and anticyclonic vortices have asymmetric dynamical behaviours.

Appendix A: Numerical evolution of inviscid invariants

In absence of diffusion, the QG dynamics conserves a collection of invariants: the total

energy Etot = −1

2

t
qϕd3x, the total ‘entrophy’ E =

1

2

t
q2 d3x, the angular impulse

J =
1

2

t
q(x2 + y2) d2x and the linear impulse I = (Ix, Iy) =

t
(x, y)q d3x. Contour surgery

however removes filaments and debris whose scale is less than the surgical scale to control
the complexity of the calculation. Surgery mimics the dissipation of the small scales which
carry enstrophy cascading to scales below the resolution of the numerical simulation. Figure
A1 shows the evolution of the E, Ix and J for the interaction between two symmetric tripolar
eddies with ∆z = 0, and ∆x/rh = 2.4, 3 and 3.2. We see a small decrease of the total volume
of PV due to the surgical removal of the debris reaching a size below the surgical scale. This
decrease is more important as the tripolar eddies are closer together and their interaction
stronger. This decrease in volume has only a small impact of the enstropy, in particular for
larger ∆x. This is due to the fact that most of the volume lost originates in the low PV cy-
clonic vortices. Overall, both the linear Ix and angular impulse J are nearly conserved during
the interaction.
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Figure A1. Evolution of the total PV volume V (solid black line), Enstrophy E (solid red line), linear impulse Ix (dotted
blue line), and angular impulse J (solid blue line) for the interaction for two symmetric tripolar eddies for ∆z = 0 and
(a) ∆x/rh = 2.4, (b) 3 and (c) 3.2. (Colour online).
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