Bridging Koopman Operator and Time-Series Auto-Correlation Based Hilbert–Schmidt Operator

Type Book section
Date 2023
Language English
Author(s) Zhen Yicun1, Chapron BertrandORCID1, Mémin Etienne2
Affiliation(s) 1 : Institut Français de Recherche pour l’Exploitation de la Mer, Plouzané, France
2 : INRIA/IRMAR, Rennes, France
Book Chapron Bertrand, Crisan Dan, Holm Darryl, Mémin Etienne, Radomska Anna (Eds.) (2023). Stochastic Transport in Upper Ocean Dynamics. STUOD 2021 Workshop, London, UK, September 20-23. Springer International Publishing. ISBN 978-3-031-18987-6. Part of the Mathematics of Planet Earth book series (MPE,volume 10), pp.301-316
DOI 10.1007/978-3-031-18988-3_19
Keyword(s) Singular spectrum analysis, Koopman theory, Hilbert–Schmidt theory
Abstract

Given a stationary continuous-time process f(t), the Hilbert–Schmidt operator Aτ can be defined for every finite τ. Let λτ,i be the eigenvalues of Aτ with descending order. In this article, a Hilbert space $$\mathcal {H}_f$$ ℋ f and the (time-shift) continuous one-parameter semigroup of isometries $$\mathcal {K}^s$$ K s are defined. Let $$\{v_i, i\in \mathbb {N}\}$$ { v i , i ∈ ℕ } be the eigenvectors of $$\mathcal {K}^s$$ K s for all s ≥ 0. Let $$f = \displaystyle \sum _{i=1}^{\infty }a_iv_i + f^{\perp }$$ f = ∑ i = 1 ∞ a i v i + f ⊥ be the orthogonal decomposition with descending |ai|. We prove that limτ→∞λτ,i = |ai|2. The continuous one-parameter semigroup $$\{\mathcal {K}^s: s\geq 0\}$$ { K s : s ≥ 0 } is equivalent, almost surely, to the classical Koopman one-parameter semigroup defined on L2(X, ν), if the dynamical system is ergodic and has invariant measure ν on the phase space X.

Full Text
File Pages Size Access
Publisher's official version 16 317 KB Open access
Top of the page

How to cite 

Zhen Yicun, Chapron Bertrand, Mémin Etienne (2023). Bridging Koopman Operator and Time-Series Auto-Correlation Based Hilbert–Schmidt Operator. In Chapron Bertrand, Crisan Dan, Holm Darryl, Mémin Etienne, Radomska Anna (Eds.) (2023). Stochastic Transport in Upper Ocean Dynamics. STUOD 2021 Workshop, London, UK, September 20-23. Springer International Publishing. ISBN 978-3-031-18987-6. Part of the Mathematics of Planet Earth book series (MPE,volume 10), pp.301-316 (Springer International Publishing). https://archimer.ifremer.fr/doc/00821/93264/