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1 Introduction20

In a world of uncertainty characterized by signi�cant environmental, economic and geopolit-21

ical changes, forecasting commodity prices remains a di�cult though stimulating and neces-22

sary challenge for economists [Asche et al. (2016), Gordon (2020)]. Most food processes in the23

21st century use energy-intensive technologies and bunker costs represent a major expense in24

�sh supply chains. This is the case for high-seas �shing targeting tuna species [Parker et al.25

(2015), Basurko et al. (2022)]. We should logically observe a high degree of transmission26

between oil rates and tuna prices (Yahya et al., 2019).27

Tuna prices are highly volatile in a globally integrated market (Jiménez-Toribio et al., 2010).28

The historical volatility was estimated to 26% and the coe�cient of variation for tuna land-29

ings amounted to 76%, on the same range as salmon production (Dahl and Oglend, 2014).30

Tuna prices have more than trebled over the past two decades (2000-2017) whereas the oil31

price has only doubled, but both products are passing through ups and downs. Tuna catches32

and trade are subject to many drivers and stressors, such as increasing �shing e�ort, the33

use of Fish Aggregating Devices (FADs), ENSO events, trade policy changes, new �shery34

management rules implemented by Regional Fisheries Management Organizations, exchange35

rate movements, demand shocks, population and economic growth in emerging countries, etc.36

[Miyake et al. (2010), Maury et al. (2017), Scherrer and Galbraith (2020), Bell et al. (2021)].37

38

Economic knowledge about tuna markets improves gradually [Herrick Jr and Squires (1989),39

Squires et al. (2006), Jeon et al. (2008), Guillotreau et al. (2017), Sun et al. (2019)], but is40

still far from being su�cient to accurately forecast the future prices of tuna several months,41

years or even decades ahead. In particular, the linkage between the energy sector and the42

�shing industry is overlooked in the existing literature, with a few rare exceptions [Tyedmers43

and Parker (2012), Parker and Tyedmers (2015), Guillen et al. (2016)]. However, the existing44

literature deals more with the energy returns of �shing than about the relationship between45

the cost of energy and the price of �sh. This latter question is nonetheless important to46
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understand the economic drivers of the �shing e�ort and their impact on the dynamics of47

global �sheries. In particular, long-run scenarios need to rely on simple but robust economic48

models to test for the long-term consequences of severe impacts a�ecting social and ecological49

systems [Dueri et al. (2016), Maury et al. (2017), Mullon et al. (2017), Bell et al. (2021)]. For50

example, if lower catches cannot fully supply the growing market demand any longer, prices51

may increase proportionally, so as to leave the �shers' income unchanged (Sun et al., 2017)?52

Conversely, if the catch becomes lower with constant prices, an increasing energy cost may53

deter �shers to maintain the same level of e�ort, hence relaxing the pressure on stocks. On a54

more theoretical ground, the relationship between the oil and �sh markets is also interesting55

because the optimal exploitation rules of an exhaustible and renewable resource are di�er-56

ent. The Hotelling rule applied to the optimal exploitation of exhaustible resources equalizes57

the growth rate of prices to the discount rate, under a �nite time horizon. For a renewable58

resource like wild �sh, the marginal productivity of stocks added to a marginal stock e�ect59

on the �shing rent must be equal to the discount rate at the optimum level of exploitation60

over an in�nite time horizon. Any increase of the discount rate can have opposite e�ects61

on extraction rates, accelerating the exhaustion of oil reserves but preserving the renewable62

stocks at a higher level of biomass, hence resulting in higher catches and lower �sh prices63

(Hannesson, 1986). Fish markets, whose demand is often found price-elastic, would therefore64

face a fast-growing price of oil energy beyond the peak oil, thus creating a potential price65

squeeze that would a�ect the pro�t margins of the �shing industry.66

Despite the intensive use of energy in many food production processes, research works ana-67

lyzing the link between both markets are not very common [Yahya et al. (2019), Dahl et al.68

(2020)]. This is why our research contributes to the empirical literature by analyzing the69

co-evolution of energy and �sh prices. In particular, we selected a procedure combining var-70

ious time series techniques to determine possible break dates in the two markets separately,71

and in their relationship. Because the e�orts of analysts attempting to predict the price of72

commodities several months ahead are rather concentrated on the oil market, the idea is to73

test for the long-run relationship between the price of Marine Diesel Oil (MDO) and the price74

of skipjack (Katsuwonus pelamis). If a long-run relationship can be found between the two75
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markets, and according to the direction of the Granger causality, we could be in a position76

to predict con�dently the evolution of the skipjack price from the oil Futures market. More77

precisely, by looking at the relationship between both markets, we hope to learn whether78

any actual in�uence of the oil price on the skipjack price is passing through the supply-side79

(energy being a major component of the marginal cost of �shing) or the demand-side for80

these two global natural resources [Mullon et al. (2017), Maury et al. (2017)]. The oil market81

being global, just like the market for canned tuna through which skipjack is mostly traded,82

the dynamics of both prices might well be linked to the worldwide demand growth, just like83

many other food commodities [Yahya et al. (2019), Dahl et al. (2020)].84

The following article is organized as follows. First we propose a literature review about the85

link between oil and commodity prices to show the importance of the issue at stake regarding86

tuna markets. Secondly, we developed a time series analysis combining di�erent techniques87

on monthly prices between 2000 and 2020 to scrutinize the link between the �sh and oil88

markets and look for possible breaks in the relationship. In a following section, we search89

for other candidate variables to introduce a possible regime shift explaining the dynamics of90

the skipjack market. Finally, we discuss the results in a last section with regard to the input91

requirements of holistic models dealing with the future of tuna �sheries under global change92

scenarios.93

94

2 Literature survey95

An increasing number of research works attempts to model the global food demand scenarios96

for the 21st century [Valin et al. (2014), Bodirsky et al. (2015), Flies et al. (2018)]. In97

particular, the authors try to do so in order to assess the consequences of reference climate98

scenarios1 on food production and consumption levels. Food models are in�uenced by many99

di�erent drivers such as real income and prices, but also trade policy changes, population100

growth and characteristics, the diet patterns, urbanization, and of course by the availability101

of commodities on the supply side (Valin et al., 2014). This is all the more true when it102

concerns wild and common resources such as �shery products. Climate change is expected103
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to transform profoundly the level of biomass and the spatial distribution of �sh populations,104

justifying the interest of modelling global demand for �shery products to better understand105

its long-run drivers [Maury et al. (2017), Scherrer and Galbraith (2020), Mullon et al. (2017),106

Bell et al. (2021)].107

Two classes of models are mostly used to forecast food demand: partial equilibrium models108

and computable general equilibrium (CGE) models. The latter models are based on utility109

functions being maximized under the budget constraint to derive the demand functions where110

households can substitute all types of consumption goods. Consequently, such models require111

a tremendous amount of data and often rely on strong assumptions regarding the consumption112

behavior of households. Partial equilibrium models apply reduced forms of demand functions113

to a limited set of goods (Flies et al., 2018). If the second class of models seems more limited114

in scope, it allows for greater details about the bundle of goods included in the model (e.g.115

several �sh species), the substitutability between them and the set of determining factors116

(Guillotreau et al., 2017).117

Beyond the interest of understanding food demand drivers, the modelling e�orts concerning118

the demand for wild-caught �sh show the interest of unveiling the �exibility coe�cients119

which represent key market-incentives for �shery management. The e�ort reduction which is120

required to adjust the �shing capacity to the sustainable level is more likely to be accepted121

if the price response allows �shers to earn more by catching less and conversely [Sun et al.122

(2017), Sun et al. (2019)]. Tuna �sheries o�er a perfect illustration of a global commodity123

being harvested in the three oceans, supplying the canning industry with large quantity of124

raw materials, and being traded as a major source of �sh proteins in many countries around125

the world [Miyake et al. (2010), Mullon et al. (2017)]. The market is global and all regional126

markets are now quite well integrated under the leading role of the Bangkok market [Jiménez-127

Toribio et al. (2010), Sun et al. (2017)]. This market presents the valuable advantage of its128

central position between two oceans and its vicinity to the most productive �shing grounds129

in the world (Miyake et al., 2010).130

Like for any other ocean-wide �shery, tuna �shing and trade are highly dependent on energy-131

consuming industrial �eets, particularly because of an increasing distance from ports to132
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�shing grounds (Tickler et al., 2018). The conventional index assessing the high level of133

catch dependence to energy is the Fuel Use Intensity (FUI) measuring the ratio of consumed134

oil Litres per tonne of landed �sh. Across a great number of species and world regions, the135

mean FUI found by Parker and Tyedmers (2015) since 1990 was 706 L∗t−1. A study reported136

an average FUI value of 368 L ∗ t−1 for the global purse-seine �eet targeting skipjack and137

yellow�n tuna (Parker et al., 2015). Two more recent and accurate research works based on138

vessel data looked at the FUI of the European purse-seine �eet �shing tuna in the Indian139

Ocean showed a variable FUI value, oscillating between 390 and 680 L ∗ t−1 since 2015140

according to the level of catches, �shing e�ort (quantitatively and qualitatively) and vessel141

size [Chassot et al. (2021), Basurko et al. (2022)]. Keeping in mind an average marine diesel142

oil price of $554 t−1 between January 2018 and October 2020 and a conversion factor of 0.72143

kg per Litre, the fuel cost would reach nearly $200 per tonne of �sh with a 500L ∗ t−1 FUI.144

The average price of frozen skipjack being $1468 per tonne for the same period2, the energy145

cost would represent 14% of the ex-vessel price of frozen tuna. Bunker costs are undoubtedly146

an important component of expenses for purse-seiners targeting skipjack tuna. The share of147

energy costs is estimated between 20% and 30% of operating costs, depending on the level148

of oil rates (Miyake et al., 2010). This proportion could even rise up to 50% (Parker and149

Tyedmers, 2015) or more in case of extremely high prices on the oil market as it happened150

in September 2008 when the crude oil barrel skyrocketed at $147 per barrel, just before the151

�nancial crash (Tyedmers and Parker, 2012).152

The high share of fuel expenses in operating costs legitimates the issue of price transmission153

between oil and food markets [Avalos (2014), Dillon and Barrett (2016), Su et al. (2019)].154

Oil prices and food prices can interact through at least two channels: directly through the155

trade-o� between biofuel energy and agricultural markets, indirectly through oil energy as156

major input for most food products (Su et al., 2019). The relationship is not straightforward157

because of this dual in�uence and some articles bring evidence with a VECM and impulse-158

response models that oil prices may even adjust to the long-run relationship with corn prices159

rather than the expected opposite causality (Avalos, 2014). Interestingly, in this study, the160

relationship has become narrower after that a US Energy Policy Act has made ethanol the161
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only allowed standard additive of gasoline, thus creating a dependence between the oil price162

and the ethanol (hence corn) price.163

However, using Partial Equilibrium frameworks may overlook the macroeconomic e�ects of164

oil prices on food markets. Using a global CGE model, some authors have shown that energy165

prices have also an impact on real income and trade balances (Gohin and Chantret, 2010).166

The e�ect would be positive for crude-oil producing countries, but negative for oil importing167

countries. The authors simulated a 20% reduction shock in world oil reserves and found168

evidence of a negative relationship between world food and energy prices, countervailing169

the cost-push e�ect of an oil price change to food prices. However, one could turn the170

macroeconomic e�ect upside down and also hypothesize that an increasing oil price is the171

result of global economic growth which could somehow bene�t to food prices in general, and172

�sh prices in particular. Whatever the channel of pass-through from oil prices to skipjack tuna173

prices, either as a marginal cost-push mechanism, or a demand-pull process a�ecting both oil174

and �sh markets, we believe that the relationship deserves a thorough analysis through time175

series and through a variety of empirical models based on cointegration theory (Johansen,176

1988). First of all, a positive correlation and causality found between oil rates and �sh prices,177

if ever demonstrated, could be used to forecast the tuna price as input for canneries with the178

underlying support of Futures oil market contracts, as proved in other global �sh markets179

like the salmon market (Asche et al., 2016). Secondly, a long-term linkage between oil prices180

and tuna prices may also be an interesting contribution to a more prospective analysis of181

global food demand with respect to the peak oil and climate-driven scenarios. What can be182

the future of the large-scale tuna �sheries if high �shing costs and price elasticity of �nal183

demand hamper the pro�tability of purse-seine vessels and canneries (Sala et al., 2018)?184

Thirdly, if the relationship appears not to be robust enough in the long term, it might reveal185

some structural changes and regime shifts that could be meaningful to better understand the186

price formation on the global tuna markets. Besides the in�uential status of oil for many187

food commodities, what is the role of landings or substitute species in the �shery markets,188

keeping in mind that the world is facing a maximum supply of 80 or 90 million tonnes of189

wild-caught �sh for more than three decades, this supply being now threatened by the global190
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warming process going on and the lack of stringent regulation (Scherrer and Galbraith, 2020).191

In parallel, the world population is still growing with a higher level of income per capita192

and requires an increasing amount and diversity of food proteins. What we propose in this193

research is to reconcile the partial and general equilibrium hypotheses about the link between194

energy and �sh markets by applying a parsimonious cointegration model of price transmission195

between the oil and �sh markets. To that end, we adopt an original procedure combining196

various structural break searching techniques. First, we check the existence of a long-term197

equilibrium relation between the marine diesel oil price and the skipjack tuna price. Secondly,198

we look for structural break dates in the two markets separately, and then jointly by di�erent199

econometric means. By doing so, we expect more robust outcomes and con�dence about the200

identi�cation of break dates. Thirdly, we investigate the supply or demand-sided nature of201

the long-term relationship between the two prices by considering other factors a�ecting the202

tuna market.203

3 Relationship between the prices of skipjack and marine204

diesel oil205

3.1 Data206

The monthly price of skipjack (Pskj) is extracted from the FFA Fisheries Development Di-207

vision using the Thailandese customs database from January 2000 to September 2020 (249208

obs.)3. The price of Marine Diesel Oil (Pmdo) in Singapore is also supplied by the FFA209

Fisheries Development Division with data published by Bunkerworld4 from January 2000210

to May 2018. Between June 2018 and September 2020, the series is complemented by the211

estimated price obtained from a robust long- term relationship existing between the MDO212

in Singapore the New York Harbor No. 2 Heating Oil Future Contract 45. Both series are213

transformed by their logarithm to test for the quality of price transmission in the long run214

(Fig. 1 and Table 1). Table 1 is complemented by the descriptive statistics of two other time215

series (the price of yellow�n tuna (Thunnus albacares) -Pyft- and the quantity of skipjack216

imports in Thailand -Qskj- measured in metric tonnes, that will be used later in the study to217
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enrich the price transmission model). These two series are extracted from the same database218

of Thailandese customs.219

Insert here Fig. 1 Prices of skipjack in Bangkok and MDO in Singapore (USD/t)220

Insert here Table 1 Main statistics221

First of all, we check that all series are I(1), in particular for Pmdo and Pskj. This is the case222

from ADF, ADF-GLS and KPSS tests6. Seasonal unit roots needed also to be scrutinized in223

the following equation suggested by Miron (1996):224

yt − yt−1 = µ1D1 + µ2D2 + ...+ µ12D12 + εt (1)

where yt is the time series under investigation, and D is a (monthly) seasonal dummy225

variable. In the case where the residual term does not contain any information on seasonality,226

we may consider the Fisher test and the R2 value associated to each regression as giving an227

indication about the deterministic seasonality. For the price of skipjack series, this R2 value228

is close to 0.10 and even found lower for the price of marine diesel oil (0.05). We can conclude229

that there is no deterministic seasonality nor deterministic trend in the series [Franses (1991),230

Beaulieu and Miron (1993)].231

The price of skipjack looks also quite volatile. Looking at the annualized standard deviation232

of log price returns between February 2012 and September 2020 gave a historical volatility233

of 0.26, which is exactly the same value found in Dahl and Oglend (2014) over the period234

January 1990-December 2012. This volatility of skipjack tuna monthly prices is comparable235

to that of the farm-bred Norwegian salmon export price in USD per kilogram (source IMF)236

between February 2012 and September 2020, i.e. 0.29. The long-term relationship was then237

tested in a second step but without any success. The null of no cointegration could not be238

rejected (p-value=0.35) over the whole sample. We assumed that the relationship between239

the two market prices could have been distorted in the course of time.240
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3.2 Looking for structural breaks241

Long time (monthly) series running throughout several decades can be a�ected by disrupting242

events, as observed in other �sh markets [Asche et al. (2013), Smith et al. (2017)]. Conse-243

quently, we suspected the relationship between the price of skipjack and that of MDO to244

have been modi�ed during the sampled period. To search for structural breaks, we �rst used245

the Lavielle segmentation procedure based on the maximum likelihood criteria with the R-246

package segclust2d [Lavielle (2005), Patin et al. (2019)]. With a Lmin of 24 months (minimum247

length of a segment) and Kmax = 7 (maximum number of breaks), we tested the two series248

separately. For the oil price, the optimal number of breaks was 3, hence 4 segments (break-249

points: July 2004, December 2010 and November 2014). For the price of Skipjack alone, only250

one break was found in February 2007 7. However, the break dates did not match between251

the two series. A joint segmentation was then performed with the two series simultaneously252

and gave one single breakpoint (i.e. 2 segments) in July 2004. According to the International253

Energy Agency, demand for oil grew at its strongest pace in almost three decades in 2004,254

mainly driven by supply bottleneck and strong economic growth in Asia and America. The255

market was also tense because of uncertainty about the security of oil supplies during the256

second Gulf war (ECB monthly Bulletin, May 2005).257

The cointegration equation including a break in July 2004 was then successfully tested with a258

price transmission elasticity of 0.41, and an increasing intercept after July 2004 (R2 = 0.64).259

This is in line with the result obtained on a truncated sample of the same monthly data (from260

2000:02 to 2015:02) by (Nadzon, 2016), who found an elasticity of 0.64 and a R2 = 0.73 with261

a Fully-Modi�ed Least Square method (Nadzon, 2016). However, the structural change could262

also concerned a shift in the slope of the relation. A Gregory-Hansen test was therefore per-263

formed to look for the right speci�cation (Gregory and Hansen, 1996). Such models allow to264

determine when the unknown breakpoints occur (looking at the stationarity of the residuals265

through the minimum value of the ADF statistic corresponding to the date), and if the lat-266

ter a�ects the constant, the trend or the slope in the regression model, thus explaining the267

absence of cointegration. Their model (4) was selected as the best one, with a shift in both268

the constant and the slope with no trend (Gregory and Hansen, 1996):269
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lPskj,t = α0 + α1 × I(t > τ) + β1 × lPmdo,t + β2 × lPmdo,t,×I(t > τ) + µt (2)

270

The ADF test procedure gave a breakpoint in September 2010 (t − stat = −5.171 with271

AR lag = 2), while the Phillips procedure pointed at a breakpoint in March 2007 with272

zt = −4.986 and za = −45.343. Including either break date in the model, the two series273

became cointegrated. However, the Gregory-Hansen model (4) showed no signi�cant param-274

eter estimates for the break of March 2007 on the constant term or the slope, unlike the275

break of September 2010. Consequently, only the �rst breakpoint of the ADF procedure (i.e.276

September 2010) was considered and tested in the following cointegration model:277

̂lPskj = 3.748
(9.181)

+ 1.572
(2.427)

× I(t > 129) + 0.516
(7.727)

× lPmdo

− 0.200
(−1.934)

× lPmdo × I(t > 129) + µ̂t

T = 249 R̄2 = 0.7383 F (3, 245) = 52.938 σ̂ = 0.202 (3)

(z-value in brackets; τ(129) = September 2010)278

The τ -stat of the ADF test for µ̂t was −5.12 (p=0.000), proving the long-term relationship279

(cointegration) between the two variables. However, the di�erence between the two prices280

increased and the price transmission elasticity fell signi�cantly from 0.52 to 0.32 after the281

breakpoint, meaning that the MDO price is less well transmitted to the tuna price after this282

date. The worldwide economy increased again after two years of crisis, boosting the crude283

oil price between September 2010 and April 2011. On the tuna market side, this coincided284

with a period of stable catches (around 2.5 million tonnes between 2006 and 2011), hence285

lower imports of frozen skipjack in Thailand and higher prices. An error-correction model286

(VECM) was also tested. The coe�cient of the cointegrating vector for lPmdo is 0.530 and287

the adjustment vector shows a weak exogeneity on the MDO market side, as expected. The288

skipjack price di�erence equation of the VECM can be written as follows:289
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∆ Lpskjt = − 0.118
(−4.697)

µ̂t−1 + 0.361
(6.141)

∆ Lpskjt−1 + ut

T = 247 R̄2 = 0.168 σ̂ = 0.077 (4)

(t-stat in brackets)290

291

To summarize the results of this section, the dynamics of skipjack prices alone has changed292

in February 2007. The pattern of the MDO price has changed several times over the period,293

but particularly in July 2004 which has modi�ed the trajectory of its in�uence on skipjack294

tuna prices (intercept of the cointegration relation). Finally, another major break was found295

in September 2010, changing even more deeply the long-run equilibrium between the two296

prices (constant and slope of the relation). It seems important to investigate what could be297

the changes on the two markets and the factors a�ecting the long-run relationship between298

both markets.299

300

3.3 A weak prediction of the skipjack price301

From the cointegration model and the VECM, we try to simulate the price of skipjack from302

the single mdo price variable to see whether the latter could represent a trustful predictor of303

tuna prices. To this end, we generate random errors of the VECM from a normal distribu-304

tion ût ∼ N (0, σ̂2
u) to �rst simulate the ∆lPskj from Eq.(4). Since we know for each time305

step lPmdot−1, lPskjt−1, and µ̂t−1, we can simulate the level of lpskj (= lPskjt−1 + ∆lPskj)306

from the current and following periods. The skipjack price is simulated from April 2000 to307

September 2020 and displayed in Fig. 2, along with the actual skipjack price and with the308

break of September 2010.309

310

Insert here Fig. 2 Prediction of the skipjack price (in USD/t)311
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312

As seen in Fig. 2, if oil rates may represent reasonable predictors of current skipjack313

price at the beginning of the period, the gap between actual and simulated prices increases314

for some periods, and particularly after the break of September 2010. This would indicate315

that the long-run relation evidenced by the cointegration model does not hold tightly for every316

period. Presumably, a growing demand in the mid-2000s on the oil market resulting in a317

steady price increase before the crash of August 2008 combined with a stagnation of skipjack318

catches may have a�ected the long-run relationship between the two prices. In order to clarify319

this assumption, additional information needed to be included in the model, in particular320

to account for the supply of the tuna market. Thailandese imports of frozen skipjack were321

collected on a monthly basis since this country represents nearly half of worldwide imports322

reported by FAO and one �fth of global catches of skipjack. The series was found I(0)323

but more importantly, a Zivot-Andrews unit root test detected several breaks in the series.324

Consequently a VAR model with one lag, according to the AIC, BIC and Hannan-Quinn325

criteria, was tested and gave the following results for the �rst equation with lPskj as the326

dependent variable:327

lPskjt = 0.172
(0.692)

+ 0.877
(20.860)

lPskj∗∗∗t−1 + 0.034
(1.620)

lPmdot−1 + 0.045
(2.217)

lQskj∗∗t−1

+0.036
(1.671)

× I(t > 129)∗ + ut (5)

T = 248 R̄2 = 0.93 F (1, 243) = 4.919 σ̂ = 0.101328

∗,∗∗ ,∗∗∗, signi�cant at 1%,5%,10% levels, t-stat in brackets.329

After the introduction of the lagged quantity variable, the oil price became non-signi�cant,330

as if the Bangkok tuna price was responding more to the past level of landings than to the331

oil input price. Unfortunately, the own-price �exibility coe�cient did not show the expected332

sign, i.e. normally negative and unitary as found in previous studies (Sun et al., 2017),333

presumably because of an identi�cation problem. The level of catch and landings is also334

possibly a�ected by the oil rate itself, because the lQskj equation of the VAR system had a335

very signi�cant parameter estimate for the lagged lPmdo variable. The level of landings could336
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certainly be a�ected by the energy cost of �shing beyond a threshold, but there may be some337

other explanation behind the degraded correlation after the breakpoint and the alternate338

periods of good and bad connections between the two markets. This needed to be scrutinised339

with potential regime shifts between some sub-periods. In a preliminary conclusion, we340

consider that the oil price, although in�uential for the skipjack price, is not a good predictor341

of skipjack prices for every period.342

4 Introducing a regime shift in the oil-tuna price relation343

The previous analysis of structural breaks emphasizes the changes a�ecting the long-run re-344

lationship between the skipjack price and the fuel price. We are therefore looking for other345

possible candidates to explain the evolution of skipjack prices along with the oil price. In346

particular, the leading role played by a substitute species (yellow�n tuna, Thunnus albacares)347

was pointed out by another study about price cointegration (Jiménez-Toribio et al., 2010).348

The correlation between the two prices is clearly observed in Fig. 3, with a higher price349

of the big yellow�n, hence more targeted by purse-seiners, because of a better yield of raw350

materials per �sh for canneries.351

352

Insert here Fig. 3 Skipjack and yellow�n tuna prices in the Bangkok market (in USD/t)353

354

It was therefore decided to test for the relationship between the prices of the two major355

cannery-grade tuna species before including them in a Markov chain model which allows two356

regimes of price relationship between the fuel and the skipjack prices, assuming that the357

change may not be permanent but shifting between two regimes as observed in other �sh358

market studies (Asche et al., 2013).359

Con�rming the results of the 2010 study, which was based on a sample between January 1995360

and December 2006 (Jiménez-Toribio et al., 2010), a cointegration relation was easily found361

between the two I(1) series of the logarithmic prices of skipjack and yellow�n8. A VECM362

model proved the weak exogeneity of the yellow�n price, the skipjack price reverting back363
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to its long- run relationship with the price of the other species (with a speed of adjustement364

of −0.1317, signi�cant at the 1% level) while the former one is signi�cant but positive, thus365

not moving back to the long-run relation. We also assumed that the transition probabili-366

ties between the two regimes are depending on the skipjack landings, since the quantity of367

skipjack, which is prevailing in the Bangkok market (Sun et al., 2017), showed some kind of368

in�uence over the skipjack price in the previous VAR equation.369

The two regimes shown were then estimated on a sample 2000m1-2020m9 with Eviews 11370

(full results in Appendix):371

Regime 1:372

lPskjt = 0.241∗∗∗
(0.038)

lPmdot + 0.739∗∗∗
(0.032)

lPyftt

+σ̂t (6)

Regime 2:373

lPskjt = 0.052∗∗
(0.025)

lPmdot + 0.932∗∗∗
(0.021)

lPyftt

+σ̂t (7)

∗,∗∗ ,∗∗∗, signi�cant at 1%,5%,10% levels, st-error in brackets. σ̂t is the error term.374

375

376

Clearly, the in�uence of the marine diesel oil price on the skipjack price is weaker during377

the second regime, the elasticity of price transmission decreasing from 24.1 to 5.2% while378

the fundamentals of the tuna market (catches and substitute species) are more present in379

Regime 2. Looking at Fig.4 gives an insight to the periods under Regime 1 (Regime 2 is380

easily deducted when the probability of Regime 1 is null). dominates:381

382

Insert here Fig. 4 The two regimes of the relation between oil and skipjack tuna prices383

between January 2000 and September 2020384
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385

We can see that the two regimes alternate, although the higher probabilities of being386

in Regime 1 at each time step are rather found during the �rst decade, the second decade387

being more characterized by the second regime of price transmission, with a few exceptions388

around 2015 and 2019. We can therefore better understand the gaps between the actual and389

simulated price of skipjack shown in Fig. 2. The periods of Regime#1 of higher transmission390

between oil and tuna prices are rather found at the beginning of the sample period, i.e. prior391

to the �nancial crisis and when the economic growth rates were quite high. At the turn of392

the decade, landings stagnated for several years, creating shortages on the growing canned393

tuna market. After the crisis, the increasing spread between the two prices could therefore be394

explained by a more important role of landings upon the skipjack quotations. We can have a395

more speci�c understanding about the role of skipjack landings by looking at the parameters396

of the transition matrix:397

Pt =

P11,t P12,t

P21,t P22,t

 (8)

398

From the results of the MS model (Table 4 in Appendix), the probabilities of transition399

between the two regimes can be written as a logistic function of lQskj:400


P11,t = 1

1+e−0.216∗lQskjt

P21,t = 1
1+e−(−0.284∗lQskjt)

(9)

401

Using the min and max values of Qskj in Table 1 helps to interpret the two transition402

probabilities of Eq.(9). In a month where the landings in Bangkok are low (15,164 tonnes),403

the probability of remaining in regime #1 is 89%, hence 11% of shifting to the second regime.404

Whenever the landings reach a maximum value (90,435 t), the likelihood of shifting to regime405
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#2 is 3 points lower. In other words, the high level of price transmission between the MDO406

price and the skipjack price is more likely to occur when the tuna market is not under the407

stress of low landings and when the tension is rather on the oil market. However, in case of408

shortage on the tuna market and if the tension on the oil market is relaxed, the role of tuna409

landings prevail and oil is no longer a dominating driver of tuna prices.410

5 Discussion of the results411

The relationship between the oil price and the price of food commodities might be overlooked412

by economists although most food industrial processes are fossil fuel-based, particularly in413

�sheries [Parker and Tyedmers (2015), Parker et al. (2015)]. The fuel use intensity of an414

industrial purse-seine �eet is estimated around 500 Litres per tonne of caught �sh, but it can415

reach nearly 700 Litres in some cases and varies according to the �shing technique [Chassot416

et al. (2021), Basurko et al. (2022)]. Consequently, marine diesel oil represents a substantial417

share of costs, between 20 and 30% of total �shing costs for high-seas �eets, although the418

tuna purse-seine �eet is considered more e�cient than others in terms of energy return on419

investment indicator, and even when it is compared to many agricultural production activities420

(Guillen et al., 2016).421

We hypothesized that such an important energy input should be somehow visible in the price422

of skipjack tuna which is valued around USD1280 per tonne at the Bangkok market (sample423

mean between 2000 and 2020), major international marketplace in the world by the volume424

of trade (nearly 600, 000mt were imported by Thailand in 2019). A strong relationship would425

allow to predict future tuna prices, helping both �shing and canning companies to plan their426

economic results and investment. On this particular expectation, our �rst results from a427

price transmission model applied to the relationship between marine diesel oil and skipjack428

tuna prices between January 2000 and September 2020 were quite disapointing because no429

cointegration relation could be found. However, searching for structural breaks with di�erent430

econometric procedures [Lavielle (2005), Bai and Perron (2003), Gregory and Hansen (1996)]431

allowed to identify at least two possible breakpoints in July 2004 and September 2010. The432

�rst date concerned mainly the oil market. The period starting in 2004 has been characterized433
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by a sharp increase of crude oil prices. Between July 2004 and July 2008, the average USD434

price per barrel has grown by 258% because of the tremendous demand from fast growing435

economies like China and south-East Asian countries, thus creating supply shortages, locally436

and globally (Casamassima et al., 2009). This could explain the �rst breakpoint found in437

the Pmdo series, followed by several other successive changes marking the booms and busts438

of the worldwide conjuncture.439

The second date was more interesting because it could potentially a�ect the two time440

series and their relation. As far as the cannery-grade tuna market is concerned, the global441

catches stagnated for several years between 2007 and 2012 around 2.5 million tonnes after a442

continuous increase over the past decades (the average annual growth rate of landings being443

+5% since 1950 according to the FAO FishstatJ data). During this 6-year period, the demand444

kept on increasing at the steady rate of +3−4%, corresponding to the average growth rate of445

frozen skipjack imports since 1976, thus creating a shortage e�ect on the market and higher446

prices. The monthly growth rate of skipjack prices over the dataset sample (Jan. 2000-Sep.447

2020) being less than 1% on average, it grew by nearly +4% between February 2007 and448

August 2008, when the �nancial crisis stopped the upward trend. The twofold shock of449

stable catches and the economic downturn of the late 2000s has deeply a�ected the long- run450

equilibrium between oil and tuna prices. A structural change model (Gregory and Hansen,451

1996) indicated that both intercept (i.e. the spread or margin) and slope (the elasticity452

of price transmission) were modi�ed after the break. The spread has increased after the453

2010 breakpoint but, more importantly, the elasticity of price transmission has been reduced454

from 0.516 to 0.316 between the two periods, meaning that the pass-through of oil prices to455

skipjack tuna prices has been degraded. Whenever the oil price increases by 10%, the tuna456

price only increases by 3% in the last decade, instead of +5% a decade ago. Other in�uences457

had to be searched for.458

This was done through the introduction of a substitute price (i.e. the leading price of another459

tuna species sold on the same market, yellow�n tuna or T. albacares), and the monthly460

quantity of skipjack imports in Thailand, in a Markov-switching model. With this approach,461

a clear regime shift appeared signi�cant throughout the two decades: the quality of price462
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transmission between oil and tuna prices alternates between phases of high and low pass-463

through. In particular, prior to the �nancial crisis or so, the �rst regime of high transmission464

between the two markets prevails, while the second regime of lower transmission dominates465

the past decade. In the meantime, the oil market has experienced a high volatility period466

with spectacular ups and downs and the tuna market, after decades of steady growth, is467

increasingly stretched by an imbalance between the increasing worldwide demand and tuna468

catches reaching a ceiling after a long period of expansion [Miyake et al. (2010), Dueri et al.469

(2016), Mullon et al. (2017), Scherrer and Galbraith (2020)]. In the estimated model outcome,470

we reported a regime shift at the turn of the 2010s: a �rst regime where the tuna price471

responds quite well to the oil market shocks, and a second regime where other variables472

related to the tuna market become more in�uential. Interestingly, the likelihood of Regime473

#1 (better pass-through between Pmdo and Pskj) is related to higher quantities sold on the474

tuna market, whereas the relationship between the two markets is a�ected by the market475

pressure of low landings or higher demand for �sh. This result is similar to those found in476

other studies about the contrasted in�uence of an oil price increase according to the phase of477

the economic cycle [Raymond and Rich (1997), Yahya et al. (2019), Dahl et al. (2020)]. In478

the �rst cited study, using a Markov-switching model, the authors showed that an increase of479

oil prices during the boom periods had little impact on the economy, but tends to a�ect more480

deeply the results during slow- growing phases. Yahya, Oglend and Dahl (2019, 2020) found481

similar results with wavelet and copula methods applied to the crude oil price connected482

to agricultural prices on Futures markets: the spillover and dependence parameter between483

energy and ten agricultural markets decline during period of economic prosperity and spike484

during economic turmoil periods such as the 2008 global �nancial crisis (Dahl et al., 2020).485

In a closer case study to our own results, Asche et al. (2013) also found two Markov discrete486

regimes in the relationship between the �shmeal and the soybean markets, both supplying487

aquaculture and terrestrial animals feed markets. Their interpretation is the following one:488

whenever the �shmeal market faces a shortage because of a climatic event like a strong El489

Niño Southern Oscillation, then the two markets are disconnected with a more volatile and490

higher relative price of �shmeal (Asche et al., 2013). In this regard, structural breaks or491

regime shifts observed in commodity markets can help signalling more global changes such492
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as environmental events (Smith et al., 2017).493

What lessons can be drawn from this study? It is clear that the years and decades to come494

will see higher tensions on the oil market, ending the �ourishing expansion of the high-seas495

purse- seine �eet targeting tropical tuna species since the early 1950s, and which is highly496

energy-consuming [Parker and Tyedmers (2015), Tickler et al. (2018), Sala et al. (2018),497

Chassot et al. (2021), Basurko et al. (2022)]. The most predictable scenarios for oceanic498

�sheries of large pelagic are darker with respect to global changes [Maury et al. (2017),499

Scherrer and Galbraith (2020), Bell et al. (2021)], and the food requirements of the growing500

population will put pressure on the tuna market, thus creating a squeeze between a declining501

supply and an increasing demand (Mullon et al., 2017). The regime#2 of the MS model is502

more likely to be the new standard, relaxing the in�uence of oil rates on tuna prices and503

moving back to the fundamentals of the market (GDP per capita and price of substitutes).504

Consequently, we recommend tuna traders not to use the oil price on Futures markets as505

a reliable predictor of tuna prices in the short and mid-terms for their hedging operations506

[Dillon and Barrett (2016), Su et al. (2019)]. However, energy remains a powerful driver of507

the industry, as shown by the long-term relationship between the oil and tuna prices, and508

as such modellers must integrate this fact in their predictive models of global food demand509

scenarios for the 21st century [Bodirsky et al. (2015), Flies et al. (2018)].510
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Notes511

512

1Such as the Shared Socioeconomic Pathways (SSP) scenarios proposed by the Inter-513

governmental Panel on Climate Change (IPCC).514

2Data source: FFA Fisheries Development Division.515

3www.customs.go.th/Customs-Eng/Statistic/ StatisticIndex2550.jsp under the HS code516

0303.43.0000 (frozen skipjack as cannery-grade tuna). Data series collected by the FFA517

Fisheries Development Division.518

4www.bunkerworld.com/prices/port/sg/sin/519

5www.eia.gov. (lPmdo = 0.972× lPnyhfo)520

6The ADF test values of the unit root test for lmdo were −2.08 and −1.82 with C and521

with C+T, resp. The ADF stat in �rst di�erence was −10.77∗∗∗ and the KPSS test value522

was 5.178∗∗∗. The series is therefore I(1). For lpskj, the ADF values in levels were −2.65∗
523

and −3.09, respectively, but the ADF-GLS (−0.478) and KPSS (2.71∗∗∗) concluded that the524

series was also I(1) DS.525

7The dates were con�rmed by a Bai-Perron test procedure under the BIC and RSS criteria526

(Bai, 1997),(Bai and Perron, 2003)527

8The cointegration equation had the following form: lPskj−1.2748×lPyft∗∗∗+2.2704∗∗∗.528
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Figure 1: Prices of skipjack in Bangkok and MDO in Singapore (USD/t)
Source: FFA Fisheries Development Division
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Table 1: Main statistics
Stat Pmdo Pskj Pyft Qskj
Min 154.3 419.7 691.0 15,164
1st Qu. 357.1 899.9 1210.5 33,691
Median 536.5 1263.0 1615.0 43,701
Mean 552.8 1278.3 1604.5 43,839
s.d. 252.4 463.7 464.8 13,895
3rd Qu. 693.3 1590.4 1922.5 54,460
Max 1256.0 2230.0 2607.0 90,435

Source: FFA Disheries Development Division and https://www.customs.go.th/
Monthly prices are in USD per tonne and the monthly quantity Qskj is in tonnes
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Figure 2: Prediction of the skipjack price (in USD/t)
(blue line = actual price, red line = simulated price from the VECM since April 2000, green vertical line =

structural break of September 2010, right axis)
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Figure 3: The price of skipjack and yellow�n tuna in the Bangkok market
(USD/t)
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Figure 4: Markov Switching one-step ahead predicted regime probabilities
P(State(t)= regime 1)
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Appendix

Results of the Markov-Switching regression between oil and tuna prices
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