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Abstract

Rare earth elements (REE) have unique chemical properties, which allow their use as geochemical tracers.
In this context, the present study aims to assess the role of Funil Reservoir on REE biogeochemical
behavior. We collected water samples upstream of the reservoir (P-01) in the city of Queluz, inside the
reservoir (P-02) and downstream of Funil Reservoir (P-03) in the city of Itatiaia, RJ. In the field,
physicochemical parameters were measured using a probe (pH, temperature, electrical conductivity, and
dissolved oxygen). In the laboratory, water samples were filtered (0,45 um) and properly packed until
chemical analysis. Chlorophyll a concentrations were determined by a spectrophotometric method and
suspended particulate matter (SPM) by a gravimetric method. lonic concentrations were determined by
ion chromatography technique and REE concentrations were determined by ICP-MS. Chlorophyll a
concentrations were higher in Funil Reservoir. lonic concentrations in Queluz (P-01) suggest anthropic
contamination. The sum of REE in the dissolved fraction ranged from 2.12 to 12.22 ug L™ . A positive
anomaly of La in Queluz indicates anthropic contamination. The observed patterns indicate that Funil
Reservoir acts as a biogeochemical barrier, modifying the fluvial transport of REE. Nonetheless, another
factor that probably influences REE behavior is the algal bloom that occurs in reservoirs during the rainy
season. The seasonal behavior of algae can influence REE biogeochemistry through the incorporation
and release of trace metals.

1. Introduction

The unique and similar geochemical behavior of the rare earth elements (REE) results from the similar
electronic configuration and makes them ideal tracers for many biogeochemical processes (Tranchida et
al., 2011). In aquatic systems, determining REE concentrations associated with dissolved and particulate
fractions allow inferring their rock origins, weathering, water mass circulation in the marine environment,
column water scavenging and bioavailability of these elements (Goldstein and Jacobsen, 1987; Goldstein
and Jacobsen, 1988; Elderfield et al., 1990; Sholkovitz, 1991; Negrél et al., 1993; Tricca et al., 1999; Ingri et
al., 2000; Xu and Han, 2009).

Many studies have been conducted in recent decades to better understand REE composition and
fractionation in distinct marine environments, including estuaries, oceans and hydrothermal veins (Haley
et al., 2004) aquatic environments (Goldstein and Jacobsen, 1988; Elderfield et al., 1990; Dupré et al.,
1996; Gailladert et al., 1997; Douglas et al., 1999; Viers et al., 2000; Tosiani et al., 2004; Xu and Han,
2009). Nonetheless, the geochemical controls on REE distribution in tropical environments are relatively
scarce compared to their temperate counterparts. In the modern world, REE is largely employed in several
technological applications owing to its unique magnetic, phosphorescent, and catalytic properties. The
universal REE may result in their releasing and contamination in the environmental, while other human
interventions in the landscape can alter natural erosion and runoff dynamics of rivers and estuaries,
leading to changes in physicochemical properties, such as grain-size, texture, and eventually influence the
distribution of trace elements ( Gomes et al., 2013; Bisi et al., 2012; Patchineelam et al., 2011). The
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anthropogenic factor in the natural cycling of the REE deserves better mitigation, particularly in fluvial
courses modified by dams (Tang and Johannesson, 2010).

Human actions in drainage basins affect the pulse, magnitude and nature of water flow and the transport
of elements in fluvial waters. As an example, human activities such as logging, agriculture and livestock
production increase surface runoff and transport in drainage basins. Dams increase breath and water
supply, as well as sediments and nutrients. Dams retain and transform materials, altering the natural flux
of material, changing the capacity of transport (Souza et al., 2011).

Considering the influence of dams on biogeochemical cycles, this study aims to assess the hole of Funil
Reservoir on REE biogeochemistry in this section of the Paraiba do Sul drainage basin. Indeed, REE has
been frequently used to evaluate anthropogenic influences and sources for river waters or sediments
(Benabdelkader, 2019; Bau and Dulski, 1996; Fuganti et al., 1996; Xu et al., 2012; Gallello et al., 2013). The
natural distribution of REE in water, soil, and sediment from densely industrialized and populated regions
can be altered by anthropogenic influences (Nozaki et al., 2000; Elbaz-Poulichet et al., 2002; Oliveira et al.,
2003; Kulaksiz and Bau, 2007; Di Leonardo et al., 2009; Rabiet et al., 2009).

2. Material And Methods

Study area: Paraiba do Sul drainage basin, in southeastern Brazil, occupies 57,000 km? and covers
important Brazilian states such as Sao Paulo, Rio de Janeiro and Minas Gerais. This drainage basin is
located in a rural and metropolitan area, with the original Atlantic forest restricted to parks and reserves.
The course of Paraiba do Sul River began to be modified by fluvial transport in 1950, with the creation of
Santa Cecilia Reservoir, where waters from Paraiba do Sul were pumped (160 m?2/s) to supply the
metropolitan area of Rio de Janeiro (INEA, 2013). The hydro energy systems of Furnas are located in this
drainage basin area, represented by Funil Reservoir and Light Company, which control five reservoirs:
Santa Cecilia, Vigario, Santana, Tocos and Lajes.

Funil Reservoir (Fig. 1) is located in Paraiba do Sul River, in the city of Itatiaia, Rio de Janeiro (State). The
Granite of Funil characterizes the geology of this region. This area is 50 km? in size and corresponds to a
type | granite, incipiently deformed to not deform, monzogranite composition (Chappell, 1974). This
granite is characterized by the presence of magnetite, pyrite, and molybdenite. The study area is
distinguished by yellow dystrophic oxisols, sedimentary alluvial soils, and podzolic lithosols. The soil of
the region is also recognized by its clay minerals typical of acid soils with high Al contents and low
permeability (Governo do Estado do Rio de Janeiro, 1997).

Experimental settings: We collected subsurface water samples using a Van Dorn water sampler at three
different sampling points: (P-01) located 18 km upstream of the reservoir, in the city of Queluz, Sdo Paulo
(State); (P-02) located in Funil Reservoir; and (P-03) located 6 km downstream of the reservoir, in the city
of Iltatiaia, Rio de Janeiro (State). /n situ, physicochemical data were measured using a probe (Hanna
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Instruments — HI9829). Then, water samples were correctly packed into Teflon flasks and transported to
the laboratory in ice coolers.

In the laboratory, water samples were filtered through cellulose acetate membranes (0.45 pm) to obtain
the respective dissolved (< 0.45 pm) and particulate fractions (> 0.45 pm). After the filtration step, ion
concentrations in dissolved fractions were determined using lon exchange chromatography (Dionex ICS-
2000 lon Chromatograph with Dionex AS40 Automated Sampler). The anionic species measured were
fluoride (F"), chloride (CI”), bromide (Br”), nitrate (NO3 "), sulfate (S0,27), and phosphate (P0,3"). Gradient
separations were performed with KOH eluent, AS-19 column, AG-19 guard column and ASRS-300
electrolytic suppressor (all Dionex and 2 mm).

Metal concentrations were determined in a distinct dissolved fraction acidified with HNO3 (Suprapur®,
Merck) and in SPM samples by ICP-MS (Agilent 7500ce).

The chosen isotope list was: 27Al, °°Mn, °6Fe, 4°Sc, 8%Y, 13%La, 140Ce, 41Pr, 146Nd, "4/Sm, 193Eu, 1%/Gd,
159Tp, 163y, 16510, 166 169Tm 172yp 175y, and 232Th. The analysis was run with Octapole Reaction
System (ORS) equipped with a low-flow MicroMist nebulizer connected to a refrigerated quartz Scot mist
chamber. Nickel samplers and skimmer cones were used. The internal standard used was Rhodium. The
determination of Fe isotope m/z 56 was made using the ORS system with the introduction of He gas for
the elimination of ArO interference.

All reagents used in lon Chromatography and ICP-MS analysis were analytical grade. The solutions were
prepared with ultrapure water (resistivity < 18.2 MQ cm) obtained from a Milli-Q Reference System
(Millipore).

The acetate cellulose membranes with particulate fraction were designed to quantify the SPM by using
gravimetric method (Carmouze, 1994). Chemical determination of chlorophyll a in filters was performed
by a spectrophotometric method (Shimadzu UV-1800) after 90% acetone extraction (Carmouze, 1994).

3. Results And Discussion

Table 1 summarizes all physicochemical data. Overall, a similar electrical conductivity and SPM
concentration behavior was observed from upstream (P-01) to downstream (P-03). Chlorophyll a
concentration detaches from the other physicochemical data with concentrations four times occurring in
Funil Reservoir (P-02). Furthermore, according to CONAMA 357/2005, values of chlorophyll a
concentration within Funil Reservoir (P-02) are above the reference value. This behavior probably reflects
seasonal algal blooms in Funil Reservoir, as reported by other authors (Barbosa, 2005; Novo et al., 2006;
Rudorff, 2006; Londe, 2008; Costa, 2009; Vidal, 2012).

Table 1. Physicochemical parameters, concentration of suspended particulate matter (SPM) and
chlorophyll a at different ingestion points.
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Temperature (°C) pH  Conductivity (uS/cm) DO (mgx’L) DS {mgﬁ
Rainy Season
Queluz  Average 23.67 6.9 74.67 5.58 37.33
SD 2.31 0.29 14.53 1.65 7.31
Funil Average 25.20 8.0 74.50 6.02 37.33
SD 2.66 1.12 5.05 1.67 2.88
Itatiaia  Average 23.67 6.7 70.17 391 42.50
SD 2.10 0.23 10.52 0.85 17.33
Dry Season
Queluz  Average 2049 6.66 91.00 596 45.60
SD 1.52 0.24 892 149 4.41
Funil Average 2243 7.60 74.66 7.09 37.66
SD 1.58 1.50 6.97 1.70 3.44
Itatiaia  Average 20.77 6.90 81.80 548 41.20
SD 1.94 0.18 6.83 1.07 3.34

lon concentrations are presented in Table 2. Comparing the three sample stations, the high
concentrations of chloride nitrate and sulfate found in Queluz (P-01) suggest an anthropic influence,
despite all values being within the standards established by Brazilian environmental legislation (CONAMA
357/2005). In Funil Reservoir (P-02), ionic concentrations diminish, likely due to ion incorporation by
algae or water column scavenging, which increases seasonally in the reservoir (Barbosa, 2005; Novo et
al., 2006; Rudorff, 2006; Londe, 2008; Costa, 2009; Vidal, 2012).

Table 2. lonic concentrations at sampling points, expressed in mg.L™".

2

FI- Cr Br- NOs  POs® SOg
Queluz | 0.075 5710 0.036  3.520 0.057  10.300
Funil | 0.080 4410  0.010  2.040 0.010  7.307

Itatiaia | 0.072 4.440 0.010 2.700 0.010 6.610

In line with previous studies (Gomes et al.,2013), iron and aluminum concentrations in the dissolved
phase (Fig. 2) seem to be derived from the weathering of aluminosilicate mineral assemblies of the
material from the middle Paraiba do Sul watershed geology. These high concentrations are probably due
to the entrainment of soil and erosion of fluvial margins. However, the lowest concentrations of Fe, Al and
Mn in Funil Reservoir (P-02) indicate that this reservoir acts as a biogeochemical barrier, promoting the
removal of these elements via sorption on surface particles and subsequent decantation (Von Sperling,
1990). Concentrations of Fe, Al and Mn in Itatiaia (P-03) indicate the influence of drainage basin washing,
as was found in Queluz (P-01) (Gomes et al., 2013).
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Evaluating the SPM fraction (Fig. 3), Al concentration was more elevated upstream (P-01) and
downstream (P-03) of the reservoir, and there is a significant reduction of Al inside Funil Reservoir (P-02).
Accordingly, Al data probably indicates clay mineral deposition inside the Funil Reservoir (P-02).

The REE concentrations in the dissolved fraction in the Funil Reservoir sample (Table 3) were four to six
times higher than other sample stations. In all of them, light REE concentrations were higher than heavy
REE, especially in Funil Reservoir (P-02). Such a pattern agrees with experimental studies conducted in
lacustrine environments, where hydrodynamical conditions favor a depletion of medium and heavy REE
typically observed (Sultan and Shazili, 2009).

Table 3. Concentrations of rare earth elements associated with the dissolved fraction at different
sampling points.

Queluz  Funil Itatiaia
La 0.35 8.87 0.52
Ce 0.84 0.35 1.04
Pr 0.098 0.06 0.14
Nd 0.35 0.05 0.052
Sm 0.062 0.06 0.089
Eu 0.05 0.05 0.05
Gd 0.065 2.48 0.095
Ib 0.05 0.05 0.05
Dy 0.05 0.05 0.057
Ho 0.05 0.05 0.05
Tm 0.05 0.05 0.05
Yb 0.05 0.05 0.05
Lu 0.05 0.05 0.05
YREE 2.12 12.22 2.76

Total REE concentration normalized by PAAS (Post Archean Australian Shales) in water samples reveals
geochemical fractionation, characterized by a slight enrichment of heavy REE (Fig. 4).

Together, particulate and dissolved fractions evidence processes occurring in the water column of the
Funil Reservoir that modify the dynamics of these elements. The formation of aqueous complexes,
biological uptake and adsorption to colloids are potential processes responsible for REE fractionation

between dissolved and particulate phases (Ronnback et al., 2008).
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In dissolved fractions, REE curves overlap in shape and magnitude, while in the SPM, Funil reservoir
samples distinguish for neighbor sampling stations with lower normalized values. This pattern could be
explained by two reasons: the first is the incorporation of light REE by microalgae, that develop
seasonally in Funil Reservoir according to many authors (Novo et al., 2004; Barbosa, 2005; Rudorff, 2006;
Londe, 2008; Costa, 2009; Vidal, 2012); and the second is particle sedimentation in Funil Reservoir due to
hydrodynamic processes and physicochemical conditions.

Algae are great accumulators and have been experimentally used for REE recovery, which are metals with
high technological value destined for the use of high technology industries. The metals bioavailability for
algae depends upon many factors: physicochemical parameters, pH, salinity, luminosity, SPM
concentration, and organic matter contents (Karez et al., 1994). Furthermore, according to Karez et al.
(1994), competition for dissolved metals in algal cell sites depends on biological factors.

Notwithstanding, Valittuto et al. (2006) demonstrated that biota have a keyhole in REE removal from the
water column. Other authors identified correlations between REE concentrations in the dissolved phase
and biota. In this way, some authors identify that the capacity of REE absorption from the soluble phase
is probably related to physicochemical similarities between REE and Ca, which is an essential element for
plants (Lakatos et al., 1999).

Observing the following graphic (Fig. 5) we can identify two anomalies: Tm and Eu. Tm anomaly could be
justified by the geological settings of the study area, whose minerals are sources of REE, and thus, reflect
weathering activity in drainage basins (Pereira et al., 2001).

According to Sultan and Shazili (2009), Eu anomalies are observed in most rivers and reflect the redox
potential chemistry of this element (Ryu et al., 2007). This anomaly was higher in Funil Reservoir (P-02)
when compared with other sample points; consequently, in Funil Reservoir (P-02) Eu is released and
associated with the dissolved phase. We hypothesize that algal blooms leading to anoxic conditions in
sediments may favor the Ce releasing through water pore diffusion.

Positive anomalies of Ce occur typically in tropical environments, where high temperatures are constant
throughout the year, combining with precipitation, according to Sultan and Shazili (2009) (Table 4),
probably due to reducing conditions that favor Ce anomalies. And analyzing La anomalies, high positive
anomaly of La found in Queluz (P-01) suggests anthropic contamination (Bau, 1999).

Table 4. Occurrence anomalies of rare earth elements in the study area.

Queluz Funil Itatiaia
Ce 1.157 1.315 1.05
Eu 1.036 1.157 1.061
La 54.083 5407 13.287
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4. Conclusion

According to the presented results, Funil Reservoir acts as a biogeochemical barrier, modifying the fluvial
transport of rare earth elements associated with particulate and dissolved fractions of waters from the
middle Paraiba do Sul River. Another factor that might influence REE biogeochemical behavior is the
seasonality of algae. These algae can act through the uptake and release of REE, which behave exactly
like other metals. Moreover, hydrochemical conditions can influence the dynamics of REE along this
section of Paraiba do Sul River. The positive La anomaly suggests anthropic influence in Queluz (P-01).
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Figure 1

Map of the Funil reservoir indicating study area zones: 1. River upstream from the reservoir, 2. Upper
reservoir, 3. Lower reservoir, and 4. River downstream of the reservoir (Araujo et al., 2017).

700 Dissolved pool

= 600

o
% 500
§ 400
k=]

s
.EEIII

g 200
<]
Y 100
0
Queluz Funil Itatiaia

HFe BA| BMn

Figure 2

Page 13/15



Comparative of Fe, Al, Mn concentrations (mg.L™") associated with dissolved pool in all sample points.
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Figure 3

Comparative of Fe, Al, Mn concentrations (mg.g™') associated with particulate phase in all sample points.
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Figure 4

Concentrations of rare earth elements (REE) (ug.L™") associated with dissolved phase and SPM phase
along the study area.
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Figure 5

Rare earth elements (REE) concentrations normalized by PAAS associated with dissolved pool (left side)
and particulate matter (right side).
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